

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform

for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.DIS.03 – Proceedings of the first GridCOMP workshop

Due date of deliverable: 30 November 2007

Actual submission date: 04 January 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme

(2002-2006)

Dissemination Level

PU Public PU

Keyword List: Grid, component, programming model, middleware, GCM

Responsible Partner: Denis Caromel, INRIA

GridCOMP FP6-034442 page 2 of 10 D.DIS.03

MODIFICATION CONTROL

Version Date Status Modifications made by

0 DD-MM-YYYY Template Patricia HO-HUNE

1 20-11-2007 Draft Cédric Dalmasso

2 03-01-2008 Draft Cédric Dalmasso

2.1 04-01-2008 Draft Yu Feng

2.2 14-01-2008 Draft Cédric Dalmasso

2.3 15-01-2008 Final Cédric Dalmasso

Deliverable manager

 Cédric Dalmasso, INRIA

List of Contributors

 Workshop presenters

 Denis Caromel, INRIA

 Cédric Dalmasso, INRIA

List of Evaluators

 Rajkumar Buyya, UoM

 Vladimir Getov, UoW

Summary

This document contains proceedings of the 1
st
 GridCOMP workshop on Grid Component

Model (GCM
1
) held in Beijing, on 31

st
 October 2007, as one of the GRIDs@Work week

events at the CNIC facilities, Beijing, China.

The main objective of this workshop was to show the current results produced by the

GridCOMP project, including the explanation of the basic features provided by the GCM

programming model, its implementation in ProActive, and also the benefits of using the

GCM in several use cases, and finally some presentations of further upcoming

perspectives.

The workshop was composed of three sessions, which were Basic Programming features,

User presentations and Perspectives & Panel. For each presentation, we listed a brief

description and slides in this document.

1
 The definition made in the CoreGRID NoE EU funded project is available at

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

GridCOMP FP6-034442 page 3 of 10 D.DIS.03

Table of Content

1 SESSION 1: BASIC PROGRAMMING FEATURES ... 4

1.1PRESENTATIONS ... 4
ProActive and GCM: Status and future directions .. 4
Basic GCM Functionalities .. 4
Adaptative Behaviour with GCM ... 4

2 SESSION 2: USER PRESENTATIONS... 4

2.1PRESENTATIONS AND VIDEOS... 4
Wrapping legacy PL/SQL enterprise code using GCM 4
Telecom Computing Application (include video) .. 4
Scientific Computing Application (include video) ... 4
Legacy code wrapping, interoperation with ChinaGrid Support Platform and
Bioinformatics application... 4
Load-balancing/scheduling with multicast interfaces..................................... 4
Business Process Management Application (video)....................................... 4
Scheduling ProActive/GCM Applications on Global Grids using Gridbus
Resource Broker... 4
Interoperability & Cooperation between ProActive and XServices................ 4

3 SESSION 3: PERSPECTIVES & PANEL.. 4

3.1PRESENTATIONS ... 4
Specifying GCM component with UML... 4
Component-based grid platforms and environments 4

4 CONCLUSION... 4

5 ANNEX: PRESENTATIONS.. 4

GridCOMP FP6-034442 page 4 of 10 D.DIS.03

1 Session 1: Basic Programming features

In this session, the presentations show the basic programming features provided by the GCM.

After an overview of ProActive and GCM, the work done in the work packages ‘Component

framework implementation’ and ‘Non functional component features’ is presented.

1.1 Presentations

ProActive and GCM: Status and future directions
Denis Caromel

UNSA, INRIA, IUF

This talk presents the current status of the GCM reference implementation in ProActive, and

lists the last major improvements in the ProActive/GCM middleware such as API refactoring,

upcoming implementation of the GCM Interoperability Deployment and GCM Application

Description, etc.

Basic GCM Functionalities
Cédric Dalmasso

INRIA

This presentation aims to present concepts of the GCM programming model and how the

concepts are used with the ProActive/GCM reference implementation. It shows the ability of

the model and its implementation to provide solutions for parallel, distributed and multi-

threaded computing.

The following principles are exposed:

• primitive and composite components,

• client server and non-functional (controller) interfaces with detailed presentation of

multicast and gathercast cardinality.

Adaptative Behaviour with GCM
Marco Aldinuci and Nicola Tonellotto

University of Pisa, ISTI-CNR

In this presentation, we discuss our approach to autonomic behaviour with GCM. The key

points of the GCM are the hierarchical compositional model, the advanced interactions among

components and the management of the non-functional aspects of components. We focus on

this last topic, exploiting the autonomic computing paradigm to control the QoS of GCM-

based applications.

The key point of the autonomic computing paradigm is the autonomic feedback loop, in

which a manager supervises a set of component and triggers corrective actions at run-time to

reconfigure the components. This is done in order to satisfy user-level goals specified through

QoS contracts. We introduce the concept of behavioural skeleton as a way to abstract

parametric paradigms of component assembly, such as functional replication, proxy,

GridCOMP FP6-034442 page 5 of 10 D.DIS.03

wrappers, etc. A behavioural skeleton is specialized to solve one or more management goals

establishing a parametric orchestration schema of inner components.

As an example, we implemented the functional replication behavioural skeleton in the GCM,

demonstrating the effectiveness of its autonomic management on a parameter sweep

application (a Mandelbrot set generator). Then, we discussed some performance measures of

its ProActive/Fractal implementation compared with the ASSIST implementation exploiting

the same autonomic features.

2 Session 2: User presentations

The aim of this session is double:

1. Collect feedbacks from the user community, mainly GridCOMP industrial partner

involved in the ‘Use Case’ work package (WP5).

2. Disseminate the first results achieved using GCM in real enterprise use cases, such as

those developed in the GridCOMP project.

In addition to the presentation, some videos have been produced in order to show recording

demo of the presented use cases.

2.1 Presentations and videos

Wrapping legacy PL/SQL enterprise code using GCM
Fabio Luiz Tumiatti

Atos Research and Innovation

The Use Case selected by Atos Origin uses PL/SQL-based source code, and the candidate

application selected was the so called “Computing of DSO value”. The DSO (Days Sales

Outstanding) is the mean time that clients delay to pay an invoice to Atos. This information is

needed by several internal departments as much updated as possible and the process lasts

about 4 hours to compute around 6.600 clients.

The objective is to reduce the execution time without upgrading the infrastructure. With that it

will be possible to update the information more frequently and maintain or reduce

infrastructure cost. For that is necessary to avoid the rewriting of the PL/SQL code and make

a good analyzes and distribution of the code between the master and nodes database to use

with GCM.

Telecom Computing Application (include video)

Scientific Computing Application (include video)
Gastón Freire Amoedo

Grid Systems

These two presentations introduce the use case applications being analyzed by Grid Systems:

Telecom Computing (EDR Processing) and Scientific Computing (Wing Design). Through

the slides, the different aspects of the use cases are presented:

• Short summary of the current problems the applications are facing.

• High level block design of the solution to those problems, using GridCOMP.

GridCOMP FP6-034442 page 6 of 10 D.DIS.03

• GridCOMP features leveraged by the use case applications.

• Benefits of the proposed solution.

• Architectural design of the prototypes.

• Short description of the main components and their relationships.

Finally, a video demonstrates the current prototypes in action: a test EDR file is generated and

processed, and the performances of three wing configurations are simulated. These videos are

available on the GridCOMP website
2
.

Legacy code wrapping, interoperation with ChinaGrid Support Platform
and Bioinformatics application
Weiyuan Huang

Tsinghua University

The aim of Legacy code wrapping is to develop techniques and methods for turning legacy

code into components. This job includes two parts: extending ADL and defining the standard

API for wrapping the legacy codes to components. At present, we have done most of the Java

packages and have done a primary implementation of the design.

Interoperation with ChinaGrid Support Platform (CGSP) is an important job for GCM. In this

part, we make GCM interoperate with CGSP through two ways. One is to wrap the core

modules of CGSP as components and expose some interfaces for users to use. The other way

is to treat CGSP as a deployment protocol. Users of ProActive/GCM could use it the same as

Globus, SSH, etc.

Finally, a Bioinformatics application is shown. This application is composed of four

independent parts. Each of the four parts is deployed as a component on an individual node,

and each component runs the legacy code using legacy code wrapping.

Load-balancing/scheduling with multicast interfaces
Matthieu Morel

Universidad de Chile

In this presentation, improvements of the multicast interfaces are explained. The objective

was to add the following new features:

• Automatic load-balancing (dynamic dispatch), in order to optimize the mapping of

tasks to workers. Based on a simple but efficient (and potentially configurable)

knowledge-based algorithm, that considers global relative processing speeds of

workers (i.e. computational power + network latency). No prediction heuristics are

used.

• automatic reduction of results

• unicast dispatch mode

These modifications provide a clear separation between:

2
 http://gridcomp.ercim.org/

GridCOMP FP6-034442 page 7 of 10 D.DIS.03

1. partitioning of data

2. dispatch of invocations to workers

3. processing of results

They also provide a more configurable framework (partitioning, dispatch and reduction can

all be customized).

Business Process Management Application (video)
Thomas Weigold

IBM

In this video, a demo of the IBM use case application, a biometric identification system, is

showed. The core problem is to identify a given person solely on his biometric information by

comparing its fingerprints against a large database of enrolled (known) identities. This

requires massive computing power because biometric matching algorithms are non trivial and

must be applied many times. Therefore, the identification system takes advantage of a Grid

infrastructure and appropriate GridCOMP/GCM components, distributes the problem across

the nodes, and this way achieves real-time identification performance.

Scheduling ProActive/GCM Applications on Global Grids using Gridbus
Resource Broker
Xingchen Chu

The University of Melbourne

In this presentation, we present the design and implementation of seamlessly integrating two

complex systems component-based distributed application framework ProActive/GCM and

Gridbus Resource Broker.

The integration solution provides:

• the potential ability for component-based distributed applications developed using

ProActive framework, which leverages the economy-based and data-intensive

scheduling algorithms provided by the Gridbus Resource Broker;

• the execution runtime environment from ProActive for the Gridbus Resource Broker

over component-based distributed applications.

We also present the evaluation of the integration solution based on examples provided by the

ProActive/GCM distribution and some future directions of the current system.

Interoperability & Cooperation between ProActive and XServices
Yan Zhu

BUAA

The presentation focuses on the interoperability and cooperation between ProActive

middleware from INRIA Sophia Antipolis OASIS Team and XServices Suite from Beihang

University Web Services Team. First, it gave a short introduction of our Web Services team,

including research fields, main achievements, and software productions. Secondly, SOA

implementation architecture is represented with all the software of XServices Suite. Then,

four main components inside XServices are to be discussed in detail, which are very

important elements in Web Services Environment. Thirdly, some kernel application fields of

GridCOMP FP6-034442 page 8 of 10 D.DIS.03

XServices Suite are shown, especially in the field of E-government, remote sensing,

intelligent transportation system and collaborative seismic model. Finally, with the drive of

OW2 Open Source issue and short Visit Scholar Programme of FP6 EchoGRID Project, the

bridge between Proactive and XServices is built. It compares the differences and common

ideas between them and introduces our approach to make them have the ability of

interoperability and cooperation.

3 Session 3: Perspectives & Panel

To conclude the workshop, this session was dedicated to present further upcoming

perspectives around GCM or in the GridCOMP project.

3.1 Presentations

Specifying GCM component with UML
Antonio Cansado and Eric Madelaine

UNSA, INRIA, CONICYT

The talk is in the frame of formal specifications of components. It gives a brief theoretical

introduction on the specification of distributed components, in order to check for dynamic

compatibility of components. Then, a prototype tool called Vercors Component Environment

is presented as means to ease the development of component applications. This tool is based

on UML2 profiles, having a two-fold approach: the architecture is specified with UML

Component Diagram, and the behaviour of the components with UML State Machines. Be

believed these diagrams are well known by engineers and allow us to hide the complexity of

the underlying formalisms, while being suitable for exhaustive state-space verification

(model-checking).

Finally, the presentation ends by proposing new extensions needed on the tool in order to deal

with a broader set of GCM components. We expect these techniques to allow an effective use

of COTS (Commercial off-the-shelf) components, by checking for compatibility flaws before

deploying the application.

Component-based grid platforms and environments
Vladimir Getov and Artie Basukoski

University of Westminster

These slides give an overview of the Grid IDE (GIDE) tool developed in the GridCOMP

project. The GIDE composition perspective provides a toolbox with a list of components and

with a set of tools so that applications can be visually composed using components. Although

it functions similar to a drawing package, the back-end of the composition perspective

generates necessary GCM specific development artefacts such as component definition ADL

files and Java interface definitions. Figure 1 shows a general screen layout of the composition

perspective. Figure 2 shows part of the domain model description that is used to implement

the GMF backend which we use for the composition view. Finally, figure 3 shows a block

GridCOMP FP6-034442 page 9 of 10 D.DIS.03

diagram indicating the interactions of the GMF backend (via the diagram and composition

structures) with the composition view.

The composition perspective also supports importing of ADL files and exporting of

compositions to ADL files.

4 Conclusion

The presentation of the basics GCM features, code composition and autonomic management

of GCM application, and additionally the use case presentations have showed the benefits that

software developer and architect have to use and leverage the GCM programming model.

Also, some user presentations exposed improvements and the possible integration and

cooperation with other framework and middleware. And finally, the presentation of attractive

perspectives with the GIDE and model checking tool concluded the workshop.

Overall sessions, this first workshop on the GCM allowed the presentation of the first result

produced in the GridCOMP project and disseminate the GCM.

GridCOMP FP6-034442 page 10 of 10 D.DIS.03

5 Annex: Presentations

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

© 2006-2007 GridCOMP Grids Programming with componen ts. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media , project n°034442)

ProActive and GCM: Status and
future directions

Denis Caromel

GridCOMP Scientific Coordinator
Denis.Caromel@inria.fr

Beijing, October 2007

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

GCM Partners

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

�GCM: Grid Component Model
� GCM Being defined in the NoE CoreGRID

(42 institutions)
� Open Source ObjectWeb ProActive

implements a preliminary version of GCM
� Service Oriented: NESSI relation

�GridCOMP takes:
� GCM as a first specification,
� ProActive as a starting point, and

Open Source reference implementation.

The vision: The vision: GCMGCM to be the GRID to be the GRID GSMGSM

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

GSM and GCM Pictures

�GSM cells:

�Components:

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

GSM and GCM Pictures

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

GSM and GCM Pictures

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Overview of Project

� Interoperability Objectives:
� Interoperability with other standards: EGEE gLite, UNICORE, NorduGrid,

Globus, Web Services, LSF, IBM LL, SGE, etc.,
� A GCM ETSI Official Public Standard

Objectives:
GRID PROGRAMMING WITH COMPONENTS:
AN ADVANCED COMPONENT PLATFORM
FOR AN EFFECTIVE INVISIBLE GRID

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

ETSI GCM TC Grid Standard

�GCM Interoperability Deployment

�GCM Application Description

�GCM Fractal ADL
(Architecture Description Language)

�GCM Management (Java, C, WSDL API)

WorkWork Item No 1Item No 1

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

Form of GCM Interoperability Deployment

�Just an XML Schema:
Specifies the deployment of the application

Virtual Nodes
onto the infrastructure (machine, OS, protocols, schedulers,

etc.)

�Example: EGEE gLite schema:

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

GCM Technical Structure

1. Component Specification as an XML schema or DTD

2. Run-Time API defined in several languages
C, Java

3. Description and Information for Deployment
(XML DD, Virtual Nodes, File Transfer, …)

3. Packaging described as an XML schema

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

Status of GCM in ProActive

�Partial implementation:
� ADL schema, API, Multicast, Gathercast, …
� Component GUI (prototype)

�Distributed components for various applications:
� Numerical, Legacy, …

�Achieved experiments:
� A component application on up to 300+ CPUs

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

IC2D and Generic Environment

Eclipse GUI

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

Prototype : GUI for Components

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 16

TimIt Automatic Timers in IC2D

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 17

ProActive / GCM Environment

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 18

Current GCM experiments in ProActive

�JEM3D: 3D
electromagnetic
application:

a single Cp on
300+ CPUs on Grid

�Vibro-Acoustic
application with
EADS (legacy MPI
coupling)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 19

Scheduler: User Interface

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 20

Scheduler: Resource Manager Interface

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 21

XML Deployment Descriptors

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 22

Component GUI under Dev. at Westminster Univ.

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

© 2006 GridCOMP Grids Programming with components. A n advanced component platform for an effective invi sible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media , project n°034442)

Basic GCM Functionalities

Cédric Dalmasso, Antonio Cansado

INRIA - OASIS Team

Beijing, October 2007

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

� GCM: Grid Component Model
� GCM was defined in the NoE CoreGRID
� GCM extends Fractal with Grid specificities

� Open Source ObjectWeb ProActive
� implements a preliminary version of GCM

� GridCOMP takes:
� GCM as a first specification,
� ProActive as a starting point, and

Open Source reference implementation.

GCM Components

Scopes and Objectives:
Grid Codes to Compose and Deploy

No programming, No Scripting, …

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

Introduction to Components

� What are software components?
� Modules exposing the interaction with the environment

� Provided (server) interfaces
� Required (client) interfaces

� Black-boxes (from outside)

� Advantages
� Encapsulation (black-boxes)

� Composition

� Standardized Description � ADL � GUI, Verification
� Units of deployment

� Programming in the large vs. programming in the small (objects)

� Goal
� Reuse and compose

� Commercial Off-The-Shelf (COTS)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

Rationale: Grid applications

Solutions with ProActive/GCMRequirements

ADL, GUI, PackagingTools

Adaptation and coherent reconfigurationsDynamicity

Hierarchies, collective interfacesComplexity

Legacy code, parallelismPerformance

Encapsulation, interoperabilityLegacy code

Portable implementations, interoperabilityHeterogeneity

Handled by the middlewareMultiple administrative domains

Distributed componentsDistribution

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

Approach Based on the Fractal Model

� INRIA - France Telecom, V1 in ’02

� Fractal requires extensions for Grid Computing

� Specified in the Grid Component Model - GCM (CoreGRID)

• However:
– Distribution ?
– Deployment ?
– Parallelism ?

• Simple, extensible, hierarchical, dynamic

• Separation of concerns (controllers)

• General model, core concepts
– Encapsulation
– Strict Definition
– Assembly and deployment units

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

Some important Fractal Concepts

� Content
� Controller (or membrane)
� Server Interface
� Client Interface

• Bind(ing)

• Functional interface

• Control (or non-functional) Interface

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

� Implementation of Fractal based on ProActive middleware
Model

� Based on MOP architecture: Component as Active Object
� Distributed components, asynchronous communications (futures)

� Benefits from underlying features of the middleware
� Middleware services (Fault Tolerance, Security, Mobility etc..)

� Deployment framework (in development GCM deployment, being
standardized at ETSI)

� Sequential processing of requests in each component
� Main extensions to Fractal: deployment, collective interfaces
� Configurable and extensible

ProActive/Fractal

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

ProActive/Fractal

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

Standard Fractal Interfaces

Only 1 to 1 communications!

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

GCM Collective Interfaces

� � collective interfaces
� Multicast

� Gathercast
gather-multicast

� Simplify the design and configuration of component systems

� Expose the collective nature of interfaces

� Interface typing � Verifications

� The framework handles collective behaviour
at the level of the interface

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

GCM Multicast interfaces

single invocation � list of invocations

�Multiple invocations
� Parallel
� Asynchronous
� Selective
� Dynamic

� Data distribution
�Automatic
�Customized distribution function

� Broadcast, scattering, reduction
�Explicit typing,

� Parameterized collections
� Compatibility verified at runtime when binding

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Multicast Interfaces Illustrated

Configurable distribution policies

Parallelism

Strong typing

Configurable distribution policies

Parallelism

Strong typing

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

GCM Gathercast Interfaces

�Synchronization
� ~ “join” invocations
� Customizable: wait-for-all, wait-for-some
� Timeout

�Data distribution
� Aggregation / reduction of parameters
� Redistribution of results
� Symmetrical to multicast

list of invocations � single invocation

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Gathercast Interfaces Illustrated

Configurable distribution policies

Synchronization

Strong typing

Configurable distribution policies

Synchronization

Strong typing

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

Architecture Description Language (ADL)

�Specifies the system architecture

�Components, subcomponents

�Bindings

�Interfaces (IDL)

�Used to configure and deploy
component systems

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 16

Architecture Description Language (ADL)

�In GCM, the Fractal ADL has been
extended:
�allows to reuse ProActive-specific features

like deployment

�supports Collective Interfaces

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 17

Virtual Nodes

� Permits a program to generate automatically a deployment plan:
� find the appropriate nodes on which processes should be launched.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 18

Virtual Nodes in the ADL

� Renames a VN
� Exports a VN name

� final version of the GCM specification will precisely define the syntax for
the virtual node definition, and their composition.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 19

Let’s practice a little more !

http://proactive.objectweb.org

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 20

First-steps in GCM/ProActive Components

� Interfaces
� Cardinality (single or multiple) � ADL
� Signed by Java interfaces

� Distribution policy � Java annotations

� Composite
� Defined in ADL

� Primitive
� Defined in ADL
� Java class

� implements server interfaces

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 21

Distribution Policy

� Given by Java annotations

@ClassDispatchMetadata(
mode=@ParamDispatchMetadata(

mode=ParamDispatchMode.BROADCAST))

interface MyMulticastItf {
public void foo(List<T> parameters);

}

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

© 2006 GridCOMP Grids Programming with components. A n advanced component platform for an effective invi sible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media , project n°034442)

Wrapping legacy PL/SQL enterprise
code using GCM

ATOS ORIGIN
31-oct-2007 – Beijing, China

Fabio Tumiatti

fabio.tumiatti@atosorigin.com

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

Index

�Use case summary

�Preliminary architecture

�Components Description

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

Use case summary (1/5)

�Computing of DSO value
�The DSO (Days Sales Outstanding) is the mean

time that clients delay to pay an invoice to Atos

� Information is needed by several
internal departments as much
updated as possible

�Process lasts about 4 hours to
complete (over 6.000 clients)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

Use case summary (2/5)

�The DSO application is based on a
client/server application
�A Graphical User Interface

� to input data or parameters
needed for the computation

�Some PL/SQL processes
� to access the data stored in the

database and process them to
compute the results

�The database
� to store the data

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

Use case summary (3/5)

�Heavy processes written in PL/SQL (Oracle
Stored Procedures)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

Use case summary (4/5)

�The PL/SQL code
�Must avoid (or minimize at maximum) the

rewriting of PL/SQL procedures to avoid re-
testing the critical business code

�Split the PL/SQL code into independent sub-
programs
� Read / Write / Compute

�Organize the sub-programs between the master
and node databases

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

Use case summary (5/5)

Before
�Process lasts about 4

hours to complete (over
6.000 clients)

� Information not updated
frequently

After
�Reduce execution time

� Information updated
more frequently

�Maintain/reduce
infrastructure costs

GridCOMP

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

Preliminary architecture (1/2)

PL/SQL

2) Compute

1) Read

PL/SQL

User

Interface

Main

Program

Worker

n

DBBB

DataBase

Engine

Data

Base

Worker

1

3) Write

PL/SQL

DB DB…

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

Preliminary architecture (2/2)

�Master database
� Oracle Standard Edition or Enterprise Edition
� store all data and the packages (functions)

�Node database
� Oracle Database 10g Express Edition

� Free of charge
� Limitations:

� Memory : only 1GB of RAM
� CPU: only use one CPU
� Database : only a single XE can run

on any given computer
� Disk space : a 4GB limit

� store part of the PL/SQL code
and some data

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

Preliminary architecture – GCM Components

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

Components Description (1/6)

�The DSOProgram is the master component of the
prototype
� program workflow
� 2 client’s interfaces called read and execute

� execute – multicast client interface using Broadcast and
Round_robin dispatch mode

public interface OurTaskMulticast extends Serializable {

public List<BooleanWrapper>
compute(@ParamDispatchMetadata(mode=ParamDispatchMode.ROUND_ROBIN) List<List<String>>
clients, @ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST) List<String> dates);

}

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Components Description (2/6)

�The Reader component offers the functionality to
connect to the master database
� gets the list of client’s ids to be sent as parameters to the

PL/SQL code

public interface Reader {

String[] getClients(String clientId, String groupId);

}

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

Components Description (3/6)

�The ComputeUnit component is responsible for the
tasks execution on the slaves
� offers a execute server interface

public interface OurTask extends Serializable {

public BooleanWrapper compute(List<String> clients, List<String> dates);

}

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Components Description (4/6)

�The Compute component offers the functionality to
receive the tasks from the ComputeUnit and
execute them
� receives the list of client’s ids and sends it to the Writer

component to insert it on the salve database.
� calls the CallPlSql component to execute the PL/SQL

code

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

Components Description (5/6)

�The Writer component offers the functionality to
write on the node database the list of client’s ids to
be processed by the PL/SQL code

public interface Writer {

public BooleanWrapper insertClients(String[] clients, String start_date, String
end_date);

}

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 16

Components Description (6/6)

�The CallPlSql component offers the functionality of
wrapping PL/SQL code.
� calls an Oracle stored procedure on the slave database to

execute the PL/SQL code

public interface CallPlSql {

public BooleanWrapper executePlSql();

}

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 17

Conclusions

�Analyze the code:
�Right distribution of the PL/SQL code between

the master DB and the nodes to use with GCM

�Need to avoid:
�Rewriting the PL/SQL code

�Benefits:
�Reduction of execution time

�Reduction of Infrastructure costs
�Platform independency (Linux, Windows, …)

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

© 2006-2007 GridCOMP Grids Programming with componen ts. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media , project n°034442)

Telecom Computing Application
(EDR Processor)

Gastón Freire

gfreire@gridsystems.com

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

The Problem (I)

� Analyze all the data about
network services

� EDRs (Extended Data
Records) files contains data
related to calls and other
services (SMS, WAP).

� These files are:
� processed continuously
� stored in a Data Warehouse
� accessed by several business

processes

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

The Problem (II)

�EDR processing � ETL (Extract, Transform and Load).

�ETL means
� collect data,
� process it,
� feed it to a data warehouse or database

�Expansion of telecom services
� More computational needs
� Traditional ETL processing is not enough
� More EDRs must be processed in less time.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

The solution: GridCOMP (I)

� Using GridCOMP we can distribute the transformation effort

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

The Solution: GridCOMP (II)

�What GridCOMP offers to this application:
� A grid-computing component-based model (GCM)

� 100% Java™
� 100% portable

� A Grid IDE to design the architecture of our application.
� Composition of components

� Follow a top-down design of the application
� Easy to reuse code

� Collective interfaces
� Abstract and hide the complexity of distributed computing

� Autonomic component management
� Provides fault tolerance and load balancing

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

The Solution: GridCOMP (III)

�Benefits:
� Reduced processing time

� more complex processes
� in less time

� Redundancy and fault-tolerance
� improves the quality of the service

� Cost
� Use existing hardware
� Use low-profile machines

� Scalability
� Easy to add more power
� No need to change the application to scale out

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

EDR Processing – Current Architecture

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

EDR Processing – Components Description

�The EDRProcessor acts as the master component
� Obtains the EDR file to be processed from the
fileSupplier

� Scatters the file using the fileOperator
� Processes the chunks using the slave multicast interface
� Joins the partial results using the fileOperator

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

EDR Processing – Components Description

�The FileOperator component offers the
functionality to scatter and join files

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

EDR Processing – Components Description

�The FileSupplier supplies the EDR files to be
processed.

�The current implementation randomly generates the
content of the EDR files

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

EDR Processing – Components Description

�Each one of the EDRSlave components:
� Downloads the corresponding chunk of the EDR file
� Processes each record, generating a partial result file
� Uploads the partial result file

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Demonstration

Grid programming with components:

an advanced COMPonent platform

for an effective invisible grid

© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid

is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Load-Balancing

for

Multicast Interfaces

Matthieu Morel

University of Chile

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

Problem statement

1. Computational speedup through parallel resources

2. Paradigms

 Tightly coupled (SPMD)

 Divide & conquer

 Service composition, Workflows

 Embarrassingly parallel (some GridCOMP use cases)

Efficiency depends on:

 Modeling of the problem

 Partitioning - size

 Infrastructure

Infrastructure is often :

 Volatile

 Heterogeneous

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

Philosophy of ProActive / GCM

offer component-based programming

Separation functional - non functional

Inversion of control

Customization (controllers)

provide common facilities

Deployment

Assembly

Communication

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

Solutions for embarrassingly parallel problems

Dedicated schedulers

Ex: ourgrid scheduler

 Focus on task allocation

 Coarse grained tasks

Alternative:

Focus on the problem

 Structured assembly of components

 Parameterized interactions

 High-level programming facilities

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

Collective interfaces

Static dispatch

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

Static Dispatch Group

JVM

JVM

JVM

JVM

agcg

c1

c2

c3

c4

c5

c6

c7

c8c0

c9c1

c2

c3

c4

c5

c6

c7

c8c0

c9

c1

c2

c3

c4

c5

c6

c7

c8c0

c9

Slowest

Fastest IDLE

ag.bar(cg);

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

Dynamic Dispatch Group

JVM

JVM

JVM

JVM

agcg

c1

c2

c3

c4

c5

c6

c7

c8c0

c9c1

c2

c3

c4

c5

c6

c7

c8c0

c9

c1

c2

c3

c4

c5

c6

c7

c8c0

c9

Slowest

Fastest

ag.bar(cg);

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

Dynamic Dispatch with Multicast Interfaces

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

Principles

Minimal scheduling facilities

Knowledge-based scheduling

workload + network congestion

GCM programming model

Composition oriented vs task oriented

Low-level integration in ProActive/GCM

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

First achievements

Load balances work units

Compatible with POJO groups

vs other frameworks:

Faster than ProActive’s master-worker (low level)

Faster than ourgrid scheduler (fine grained tasks)

Comprehensive: splitting - scheduling - reduction

(map-reduce / split-aggregate)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

Impact on ProActive/GCM

API preserved

Extensions to Meta-Object Protocol

Open implementation

Integration to codebase: ProActive v4.0?

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Side Contributions

Bug fix for groups

“swallowed parameters” error : not all parameters

distributed in some cases

Relies on Java 5 concurrency features

More stable thus efficient for high loads

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

Future Work

Finish integration (includes configuration spec)

Use runtime load information

Aldinucci’s work : tagging futures

More standard dispatch modes

Random

Predictive CPU based?

Unicast dispatch (probably short-term task)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Questions?

- applicability to adaptable farms?

 Parameterizable dispatch function

- suitability for GridCOMP use cases?

 Yes : simple mechanism

Contact:

Matthieu Morel mmorel@dcc.uchile.cl

��������	
��
������� ����������	�����	
��
����� �
���

�������� ��	
��
��	��
 ���	����� ��������	��
 �	���

���������	�������������
��	���������������� �!�"���
���
�
 ���#��$�����	��
���������������$�%�
��&������
���
'���(��)�
������$�*����	
��
�+	��
����

%%%#�
���	�#�
�

������	
���
	��	

,

�����	�

� -������)��

� .
�+���)� �����	��
�-)�
)��%

� �
���	� �
���
�-)�
)��%

� .
�+���)� �����
���	� �����
�����

� ����
��

� �����	���������/	�	
��0�
�

1

����������

� '�������.
�+���)� 	��������
���	� �
���
�
�����	�������$
���
	��	
�

� ProActive is able to leverage the economy-based

and data-intensive scheduling algorithms provided

by the Gridbus Broker

� ProActive provides a programming environment for

the Gridbus Broker

2

�
������� ��������
����
����

���������	
���

���������

�
 �

���������

� �����	��
�����������)��������������$
� Talks to two objects: resource manager and job manager

� Client needs to connect to the scheduler before running the
application

� ����	
���������
���������������������������������)���������
� Resources are described using the XML descriptor

� 3���*�����
��������
�����$�����	���$�����)���������

4

�
������� ��������	
�����
��	������
����	��	����

���������

�������������� ��������
������

��
�	
�
��
��
��
��
�

�����������	

���������	

�
���������

�����	���������

����������������

��������	

��������

�	!�����"���

����	����	

���#���������

$%$&������ '��������� �"���������
����������

����������	�����

(���	&�)����

*��������� +������
���
���

��� ��	��!!

5

�
����� �
���
���������	
����
����

� /�	
����������������

� Scheduler, JobMonitor, ServiceMonitor and

Dispatcher

� Read and updates information via the Broker

Storage layer

� Various scheduling algorithms implemented such as

round-robin, cost/time optimisation based on QoS

parameter.

6

��������� !��"������ ���
���������,���
������

-��.��	�������	�����

����������	�����

�����	��#��������	/�""���������	���	���	���,���0

(���	&�)����

��� 1��"������,�� ���2��""��

�
����� �
���
���������	

7

�
������� �
����� �	��

����	�"�
#�����	
��

� *������� ��������������������������
� Each complex system should have as little knowledge of each

other as possible

� Each complex system only need to worry about its own terms
and conditions

� *�8����� ����
�	����������$������8���������$
���
	��	
��
������������
� Reuse the scheduling implementations provided by the Gridbus

Broker

� Reuse the ProActive runtime to execute applications

� &8�����������������������	���%�
��%����	���������������
��	
������������
����������

9

�
������� �
����� �	��

����	�$%&

���������

�������������� ��������
������

��
�	
�
��
��
��
��
�

�����������	

���������	

�
���������

�
����	���������

����������������

��������	

��������

�	!�����"���

�����������

����������

������

1���&"����������

������

'���&"����������

������

�����

��������
������

�����

����������������

��������	

��������

��� ��	��!! ��� ��	��!! ��� ��	��!!

��� ��	��!!

�
����� �������

�
������� �������

:;

�
������� �
����� �	��

����	�$'&�

� .
�8�.�����
� Initialises the Broker runtime services including the JobMonitor,

ServiceMonitor, Scheduler, and Dispatcher

� Implements job management functionality

� Subclasses provide the information for the Broker to match the
scheduling algorithms

� .
�8�����	
��*�����

� Overrides the ProActive’s resource management functions

using Broker’s storage service.

� .
�8�����	
��"������

� Listen for the resource creation by ProActive (virtual node,

node)

� Add resources into the broker storage system (compute server)

::

�
������� �
����� �	��

����	�$(&�

� .
�+���)� 	��
��������

� Represent ProActive entities (GenericJob, Virtual

Node, Node) in the Gridbus broker

� &������*������

� GenericJob -> ProActiveJob (extends Job)

� Virtual Node, Node -> ProActiveComputeServer

(extends ComputeServer)

� ProActiveJobWrapper (extends the JobWrapper) for

Broker to start active object

:,

�����	��������

����)�������������)�

�����������
*������ �������	

���

������

���,���

������
��������� !��"������

�����

��������
������

�����

-��.��	�������	�����

����	���	�"����

*���������

������

��,�
*���������

�������,����

�����

���������������� +������
���

���

�������,�1��"������,��

���
���

�!�����"���

1�����	���������

���	���������

�����	���������

%

'

(

:1

�����	��������

�����������
*������ �������	

���

������

���,���

������
��������� !��"������

�����

��������
������

�����

-��.��	�������	�����

����	���	�"����

*���������

������

��,�
*���������

�������,����

�����

���������������� +������
���

���

�������,�1��"������,��

���
���

�!�����"���

1�����	���������

���	���������

�����	���������

%

:2

*����
�����+�������	��	��,�	�
�)�	��

� .
�8��
���	
���������
������������ �����
�8��
���	
���
�������
������<	�
������
���	
����$
��������*"�
���������������
����
�

� '����������
��
����������.
�+���)�����	����
)�

���������������������)�
�	���������������������������
��������*"�

� '�������	�����
)�
����������
��
���
�������������
�
���
����
�����������

� '����
�8��
���	
���������
����������������������

���	
����)��������
���
����
�����������

:4

�����	��������

�����������
*������ �������	

���

������

���,���

������
��������� !��"������

�����

��������
������

�����

-��.��	�������	�����

����	���	�"����

*���������

������

��,�
*���������

�������,����

�����

���������������� +������
���

���

�������,�1��"������,��

���
���

�!�����"���

1�����	���������

���	���������

�����	���������

'

:5

-������)�����	�

� '���.
�+���)� 	��
��	���������
�����������������
��
����$�����
��3�� ���������������.
�+���)�
�����	��
��	��������������������$�
��

� '����
�8����������������
����������.
�+���)�3��
����������%
������������
��3�� �������

� '���.
�+���)�3�� ���������
��
���
�������������
�
���
����
�����������$�
�����
������	��#

:6

�����	��������

�����������
*������ �������	

���

������

���,���

������
��������� !��"������

�����

��������
������

�����

-��.��	�������	�����

����	���	�"����

*���������

������

��,�
*���������

�������,����

�����

���������������� +������
���

���

�������,�1��"������,��

���
���

�!�����"���

1�����	���������

���	���������

�����	���������

(

:7

-�����������	
.�,�	���
�	
��	��/ ������	�

� /	��������
��������������
���
������	�����
��$
���
	��	
���������������
�����
�����������
.
�+���)� �������

� '����
�8������������������������� �����
���
�

	��������
)������������
������
�������$�
��
���������	���������

� '���
	��������
)�������
�������������������
���
���������������
��
��)���
�	������
�<	�
���
��$�
������#

:9

0�������������������	

� &8����������������������)�������	�����.
�+���)� ���	���
%�
��%����	�����������������	
������������
��������#�

� '�������������������%�������������������	������
������=��#�

� Users from ProActive should be able to dynamically choose

which scheduler to use either the existing one or the Gridbus

broker’s scheduler.

� Gridbus broker should not be aware of any ProActive runtime

information.

� ��	��������8���������$
���
	��	
��������������#�

� Job scheduling should be delegated to the Gridbus broker

� ProActive’s execution environment needs to be reused.

,;

*�	�#(1�
�	��
�����������	

public class LaunchC3DRender {
public static void main(String[] args) throws Exception {

String schedulerURL = "rmi://localhost/SchedulerNode";
Scheduler scheduler = Scheduler.connectTo(schedulerURL);
String XML_LOCATION_UNIX =

LaunchHello.class.getResource(
"/org/objectweb/proactive/examples/scheduler/c3d-render.xml")

.getPath();
scheduler.fetchJobDescription(XML_LOCATION_UNIX);

}
}

public class StartScheduler{
public static void main(String [] args){
String policyName =

"org.objectweb.proactive.scheduler.gridbus.policy.RoundRobinPolicy";
String resourceManager =

"org.objectweb.proactive.scheduler.gridbus.ProxyResourceManager";
Scheduler.start(policyName,resourceManager);

}
}

����
��������������

�*�	�����#(1*�	��

,:

#(1�*�	��
�������#'1

,,

*�)�
���"��	��
������� ����

� *����	�����������������.
�+���)� ��������
� Only the scheduler class has been changed to

add a new method supporting dynamic creation of
proxy resource manager and proxy policy

� ���������������������
��	��%�
���$�����
�
���	� �
���

� &8�������.
�+���)�
	��������)�
����������

�	���

� +)������������� �8�������
� Only one extra jar-file is required: the Gridbus

broker runtime library

,1

*�)�
��"��	��
����� ����

� +�������
���	� �
���
�����

� ProActive is just another type of middleware

� Except the wrappers’ implementations, nothing need

to be modified, the broker is totally unaware of the

existence of ProActive

� Schedule and dispatch jobs as normal ones without

worrying about the terms defined in ProActive such

as GenericJob, Virtual Node and Node.

,2

#�	������	��	��2���
��3�
�

� .
�)������������
���������	�����$�
�.
�+���)� 	����������
���	�
�
���
�$�
������	�����������������
� Two complex systems are seamlessly working together without

knowing each other

� Existing ProActive examples can still work without recompiling.

� The glue between the two system has been provided via the
configuration file which is loaded dynamically at runtime through the
existing deployment service

� /	�	
��0�
�
� Closer integration of ProActive with economy-based scheduling

� '��)��	�����	�#	���	�������,� ���	��	��	��������	��	��""���	���
"���������	����	��	������	���	��������	,��	�	���#��������	3��	

� Current implementation only focus on the RMI runtime provided by
ProActive, a much more comprehensive testing needs to be done
with other types of runtime environments provided by ProActive

,4

4��	���5�
����
�����	���	6

���	���
	�

,5

*�		�	
�7�����3�
��

� ���
��������
����.
�+���)� �����	��
�%�����%��
�8�
���
�	�����
� Class name of the ProxyResourceManager

� Class name of the ProxyPolicy

� �	������"�	���>���� �
��
���%����	���8�
��
���$��	
�����

public class StartScheduler{
public static void main(String [] args){
String policyName =

"org.objectweb.proactive.scheduler.gridbus.policy.RoundRobinPolicy";
String resourceManager =

"org.objectweb.proactive.scheduler.gridbus.ProxyResourceManager";
Scheduler.start(policyName,resourceManager);

}
}

,6

���	��7���� �	��
�������

public class LaunchHello {
public static void main(String[] args) throws Exception {

String schedulerURL = "rmi://localhost/SchedulerNode";
Scheduler scheduler = Scheduler.connectTo(schedulerURL);
String XML_LOCATION_UNIX =

LaunchHello.class.getResource(
"/org/objectweb/proactive/examples/scheduler/job_template.xml")

.getPath();
scheduler.fetchJobDescription(XML_LOCATION_UNIX);

}
}

Interoperability & cooperation
between ProActive and XServices

Interoperability & cooperation Interoperability & cooperation
between between ProActiveProActive and and XServicesXServices

Dr. ZHU Yan

zhuyanbuaa@hotmail.com

Leader of Web Services R. & D. Team
School of Computer Science & Engineering

Beihang University

Dr. ZHU Yan

zhuyanbuaa@hotmail.com

Leader of Web Services R. & D. Team
School of Computer Science & Engineering

Beihang University

About UsAbout UsAbout Us
� Web Services R&D Team in ACT (Institute of Advanced

Computing Technology), School of Computer Science and
Engineering, Beihang University

� ACT Members: Currently 140+ researchers & developers
� Faculty: 3 Professors, 4 Associate Professors, 5 Lectures

� Students: 48 PhD, 92 MS

� Web Services R. & D. Team is focusing on: Services
platform and its applications
� Service-Oriented Architecture & Enterprise Service Bus

� Web Service Middleware and Platform

� Web Service Workflow (E-Government, E-Commerce, etc.)

� Web Service Portal (SMB, etc.)

� Web Service Resource Framework (Sensor Network, etc.)

� Web Service QoS

� Web Service Cooperation (Seismic Analyses, Remote Sensing Satellite, etc.)

� Multimedia Web Service (Remote Medical Treatment, ITS, etc.)

� Semantic Web Service & Web 2.0 (Ajax)

Research BackgroundResearch BackgroundResearch Background

� XServices: Web Services-based Application
Supporting Environment

� Motivation
� The trend: Web Service is a good way to build

Internet-based Software.

� Our target: To build a system environment for Web
Service and Web Service based applications which
can provide development assistance, deployment,
runtime, monitoring, management for Web Service
components and applications.

Research Background (const.)Research BackgroundResearch Background (const.)(const.)

� Funding Sources & Related Projects
� A series of projects funded by National 863 Hi-tech Program and

other Ministries (Over 10 million RMB)
� Network Software Kernel Technologies and Runtime Platform, 2001

� Web Service Transaction Middleware System, 2003

� Web Service Information Platform, 2004

� Web Service Software Technologies and Runtime Platform, 2004

� Autonomic Computing and Service Collaboration Platform, 2006

� ….

� Application projects (Over 120 million RMB)
� Web Services based E-Government Supporting Platform for Beijing City,2003

� E-government Data Exchange Platform of Heilongjiang Province, 2004

� Application Service Platform for United Productivity Information Co.,2004

� CNGI China Next Generation Internet!demonstration —— ITS demonstration ,2005

� …

XServices: SOA Architecture ImplementationXServices: SOA Architecture Implementation

Monitor tool

Service requester

WSClient

Development tool
Deployment tool

WSWF

Transa ,WSRF

Rliable

HTTP 1.1

XService

XLinker
WS WS WSWS

UDDI

WS Portal

Service developer

WSDesigner

monitor

WSMTModeling tool

developer

WSWD

Service provider

WS XService

b
in

d

fin
d

p
u

b
lis

h

monitor
development

fin
db

in
d

bind

m
o
n

it
o

r

Deploy

fin
d

XRuntime: Web Services Application ServerXRuntime: Web Services Application Server

TC object input pool TC object output pool

MC object output poolMC object input pool

SO object output pool

SO object input pool

HTTP/HTTPS protocol process

SMTP protocol process

adaptor

.NET adaptor

CORBA adaptor

EJB adaptor

Java adaptor

C++ adaptor

WSAR

Log manage

Service manageUser manage

transactionsecurity

Store manage

System store

Service context pool

Message context

Message context

Service object

Service context
T

ra
n

s
p

o
rt L

a
y
e
r

M
e

s
s
a

g
e

 L
a

y
e

r
S

e
rv

ic
e

 L
a

y
e

r

Service adaptor

QoS

Reliable message process

Addressing protocol processSOAP message process

SOAP message analysis

P
u

b
lic

 s
e

rv
ic

e

WSWF: Web Services-based WorkflowWSWF: Web ServicesWSWF: Web Services--based Workflowbased Workflow

Reliable message process

Addressing protocol processSOAP message process
SOAP message analysis

Transport level
BAR

Log manage

Service manageUser manage

transactionsecurity

Store manage

System store

Message context

Flow context

WF

engine

Flow thread pool

activity

activity

activity

Process

Message

level

MC object output poolMC object input pool

FC object pool

Monitor manage Flow trigger Transaction process

activity

activity

activity

Process

Flow execute pool

o

u

t

i

n

Process

Sample action process

activity

activity-1

activity-n

activity

Transaction message

Flow service return

Flow sampleMessage

manage

Flow

Service

Call

Flow

Return

Message

Public

service

WF engine management module

Return

Message

manage

activity

activity-1

activity-n

UDDI: Service Registry CenterUDDI: Service Registry CenterUDDI: Service Registry Center

UDDI API analyst

I

D

E

N

T

I

F

I

C

A

T

I

O

N JDBC4Oracle

Data

access

Oracle SQL Server DB2
…

DB2OBJ

UDDI API Web portalC

O

N

F

I

G

M

A

N

A

G

E

R

U

N

T

I

M

E

M

A

N

A

G

E

���������	
��
�

JDBC4SQL JDBC4DB2 …

ADD UpdateQuery Delete

OBJ2DB

UDDI API validation UDDI API executor

XML2OBJ XML2OBJ

Data

transform

Interface

service

Service

representation

WSPortal: Web Services-base PortalWSPortal: Web ServicesWSPortal: Web Services--base Portalbase Portal

Web Services Server

Portlet management

Sys management

Post office Remote education

Auto-Official

Fee management

Web service portal application management structure

Information service

Software application based on web service

Enterprise intelligent building

App management

User management

���������	��
���
�� "#$$%&'"#$$%&'"#$$%&'"#$$%&'

������������

���������� ������������ �������
������� ���

������������� ���������������������

���
 "#$$%&'"#$$%&'"#$$%&'"#$$%&'

Our AchievementsOur AchievementsOur Achievements

� 22 Software Copyrights Acquired
� Web Service Application Server No. 2005111824!

� Web Service Application Supporting Environment System No.
2003SR7143!

� UDDI Registry System No. 2003SR3015!

� Web Service Running Management Console No. 2003SR7144!

� Web Service Workflow Engine System No. 2003SR3016!

� …

� 20 Software Patents Filed
� A Layered Web Service Handling Method (No.200510114783.7)

� A Reliable Web Service Message Transportation Method
(No.200510114566.8)

� A BPEL Based Graphics to XML Documents Conversion Method
(No.200510114689.1)

� A Stack Based Web Service Workflow Handling Method
(No.200510114563.4)

� …

E-Government ApplicationEE--Government ApplicationGovernment Application

� Background
� National E-Government Catalogue and

Exchange Demo System

� Some typical E-Government process were built
according to the national standards. It is the first
step to build E-Government systems widely.

� Feature
� Database Service Tools is used to create the

web services for E-Government information
exchanging.

� Web service created by departments is deployed
in XServices Runtime in exchange environment
to exchange information between departments.

� E-Government process can be built quickly and
visually by XService Workflow Designer and be
examined by Debug function to build deployment
packages of engine.

RS satellite

internet

Access data

service

Image process
service

Pre-order

service

meta data

service

���������	����
���
�

Access data

service

Image process
service

Pre-order

service

Meta data

service

���������	���
���
�

Sanya

Ground

station

Mudan

Ground

station

RS data integration service

Access data serviceClassify service Image process

Meta data

DB

Image

DB
���������	����
���
�

Grass6

Remote sensing

information

common service

platform

Access data

service

Image process
service

Pre-order

service

Meta data

service

Web services runtime

Kashi

Ground

station

RS

image

Ground

Database
���
��

���	���������

RS

image

Ground

database
���	���
�����

RS

image

Ground

database
���	���
�����

FIBER((((

DDN

���������

������

Platform

component

Intelligent Transportation SystemIntelligent Transportation SystemIntelligent Transportation System

Internet

Road info

database

• Real-time road query

• Vehicle location

• Real-time video monitor

• History video monitor

GIS process platform

MapXtreme

GPS

Camera

Notebook

PDA

XService

Real-time

road query

Real-time video

monitor service

Other service

Vehicle location

service

History video

monitor service

Mobile

phone

Collaborative Visualization System of
Seismic Model
Collaborative Visualization System of Collaborative Visualization System of
Seismic ModelSeismic Model

� Background
� Geological researchers, Computer

researchers and Seismic Analyzers in
different location should process and
discuss the same seismic model

� 3D seismic model is large
scale(1000km2)5GB)

� Necessary to visualize the model on
mobile device

� Key technology
� Remote visualization of large-scale 3d

data >1GB!

� Interoperability in heterogeneous
platforms: client-server, server-server

� Collaboration between clients,
Collaboration between services

Think CORBA

Fractal CARDAMON

J2ME OpenCCM

Jeffree

JBuidler

Eclipse

WTP

Kelly

Kelp

JOPE

Lomboz

J2EE

Rubbos eXo

Oyster EAF

StockOnline Byline

Director Baracuda

DODs Rubis

XQuark XMLC

BSFramwk Bonita

Sync4J JaWE

Enhydra Shark

J2SE

ProActive Kilim ActiveXML

JASS Ishmael DREAM

ModFact Mobilitools SOFA

JORM FDB DotNetJ

Zeus Perseus CAROL

OSCAR Speedo JAC

Octopus ASM JOTM

JOnAS C-JDBC JORAM

Jonathan

MOBE

CLIF

GOTM

MEDOR

Monolog

XAPool

RmiJDBC

0%

200%

400%

600%

800%

1000%

Q2 02Q3 02Q4 02Q1 03Q2 03 Q3 03 Q4 03 Q1 04

100 Projects

30 Solutions

650 Committers

5,100 Contributors

CommunityCommunity
Size x 2 / year

60 Companies

2000 Individuals

80 Countries

250 Mailing-Lists

12,200 Suscribers

SoftwareSoftware

ImpactImpact
150,000 Visitors/m

2,400,000 Dwnlds '06

40% US, 40% EU

NESSI

ORIENTWARE

TheThe OW2 OW2 ThrustThrust

OW2 Java OW2 Java CommitmentCommitment

��������	��������	
������������
��
��

���	����	�

�
�
�
�
�
���
��
���
��
���
��
���
�

��		����		��
�������������
�

���
�

����

����
���
���
�����������������

���

����

����
����
�������������������� �����	�����	

����������
�� �����������
�� �

������
�������������
��������������
�

������
������!"
�����!"
� #����#����

�
��
�

���	
���	
� �������##��� �������##��

��������������
���#�����
����#�����
�#��#����

������	������	
$�!�%	$�!�%	

������	������	
����%	����%	

S
y
n

c
4
j

S
y
n

c
4
j

(m
o

b
ile

(m

o
b

ile
 s

y
n

c
s
y
n

c .
).)

�� �!���

S
p

a
g

o
B

I
S

p
a
g

o
B

I
(b

u
s
in

e
s
s
 i
n

te
lli

g
e
n

c
e

)
(b

u
s
in

e
s
s
 i
n

te
lli

g
e
n

c
e

)

� "� 		�� "

e
X

o
e
X

o
P

la
tf

o
rm

P
la

tf
o

rm
(p

o
rt

a
l
&

 C
M

S
)

(p
o

rt
a

l
&

 C
M

S
)

	�� ����#��!

B
o

n
it

a
B

o
n

it
a
, ,

S
h

a
rk

S
h

a
rk

((w
o

rk
fl
o
w

w
o

rk
fl
o
w

, ,
o

rc
h
e

s
tr

o
rc

h
e

s
tr

.).)

����$%&����

X
W

ik
i

X
W

ik
i

((w
ik

i
w

ik
i , ,
 b

lo
g

s
b

lo
g

s)
)

��	�'	�

�� �� �	 �
&'�&�

�����%(%)*

����%)�

��� �	%
+�*&'�&�

&'�&�,�

��	 �
�

�����"	 �

��� ���

���	�

JOnAS

(J2EE appserv)

���� �	-� "%)*

XServices/PEtALS/Spagic

(ESB, JBI)

�	�.� ")* ���%/	������� " � "� 		�� "

SOA Main Principles - DenisSOA Main Principles SOA Main Principles -- DenisDenis

� Loosely coupled software services to support the requirements of
business processes (Flexibility, Portability)

� A Service-Oriented Architecture is not tied to a specific technology

� Information systems for applications built by combining loosely coupled
and interoperable services

� Wrapping of Legacy code

� Service discoverability

� Services inter-operate based on a formal definition (or contract, e.g.,
WSDL, Interfaces)

� Independent of development technogies and platforms (Java, .NET etc).

� Settable Properties declared by the implementation

� Configuration of codes by wiring of references to specific target
services

SOA:

An
architecture

to

Loosely
Couple

applications
as services

ProActive:

A middleware (Core:
Java API)

to

Program Coupled, //,

Distributed, Multi-
Threaded applications

and

seamlessly integrate in

SOA

Grid Middleware - CROWN

Unified Portal – XServices Portal

Business Process Orchestration –

XServices Workflow

Services Bus – XServices Bus

Service Registry – XServices UDDI

Intelligent Transport System

E-Government

Remote Sensing

Geosciences

Sensor Network

X
S

e
rv

ic
e
s
 D

e
v
e
lo

p
m

e
n

t
a
n

d
 D

e
p

lo
y
m

e
n

t
T

o
o

l

XServices Suite

Applications

Service Container – XServices Runtime

AO

From XServices to ProActiveFrom XServices to ProActiveFrom XServices to ProActive

SOAP Client

Transport layer

Message layer

Service object out pool

Service object in pool

adaptor

.NET adaptor

ProActive adaptor

EJB adaptor

Java adaptor

C++ adaptor

Service context pool

Message context

Service object

Service

context

Service adaptorQoS
Active

Object

Soap Soap

ProActive

Call

Service

object

ProActive

Provider

ProActive Node

1-n ProActive

Node

XServices

ProActive

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

Maybe
Crown

9

Components
UDDI

WSDL

WSDL
0

0

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Generating Safe GCM Components

Antonio Cansado Eric Madelaine

INRIA Sophia Antipolis

GridCOMP - Pekin, 2007

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

The Need

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

The Need

Reusing and Assembling Components

Safe Assembly of Components

Static typing of bound interfaces
Compatibility of dynamic behaviour

Formal specification of Components

Choice

Integrate ADL and BDL

Difficulty

Provide a framework for non-specialists

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

The Need

Reusing and Assembling Components

Safe Assembly of Components

Static typing of bound interfaces
Compatibility of dynamic behaviour

Formal specification of Components

Choice

Integrate ADL and BDL

Difficulty

Provide a framework for non-specialists

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

The Need

Reusing and Assembling Components

Safe Assembly of Components

Static typing of bound interfaces
Compatibility of dynamic behaviour

Formal specification of Components

Choice

Integrate ADL and BDL

Difficulty

Provide a framework for non-specialists

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Approach

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Approach

Structure of the Framework

Specify using High-Level Specification Language

Vercors Component Environment (VCE)

UML 2

Generate behavioural models

Validate and Verify

Generate Java control code

Strong guarantees

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Approach

Structure of the Framework

Specify using High-Level Specification Language

Vercors Component Environment (VCE)

UML 2

Generate behavioural models

Validate and Verify

Generate Java control code

Strong guarantees

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Approach

Structure of the Framework

Specify using High-Level Specification Language

Vercors Component Environment (VCE)

UML 2

Generate behavioural models

Validate and Verify

Generate Java control code

Strong guarantees

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Unifying ADL and BDL

Component Diagram

State Machine Diagram

Data influencing the control-flow and the topology

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Prototype

Functional specification of components

Component libraries

Bottom-up and Top-down specification

Specification given as a State Machine

Implementation given as a composition of subcomponents

Integrated into Eclipse as plugins

Generation of behavioural model

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Snapshot

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Validate and Verify

Sound semantic model – pNets

Hierarchical, Parameterized Networks of Labelled

Transition Systems

Generate Behavioural Models

Functional and Non-Functional concerns

Model-checking

Deadlocks, Reachability, Safety, Liveness

Properties specified as automata

Functional and Non-Functional verification

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Validate and Verify

Sound semantic model – pNets

Hierarchical, Parameterized Networks of Labelled

Transition Systems

Generate Behavioural Models

Functional and Non-Functional concerns

Model-checking

Deadlocks, Reachability, Safety, Liveness

Properties specified as automata

Functional and Non-Functional verification

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Vercors Component Environment

Validate and Verify

Sound semantic model – pNets

Hierarchical, Parameterized Networks of Labelled

Transition Systems

Generate Behavioural Models

Functional and Non-Functional concerns

Model-checking

Deadlocks, Reachability, Safety, Liveness

Properties specified as automata

Functional and Non-Functional verification

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Extending VCE

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Extending VCE

Missing Features

Asynchronous components

Method calls performed on client interfaces→ Future

Data-usage→Wait-by-necessity

Collective interfaces

Parameterized components

NF management

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Extending VCE

Decomposing the Behaviour

Ready

Ready

buff.isFull()buff.isEmpty()

else

Put body
entry/ x=buff.push(val)

active component Buffer
BufferImpl buff;

policy initActivity (Int size) policy runActivity ()

Init body
entry/ buff.init(size)

service Get () via b2 (Int c)
Data x;

service Put (Data val) via b1(Int p) method

Get body
entry/ x=buff.pop()

! return (x) via b2(c)

ServeOldest(Get)

ServeOldest (Put)

ServeOldest ()

Generate skeletons for GCM components

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Extending VCE

Parameterized Topologies

�������

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Code Generation

Goal

Same behaviour as the specification

Java code

GCM ADL

Final code of Fractal controllers

Skeletons of runActivity() and methods

Hooks to fill-in final implementation

User-defined Business code

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Code Generation

Goal

Same behaviour as the specification

Java code

GCM ADL

Final code of Fractal controllers

Skeletons of runActivity() and methods

Hooks to fill-in final implementation

User-defined Business code

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Code Generation

Goal

Same behaviour as the specification

Java code

GCM ADL

Final code of Fractal controllers

Skeletons of runActivity() and methods

Hooks to fill-in final implementation

User-defined Business code

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Fractal

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Fractal

Generate GCM / ProActive code

Fractal Controllers

public String[] listFc() {

return new String[]{ CASHBOXEVENTIF_BINDING };

}

public Object lookupFc (String clientItfName) {

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))

return cashBoxEventIf;

return null;

}

public void bindFc (String clientItfName, Object serverItf) {

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))

cashBoxEventIf = (CashBoxEventIf)serverItf;

}

public void unbindFc (String clientItfName) {

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))

cashBoxEventIf = null;

}

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

GCM / ProActive

Outline

1 Motivation

The Need

Approach

2 Prototype

Vercors Component Environment

3 Diagrams for GCM Components

Extending VCE

4 Generation of Safe Components

Fractal

GCM / ProActive

5 Conclusions

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

GCM / ProActive

Generation of Skeletons: From State Machines

runActivity()

Service policy

Service methods

Server Interfaces of Primitive

Components

Control-flow and data-flow

Control structure

Method calls performed on

client interfaces

Data-usage points

Ready

Ready

buff.isFull()buff.isEmpty()

else

Put body
entry/ x=buff.push(val)

active component Buffer
BufferImpl buff;

policy initActivity (Int size) policy runActivity ()

Init body
entry/ buff.init(size)

service Get () via b2 (Int c)
Data x;

service Put (Data val) via b1(Int p) method

Get body
entry/ x=buff.pop()

! return (x) via b2(c)

ServeOldest(Get)

ServeOldest (Put)

ServeOldest ()

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

GCM / ProActive

Service Policy

runActivity()

public void runActivity(Body body) {

Service service = new Service(body);

while (body.isActive()) {

cashBoxEventIf.saleStarted();

cashBoxEventIf.saleFinished();

if ((new AnyBool()).prob(50)) {

cashMode();

cashAmount();

service.blockingServeOldest("changeAmountCalculated");

cashBoxEventIf.cashBoxClosed();

}else

creditCardMode();

} }

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

GCM / ProActive

Control-Flow and Data-Flow

Service Method

public void pinEntered(PIN pin) {

if (creditInfo != null) {

Transaction transId = bankIf.validateCard(creditInfo, pin);

if (ProActive.getFutureValue(transId) != null) {

Info info = bankIf.debitCard(transId, runningTotal);

if (ProActive.getFutureValue(info) != null){

Sale sale = new SaleImpl(

new PaymentModeImpl(PaymentModeImpl.CREDIT),

products, runningTotal);

saleRegisteredIf.bookSale(sale);

info.getInfo(); // wait-by-necessity

init();

...

}

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Conclusions and Perspectives

Short-term

Tool for GCM Specification

Validation of Behavioural properties

Generation of Safe code

Long-term

Multicast / Gathercast interfaces

Specify Non-Functional controllers in the membrane

Motivation Prototype Diagrams for GCM Components Generation of Safe Components Conclusions

Conclusions and Perspectives

Short-term

Tool for GCM Specification

Validation of Behavioural properties

Generation of Safe code

Long-term

Multicast / Gathercast interfaces

Specify Non-Functional controllers in the membrane

Appendix

References

http://www-sop.inria.fr/oasis/Vercors

S. Ahumada, L. Apvrille, T. Barros, A. Cansado, E. Madelaine, and E. Salageanu.

Specifying Fractal and GCM Components With UML.
In Proc. of the XXVI International Conference of the Chilean Computer Science Society (SCCC’07), Iquique,
Chile, November 2007. IEEE.

A. Cansado, D. Caromel, L. Henrio, E. Madelaine, M. Rivera, and E. Salageanu.

A Specification Language for Distributed Components implemented in GCM/ProActive.
Lecture Notes in Computer Science. Springer, (To be published) 2007.

A. Cansado, L. Henrio, and E. Madelaine.

Towards real case component model-checking.
In 5th Fractal Workshop, Nantes, France, July 2006.

