

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform
for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

CFI early documentation

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU Public PU

Keyword List: component framework implementation, GCM, ProActive
Responsible Partner: Denis Caromel, INRIA

GridCOMP FP6-034442 D.CFI.05

GridCOMP FP6-034442 D.CFI.05

Part I. Component Framework
Implementation Documentation

Table of Contents
Chapter 1. Introduction .. 3

Chapter 2. Getting started .. 4

Chapter 3. ProActive GCM Deployment .. 5
3.1. Introduction .. 5
3.2. GCM Deployment Descriptors ... 5

3.2.1. Host Information ... 5
3.2.2. Bridges .. 5
3.2.3. Groups .. 6

3.3. GCM Application descriptor .. 8
3.3.1. Executable ... 8
3.3.2. ProActive ... 9

3.4. Tutorial .. 10
3.4.1. For the Grid Administrator : creating a deployment descriptor ... 10
3.4.2. For the Grid Application Developer : creating an application descriptor ... 13
3.4.3. For the Grid Application Developer : deploying your application on the grid .. 15

Chapter 4. User guide ... 17
4.1. Architecture Description Language .. 17

4.1.1. Overview ... 17
4.1.2. Exportation and composition of virtual nodes ... 18
4.1.3. Usage .. 19

4.2. Collective interfaces ... 20
4.2.1. Motivations .. 20
4.2.2. Multicast interfaces .. 20
4.2.3. Gathercast interfaces .. 25

4.3. Implementation specific API .. 29
4.3.1. fractal.provider .. 29
4.3.2. Requirements .. 29
4.3.3. Content and controller descriptions ... 29
4.3.4. Collective interfaces ... 29
4.3.5. Priority controller .. 30
4.3.6. Stream ports ... 31

4.4. Advanced ... 32
4.4.1. Controllers and interceptors ... 32
4.4.2. Lifecycle: encapsulation of functional activity in component lifecycle ... 35
4.4.3. Structuring the membrane with non-functional components ... 35

4.5. Short cuts ... 41
4.5.1. Principles ... 41
4.5.2. Configuration .. 41

Chapter 5. Architecture and design ... 42
5.1. Meta-object protocol ... 42
5.2. Components vs active objects ... 43
5.3. Method invocations on components interfaces ... 43

Chapter 6. Component examples ... 45

GridCOMP FP6-034442 D.CFI.05

6.1. From objects to active objects to distributed components ... 45
6.1.1. Type .. 45
6.1.2. Description of the content ... 46
6.1.3. Description of the controller .. 46
6.1.4. From attributes to client interfaces .. 46

6.2. The HelloWorld example .. 47
6.2.1. Set-up .. 47
6.2.2. Architecture .. 48
6.2.3. Distributed deployment ... 48
6.2.4. Execution ... 49
6.2.5. The HelloWorld ADL files .. 51

Chapter 7. Component perspectives: a support for advanced research ... 54
7.1. Dynamic reconfiguration ... 54
7.2. Model-checking ... 54
7.3. Pattern-based deployment .. 55
7.4. Graphical tools .. 55

7.4.1. .. 55

Chapter 8. GCM Components Tutorial .. 56
8.1. Introduction .. 56
8.2. Key features of the ProActive/GCM Implementation .. 56

8.2.1. Primitive and composite components .. 56
8.2.2. Collective Interfaces ... 56
8.2.3. Multicast Interfaces .. 57
8.2.4. Gathercast interfaces .. 57
8.2.5. ADL file .. 58

8.3. Creating and using components in a programatic way ... 59
8.3.1. The first component ... 59
8.3.2. Define an assembly .. 61

8.4. Create and use components using ADL .. 64
8.5. Creating, using and deploying components using ADL ... 65
8.6. Component interface Cardinality ... 66
8.7. Additional examples ... 67

Chapter 9. Annex ... 70
9.1. The starter example files ... 70

GridCOMP FP6-034442 3 D.CFI.05

Chapter 1. Introduction
Computing Grids and Peer-to-Peer networks are inherently heterogeneous and distributed, and for this reason they present new
technological challenges: complexity in the design of applications, complexity of deployment, reusability, and performance issues.

The objective of this work is to provide an answer to these problems through the implementation for ProActive of an extensible,
dynamical and hierarchical component model, Grid Component Model (GCM) based on Fractal [http://fractal.objectweb.org] .
The GCM was defined by the CoreGRID NoE project [http://www.coregrid.net/] and is available here [http://www.coregrid.net/
mambo/images/stories/Deliverables/d.pm.04.pdf] .

This part documents the ProActive/GCM reference implementation developed by the GridCOMP European project [http://
gridcomp.ercim.org/] .

GridCOMP FP6-034442 4 D.CFI.05

Chapter 2. Getting started
For starters, here is a very basic example demonstrating the separation between the code and the deployment of an application and
also showing the simplicity with which the deployment can be modified.

As shown in the diagram below, in the first step, The application is just composed of two primitive components distributed into
a single Java Virtual Machine.

Now, in order to use two separate Java Virtual Machine, in the deployment descriptor file, the line:

 <host id="localhost" os="unix" hostCapacity="1"
 vmCapacity="2">

is changed to:

 <host id="localhost" os="unix" hostCapacity="2"
 vmCapacity="1">

Before changing the line, the deployment descriptor indicates that there will have 1 Java Virtual Machine with 2 nodes inside the
JVM.

Then, once the changed made, the deployment descriptor specifies that it must have 2 Java Virtual Machines with 1 node per JVM:

All the source files are available at the end of the part in Chapter 9, Annex.

GridCOMP FP6-034442 5 D.CFI.05

Chapter 3. ProActive GCM Deployment
3.1. Introduction

The GCM Deployment is split in two parts, one for grid administrators and the other for grid application developers. On the grid
administration side, the administrator will write a Deployment Descriptor that will describe what resources the grid provides, and
how these resources are acquired. On the application side, the developer will write an Application Descriptor that will describe
how the application is launched, and what resources it needs. The link between the two sides is made through references from the
Application Descriptor to one or several Deployment Descriptors.

3.2. GCM Deployment Descriptors

3.2.1. Host Information

The HostInfo data structure describes a single machine and the environment it provides, with the following information:

• userName : (string) the name of the user under which this host can be accessed

• homeDirectory : (absolute path) the home directory of the user

• os : (one of "unix" or "windows") the operating system the host is running

• hostCapacity : (positive integer) the number of processes (VM or other executable) that this host can handle (default value is 1)

• vmCapacity : (positive integer) the number of nodes a single VM on this host can handle (default value is 1)

• id : (ID) an ID identifying the host

3.2.2. Bridges

A bridge is meant to represent a frontend to a computing resource. Many grid architectures have such a feature : each physical
machine is not accessible directly, the user must instead go through a single machine called a front-end. In a deployment descriptor,
a bridge is a gateway toward either :

• a host

• a set of groups

• another bridge

A bridge is defined as a base structure meant to be derived. The base structure only defines an id (string).

3.2.2.1. RSH

An RSH bridge element can have the following attributes :

• id (string) : the id of the bridge connector corresponding to this definition

• hostname (string) : the network hostname of the physical machine which acts as the bridge

• username (string, optional) : the user name under which the machine can be accessed

• commandPath (string, optional) : the path of rsh client to use

3.2.2.2. SSH

An SSH bridge element can have the follow child element :

• privateKey (path string) : the file of the private SSH key needed to access the bridge

An SSH bridge element can have the following attributes :

• id (string) : the id of the bridge connector corresponding to this definition

• hostname (string) : the network hostname of the physical machine which acts as the bridge

• username (string, optional) : the user name under which the machine can be accessed

• commandPath (string) : the path of the ssh client to use

GridCOMP FP6-034442 6 D.CFI.05

• commandOptions (string) : options to pass to the ssh command

3.2.3. Groups

A Group is a data structure defining a set of machines with identical configuration (like a cluster). It is meant as a base structure
which can be derived in an Object-Oriented manner to implement any kind of group. There currently are two kinds of groups :

1. "direct" groups

2. job schedulers

It is therefore possible to define a standard-compliant deployment descriptor even on a grid which has its own job scheduler.

All group protocols have the following child elements :

• environment (environment) : the environment for the command and the following attributes

and the following attributes

• id (ID) : the id of the group this element represents

• commandPath (path string) : path of the command which is used to submit a job to the group protocol

3.2.3.1. CCS

This group handles Microsoft’s Compute Cluster Server. The CCS group definition has the following child elements :

• resources : the resources that will be allowed to the job. This element can have two children :

• cpus (positive integer) : the number of CPUs allocated for the job

• runtime (time) : the maximum runtime allowed for the job

• stdout (path string) : path of the file where the standard output of the job will be stored

• stderr (path string) : path of the file where the standard error of the job will be stored

3.2.3.2. LSF

Group definition for the LSF scheduler. The LSF group definition has the following child elements :

• resource (string) : this element has the following attributes :

• (positive integer) : number of processors requested

• walltime (time) : maximum time allowed for the job

• processorsNumber (positive integer) : minimum number of processors requested to run the job

• resourceRequirement (string) : a resource requirement string as defined by the lsf documentation (‘lsfintro’ manpage)

It also has the following attributes

• interactive (boolean) : whether the job is interactive or not

• jobName (string) : name of the job

• queue (string) : name of the queue the job will be submitted in

3.2.3.3. OAR

Group definition for the OAR job scheduler [15]. The OAR group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• cpu (positive integer) : number of CPUs requested

• core (positive integer) : number of cores requested

• walltime (time) : maximum time allowed for the job
It also can have a string content which is passed verbatim–o the ‘--resource’ option of the oarsub command.

• directory (path string) : the working directory of the job script

• stdout (path string) : path of the file where the standard output of the job will be stored

GridCOMP FP6-034442 7 D.CFI.05

• stderr (path string) : path of the file where the standard error of the job will be stored

It has the following attributes :

• interactive (boolean) : start an interactive job. If true, open a login shell on the first node instead of running a script (default
is false).

• queue (string) : name of the queue to submit the job to.

• type (‘deploy’, ‘besteffort’, ‘cosystem’, ‘checkpoint’, ‘timesharing’) : job type – the default is ‘deploy’.

3.2.3.4. PBS

Group definition for the PBS/Torque job scheduler. The PBS/Torque group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• ppn (positive integer) : number of CPUs requested

• walltime (time) : maximum time allowed for the job

• nodes (positive integer) : number of nodes requested

• processorsPerNode (positive integer) : number of processors per node requested

• mailWhen (combination of Abort, Begin, End separated by ‘|’) : when to send an email (Abort : if the job is aborted, Begin :
when the job is started, End : when the job terminates)

• mailTo (comma-seperated list of email addresses) : where the job status emails should be sent

• joinOutput (boolean) : if true, join the output of stderr to stdout

• stdout (path string) : path of the file where the standard output of the job will be stored

• stderr (path string) : path of the file where the standard error of the job will be stored

It has the following attributes :

• queue (string) : destination queue for the job. The argument can be of the following format :

• queue : a queue on the default server

• @server : the default queue on the server

• queue@server : the queue on the given server

• jobName (string 15 chars long, no whitespace, first char must be alphabetic) : the name of the job

• interactive (boolean) : whether the job is interactive or not

3.2.3.5. Prun

Group definition for the PRUN run server. The PRUN group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• ppn (positive integer) : number of CPUs requested

• walltime (time) : maximum time allowed for the job

• stdout (path string) : name of the file in which the results will be printed

It has no attribute.

3.2.3.6. Host List

A host list can be used with SSH and RSH groups as a shorthand to specify several machine names in a compact form. The format of
a host list is a whitespace-separated list of name patterns or hostnames. A name pattern describes a set of hostnames with a common
root. The format is as follows.

<root name><interval>

GridCOMP FP6-034442 8 D.CFI.05

with root name being an alphanumeric string (only letters and digits, no spaces or punctuation signs), and interval defining a set
of numerical values in the form of an interval or list of values, possibly followed by an exclusion interval or list of values. The
general form of an interval is:

[<value set>]^[<value set>]

or simply

[<value set>]

if no exclusion interval is needed.

A value set is a coma-seperated list of integers or integers pairs separated by a dash, meaning an interval of values. The values of
an interval must be specified in increasing order, and the generated values will be in increasing order. Also, the first integer of an
interval can have leading zeroes to indicate the number of digits (numbers will be padded with zeroes if needed). Some examples:

• host[0-5]: host0, host1 … host5;

• host[0-5]^[4]: host0, host1, host2, host3, host5;

• host[0-10]^[4-6]: host0, host1, host2, host3, host7, host8, host9, host10;

• host[00-5]: host00, host01, host02… host05;

• host[1, 004-7, 09]: host1, host004, host005, host006, host007, host09.

3.2.3.7. RSH

The RSH Group has the following child elements :

• (host list) : the list of hosts to connect to

3.2.3.8. SSH

The SSH Group has the following child elements :

• (host list) : the list of hosts to connect to

• privateKey (path string) : the file of the private SSH key needed to access the host

• commandOptions (string) : the list of options which will be passed to the ssh command

3.3. GCM Application descriptor

3.3.1. Executable

This type of application describes the launch of a stand-alone executable on the grid. It can have the following child elements :

• nodeProvider (empty element with a single ‘refId’ attribute) : the id of a node provider (defined in the <resources> part). There
can be any number of such element.

• command : the command which will be run on the portion of the grid defined by the specified node providers. The contents
of this element are described below.

This element can have the following attribute :

GridCOMP FP6-034442 9 D.CFI.05

• instances (one of “onePerHost”, “onePerVM”, “onePerCapacity”) : the number of instances of the command which will be run

The <command> element can have the following children (in this specified order) :

• path (path string) : the path of the executable

• arg (string) : the arg string which will be passed to the command. There can be any number of such element.

• filetransfer (file transfer) : the files which which should be transferred prior to running the command.

It can have the following attribute :

• name (string) : name of the executable. If a <path> child element is present, the value of this attribute will be appended to the
value of the %lt;path> child element.

3.3.2. ProActive

This element describes a ProActive-based applicatin. It can have the following children :

• configuration : various configuration parameters - this element is described below

• technicalServices (technical services) : the set of technical services global to this instance of ProActive

the configuration element can have the following child elements :

• bootClasspath (simple classpath) : the boot classpath for the JVM

• java (path string) : the path to the Java executable

• jvmarg (string) : arguments passed to the JVM

• applicationClasspath (classpath) : classpath for the application

• proactiveClasspath (classpath) : classpath used to override the standard ProActive classpath computed from its installation
location

• securityPolicy (relative path) : path to the Java security policy file

• proactiveSecurity : security policy for application and runtime. This element has two children :

• applicationPolicy (relative path) : path to Java security policy file that will be applied on the application's objects deployed
at runtime, like nodes and active objects

• runtimePolicy (relative path) : path to Java security policy file that will be applied on the ProActive Runtime

• log4jProperties (relative path) : path to the Java log4j configuration file

• userProperties (relative path) : path to the Java properties file

• virtualNode (virtual node) : description of a virtual node. There can be any number of such element

The <proactive> element can have the following attributes :

• relpath (path string) : the location of the ProActive installation

• base (one of ‘HOME’, ‘ROOT’) : base location of the ProActive installation : HOME is the user’s home directory, ROOT is
the root directory of the system.

A <virtualNode> element can have the following children :

• nodeProvider (reference to a node provider) : the node provider which will provide the ProActive nodes for this virtual node
– see below for description.

• technicalServices (technical service) : a technical service specific to this virtual node. There can be any number of such children.

A virtualNode element can also have the following attributes :

• id (string) : a string identifying this virtual node

• capacity (positive integer or “max”) : the capacity requested by this virtual node (that is, the total number of nodes it will
request from the node providers which are affected to it).

A <nodeProvider> within a <virtualNode> can only have <technicalServices> child elements. These describe technical services
specific to this node provider. A <nodeProvider> can also have the following attributes :

• refid (string) : the id of the node provider (as defined in the resources element)

GridCOMP FP6-034442 10 D.CFI.05

• capacity (positive integer or “max”) : the capacity of this ProActive node provider (that is, the number of ProActive nodes
which will be requested from it)

3.4. Tutorial

This tutorial shows how to deploy a grid-enabled application through the GCM standard. It will present the points of view of both
the grid administrator and the application developer.

3.4.1. For the Grid Administrator : creating a deployment descriptor

The task of a grid administrator is to make a model of his grid resources through a GCM Deployment Descriptor. Several examples
are available in the ProActive distribution. The deployment descriptor should represent the resources of the grid. A deployment
descriptor has the following XML structure:

<environment>
 <descriptorVariable …/>
…
</environment>

<resources>
 <bridge …/>
 <group>
 <host …/>
 <host …/>
 …
 </group>
 …
</resources>

<acquisition>
 <lookup …/>
 <p2p …/>
 …
</acquisition>

<infrastructure>
 <hosts>
 <host…/>
 </hosts>

 <groups>
 <groupType …/>
 </group>

 <bridges>
 <bridgeType …/>
 </bridges>
 …
</infrastructure>

The elements must be specified in this order. The <environment> and <acquisition> elements can be omitted, while the <resources>
and <infrastructure> ones are mandatory. They are the ones which define the model :

GridCOMP FP6-034442 11 D.CFI.05

1. Infrastructure: this is a flat list of each individual element of the grid: hosts, groups and bridges listed in no particular order.

2. Resources: this is a tree describing the hierarchical relationships between these infrastructure elements. These relationships
are defined by:

• a host being within which group;

• a group being behind a bridge;

• a host being directly available.

Let's examine a couple of basic examples. Considering a very simple grid, that is two desktop PCs networked together. Such a setup
would be represented as follows (configuration parameters are omitted for the sake of clarity):

<resources>
 <hosts>
 <host refid="host1" -/>
 <host refid="host2" -/>
 </hosts>
</resources>

<infrastructure>
 <hosts>
 <host id="host1" -/>
 <host id="host2" -/>
 </hosts>
</infrastructure>

There is no hierarchical relation between the two hosts, so both resources and infrastructure parts are identical (aside of the extra
configuration parameters which are omitted here). A slightly more complex example would be a cluster of 12 mono-processor
machines running LSF. The representation in GCM Deployment would be as follows:

<resources>
 <group refid="LSF_GROUP">
 <host refid="LSF_GROUP_MEMBER" -/>
 </group>
</resources>

<infrastructure>
 <hosts>
 <host id="LSF_GROUP_MEMBER" -/>
 </hosts>

 <groups>
 <lsfGroup id="LSF_GROUP" >
 <resources processorNumber="12" -/>
 </lsfGroup>
 </groups>
</infrastructure>

Within the <infrastructure>, the <hosts> part describes the configuration common to the machines in the group. The <groups> part
describes the LSF group itself. Finally, the <resources> part describes how they fit together, in this case the host model being within
the LSF group.

GridCOMP FP6-034442 12 D.CFI.05

The next paragraphs go more in depth on the content and usage of each element.

3.4.1.1. Environment element

To allow for a bit of flexibility, it is possible to define variables in a descriptor. The variables can be used in any XML value element.
They cannot be used in an XML element name. The <environment> element is where the variables are defined. It is a simple list
of <descriptorVariable> elements. For example:

<environment>
 <descriptorVariable name="usertype" value="admin" -/>
 <descriptorVariable name="username" value="jsmith" -/>
</environment>

This allows the following usage later on in the descriptor: <sshGroup user="${username}" />

3.4.1.2. Resources element

The <resource> element describes the hierarchical structure of the available grid resources. This can be seen as the topology of the
grid: which hosts are part of a group, which group is behind a bridge, etc… All the grid resources which are listed in it must be
fully defined in the <infrastructure> element. However it doesn't have to hold every element listed in <infrastructure>, it is meant
to contain only the subset of resources which are actually used by the deployment.

You can use the following elements to build your grid topology :

1. <host> : this represents a single machine, or more precisely a single configuration. When used within a group, it represents
the common configuration of all machines within this group.

2. <group> : this represents a set of machines all sharing a common configuration. Typically a cluster. The configuration is
represented through a Host element.

3. <bridge> : this represents a machine which acts as a gateway to one or several other machines. Typically, a front-end for a
cluster.

These elements all take a single argument named 'refid'. The value of the argument is the id of the corresponding host/bridge/group
element defined in the <infrastructure> element. The topology must be described according to the following rules:

• A host can be at the top level, or in a group element

• A group can be at the top level, or in a bridge element

• A bridge can only be at the top level

For example, the following constructions are correct: Single host:

<host refid="A_HOST" -/>

Group:

<group refid="CLUSTER">
 <host refid="CLUSTER_NODE" -/>
</group>

Group behind a bridge:

GridCOMP FP6-034442 13 D.CFI.05

<bridge refid="CLUSTER_FRONT_END" -/>
 <group refid="CLUSTER">
 <host refid="CLUSTER_NODE" -/>
 </group>
</bridge>

3.4.1.3. Acquisition element

An alternative to the <infrastructure> element, the <acquisition> element describes how resources which are already running can
be acquired. It contains two types of elements: <lookup> and <p2p>, in this order. Each element can either have a single occurrence
or be omitted. The <lookup> element has the following three attributes:

1. type: one of "RMI", "HTTP", "IBIS";

2. hostlist: a HostList as defined in 5.1.1;

3. port: a positive integer.

The <p2p> element has a single attribute named "nodesAsked", indicating the number of requested nodes. You can set the value to
'MAX' so that the maximum number of available nodes will be allocated to the task.

3.4.1.4. Infrastructure element

The <infrastructure> is where you will list the grid resources on which the deployment can take place, in no particular order. Its
purpose is to describe how these resources are deployed (i.e. through which protocols). It can have a single child element of each
of the following types: <hosts>, <bridges>, <groups>. <bridges> and <groups> may be empty or omitted, but there should be at
least one child element in <hosts>.

3.4.2. For the Grid Application Developer : creating an application descriptor

While the Deployment Descriptor lists the grid resources, the application descriptor lists the resources the application needs.

The overall structure of an Application Descriptor is as follows :

<environment>
 …
</environment>

<application>
…
</application>

<resources>
 <nodeProvider>
 <file …/>
 …
 </nodeProvider>
 …
</resources>

The <environment> element is similar to the one in the Deployment Descriptor. The <application> one is where the application itself
and the resources it requests are described (see GCM Application descriptor section). Finally, the <resources> element is where
you'll make the link between the requested resources and the deployed ones.

GridCOMP FP6-034442 14 D.CFI.05

The <application> tag can hold either an <executable> or a <proactive> tag. <executable> is for stand-alone applications which you
want to run on a grid. <proactive> is for ProActive-based applications. In both cases the requested resources are specified through
<nodeProvider> elements. These elements only carry a single 'refid' attribute which points to a corresponding <nodeProvider>
element listed in the <resources> element.

3.4.2.1. Example of Executable element

A stand-alone executable is very straightforward to describe. You only need to specify one or several <nodeProvider>s and the
application will be run on all the physical nodes these providers can yield.

 <application>
 <executable>
 <command name="ls">
 <arg>-lh</arg>
 <arg>--sort=time</arg>
 <arg>*</arg>
 </command>
 <nodeProvider refid="COMPANY_LAN" -/>
 </executable>
 </application>

 <resources>
 <nodeProvider id="COMPANY_LAN">
 <file path="deployment.xml" -/>
 </nodeProvider>
 </resources>

3.4.2.2. Example of ProActive element

A ProActive application runs on virtual nodes. These virtual nodes aggregate physical nodes that they fetch from the node provider
specified in the virtual node definition. In the following example, a ProActive application defines two virtual nodes ("master" and
"slaves"). The first will fetch a single physical node from the COMPANY_LAN node provider. The second will get as many nodes
as available (its capacity is set to "MAX") from both the COMPANY_LAN and REMOTE_CLUSTER providers.

 <application>
 <proactive relpath="Scratch/ProActive/">

 <configuration>
 <!-- ommitted for clarity --->
 </configuration>

 <virtualNode id="master" capacity="1">
 <nodeProvider refid="COMPANY_LAN" -/>
 </virtualNode>

 <virtualNode id="slaves" capacity="max">
 <nodeProvider refid="COMPANY_LAN" -/>
 <nodeProvider refid="REMOTE_CLUSTER" -/>
 </virtualNode>
 </proactive>

GridCOMP FP6-034442 15 D.CFI.05

 </application>

 <resources>
 <nodeProvider id="COMPANY_LAN">
 <file path="deployment.xml" -/>
 </nodeProvider>
 <nodeProvider id="REMOTE_CLUSTER">
 <file path="deployment_cluster.xml" -/>
 </nodeProvider>
 </resources>

3.4.3. For the Grid Application Developer : deploying your application on the grid

To deploy your application on the grid, you need to get your application descriptor as a java.io.File . You then pass it to
org.objectweb.proactive.extensions.gcmdeployment.PAGCMDeployment.loadApplicationDescriptor() which will return a
GCMApplication object. To actually start the deployment, simply call the startDeployment() method.

GCMApplication app;

File desc = new File(this.getClass().getResource("MyApplicationDescriptor.xml").getPath());

app = PAGCMDeployment.loadApplicationDescriptor(desc);
app.startDeployment();

If needed you may want to also create a VariableContract and set some of its variables, then pass it as 2nd argument to
loadApplicationDescriptor() :

VariableContractImpl vContract = new VariableContractImpl();
vContract.setVariableFromProgram("HOST_CAPACITY", -"4",
 VariableContractType.DescriptorDefaultVariable);
vContract.setVariableFromProgram("VM_CAPACITY", -"1",
 VariableContractType.DescriptorDefaultVariable);

GCMApplication app;

File desc = new File(this.getClass().getResource("MyApplicationDescriptor.xml").getPath());

app = PAGCMDeployment.loadApplicationDescriptor(desc, vContract);
app.startDeployment();

In the case of a stand-alone application, it will simply be deployed on all the available nodes without any special intervention on
your side. In the case of a ProActive-based application, there are two ways for an application to handle the deployment process.
The simplest one is to call the

GridCOMP FP6-034442 16 D.CFI.05

 public void waitReady();

method on your GCMApplication object. As the name of the method indicates, it amounts to "wait until everything is ready". The
call will block until all virtual nodes are ready, that is that they have acquired the minimum number of nodes they need. This method
should not be used if one of the virtual nodes is "greedy", in which case it will never be in a "ready" state. There's another version
of the method with a timeout parameter :

 public void waitReady(int timeout) throws ProActiveTimeoutException;

However, a more flexible way is for your application to listen to the availability of new nodes on each virtual node, and act
accordingly. The method for this is

 public void subscribeNodeAttachment(Object client, String methodName, boolean
 withHistory)

in GCMVirtualNode . methodName must be the name of a method of client , which prototype is method(GCMVirtualNode
node, String virtualNodeName) . This method will be called by the virtual node for each new available node. To get the list of
virtual nodes for your GCMApplication, use

 public Map<String, GCMVirtualNode> getVirtualNodes();

You can also get a specific virtual node if you know its name :

 public GCMVirtualNode getVirtualNode(String vnName);

GridCOMP FP6-034442 17 D.CFI.05

Chapter 4. User guide
This chapter explains the specific features and functionalities of the GCM Implementation.

4.1. Architecture Description Language

The Architecture Description Languages (ADL) are a way to describe software and/or system architectures. ADLs facilitate
application description without concern for the underlying implementation code and foster code reuse as an effect of decoupling
the implementation from the architecture. Architectures created by using ADLs are composed of predefined entities with various
connectors that communicate through defined connections. To define an architecture through an ADL we can use a textual syntax
and/or a graphical syntax, possibly associated with a design tool.

In the case of ProActive we have developed the Grid Component Model which is an extension of the Fractal ADL. For
detailed information on Fractal read Fractal ADL tutorial [http://fractal.objectweb.org/tutorials/adl/index.html] . In our GCM
implementation this mechanism is used to configure and deploy component systems through normalized XML files. Thanks to a
specific XML DTD, it specifies a definition for each component of the application. For instance, it usually describes component
interfaces, component bindings, component attributes, the subcomponents in the case of a composite component, the virtual node
where the component will be deployed, and so on. As it is an extension of the standard Fractal ADL, GCM allows reusing and
integrating ProActive-specific features such as distributed deployment using deployment descriptors, active objects, virtual nodes,
etc. For example, in the case of virtual nodes the components ADL has to be associated with a deployment descriptor (this is done
at parsing time: both files are given to the parser).

Note that because GCM is based on the Fractal ADL, it requires the following libraries which are included in the /lib directory of
the ProActive distribution : fractal-adl.jar , dtdparser.jar , ow_deployment_scheduling.jar .

4.1.1. Overview

Components are defined in definition files, which are .fractal files. Here is a simple example of an ADL file extract from the example
Helloworld retrievable at Examples/org.objectweb.proactive.examples.components.helloworld.

 1: <?xml version="1.0" encoding="ISO-8859-1" -?>
 2: <!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 3: -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">
 4:
 5: <definition name="org.objectweb.proactive.examples.components.helloworld.HelloWorld">
 6: <interface name="m" role="server" signature=
 7:"org.objectweb.proactive.examples.components.helloworld.Main"/>
 8:
 9: <component name="client" definition=
 10:"org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 11: <component name="server">
 12: <interface name="s" role="server" signature=
 13:"org.objectweb.proactive.examples.components.helloworld.Service"/>
 14: <content class="ServerImpl"/>
 15: <attributes signature=
 16:"org.objectweb.proactive.examples.components.helloworld.ServiceAttributes">
 17: <attribute name="header" value="-> -"/>
 18: <attribute name="count" value="1"/>
 19: </attributes>
 20: <controller desc="primitive"/>
 21: </component>
 22:
 23: <binding client="this.m" server="client.m"/>
 24: <binding client="client.s" server="server.s"/>
 25:

GridCOMP FP6-034442 18 D.CFI.05

 26: <controller desc="composite"/>
 27:
 28: <virtual-node name="helooworld-node" cardinality="single"/>
 29: </definition>
 30:

Now, here is a detailed description of each lines:

• 1: Classical prologue of XML files.

• 2-3: The syntax of the document is validated against a DTD retrieved from the classpath.

• 5: The definition element has a name (which must be the same name that the file's) and inheritance is supported through the
attribute 'extends'.

• 6: The interface element allows to specify interfaces of the current enclosing component.

• 9-21: Nesting is allowed for composite components and is done by adding other component elements. Components can be
specified and created in this definition, and these components can themselves be defined here or in other definition files.

• 14: Primitive components specify the content element, which indicates the implementation class containing the business logic
for this component.

• 15-19: Components can specify a attributes element, which allows to initialize attributes of a component.

•

23-24: The binding element specifies bindings between interfaces of components and specifying 'this' as the name of the
component refers to the current enclosing component.

• 26: The controller elements can have the following 'desc' values: 'composite' or 'primitive'.

• 28: The virtual-node element offers distributed deployment information. It can be exported and composed in the
exportedVirtualNodes element.

The component will be instantiated on the virtual node it specified (or the one that it exported). For a composite component, it
means it will be instantiated on the (first if there are several nodes mapped) node of the virtual node. For a primitive component,
if the virtual node defines several nodes (cardinality='multiple'), there will be as many instances of the primitive component as
there are underlying nodes. Each of these instances will have a suffixed name looking like:

 primiveComponentName-cyclicInstanceNumber-n

where primitiveComponentName is the name defined in the ADL.

The syntax is similar to the standard Fractal ADL, and the parsing engine has been extended. Features specific to ProActive are:

• Virtual nodes have a cardinality property: either 'single' or 'multiple'. When 'single', it means the virtual node in the deployment
descriptor should contain 1 node ; when 'multiple', it means the virtual node in the deployment descriptor should contain more
than 1 node.

• Virtual nodes can be exported and composed .

• Template components are not handled.

• The validating DTD has to be specified as: classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd

4.1.2. Exportation and composition of virtual nodes

Components are deployed on the virtual node that is specified in their definition ; it has to appear in the deployment descriptor
unless this virtual node is exported. In this case, the name of the exported virtual node should appear in the deployment descriptor,
unless this exported virtual node is itself exported.

When exported, a virtual node can take part in the composition of other exported virtual nodes. The idea is to further extend
reusability of existing (and packaged, packaging being a forthcoming feature of Fractal) components.

In the example, the component defined in helloworld-distributed-wrappers.fractal exports the virtual nodes VN1 and VN2:

GridCOMP FP6-034442 19 D.CFI.05

 exportedVirtualNodes exportedVirtualNode name='VN1'
 composedFrom composingVirtualNode component='client'
 name='client-node' -/composedFrom -/exportedVirtualNode
 exportedVirtualNode name='VN2' composedFrom
 composingVirtualNode component='server'
 name='server-node'/ -/composedFrom -/exportedVirtualNode
 /exportedVirtualNodes

VN1 is composed of the exported virtual node 'client-node' from the component named client

In the definition of the client component (ClientImpl.fractal), we can see that client-node is an exportation of a virtual node which
is also name 'client-node':

 exportedVirtualNodes exportedVirtualNode
 name='client-node' composedFrom composingVirtualNode
 component='this' name='client-node'/ -/composedFrom
 /exportedVirtualNode -/exportedVirtualNodes -...
 virtual-node name='client-node' cardinality='single'/

Although this is a simplistic example, one should foresee a situation where ClientImpl would be a prepackaged component, where
its ADL could not be modified ; the exportation and composition of virtual nodes allow to adapt the deployment of the system
depending on the existing infrastructure. Colocation can be specified in the enclosing component definition (helloworld-distributed-
wrappers.fractal):

 exportedVirtualNodes exportedVirtualNode name='VN1'
 composedFrom composingVirtualNode component='client'
 name='client-node' composingVirtualNode
 component='server' name='server-node'/ -/composedFrom
 /exportedVirtualNode -/exportedVirtualNodes

As a result, the client and server component will be colocated / deployed on the same virtual node. This can be profitable if there
is a lot of communications between these two components.

When specifying 'null' as the name of an exported virtual node, the components will be deployed on the current virtual machine.
This can be useful for debugging purposes.

4.1.3. Usage

ADL definitions correspond to component factories. ADL definition can be used directly:

 Factory factory = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map context = new HashMap();
 Component c = (Component) factory.newComponent("myADLDefinition",context);

It is also possible to use the launcher tool, which parses the ADL, creates a corresponding component factory, and instantiates and
assembles the components as defined in the ADL, is started from the org.objectweb.proactive.core.component.adl.Launcher
class:

 Launcher [-java|-fractal] <definition>
 [<itf>] [deployment-descriptor])

GridCOMP FP6-034442 20 D.CFI.05

where [-java|-fractal] comes from the Fractal ADL Launcher (put -fractal for ProActive components, this will be made optional for
ProActive components in the next release), <definition> is the name of the component to be instantiated and started, <itf> is the
name of its Runnable interface, if it has one, and <deployment-descriptor> the location of the ProActive deployment descriptor to
use. It is also possible to use this class directly from its static main method.

4.2. Collective interfaces

In this chapter, we consider multiway communications - communications to or from several interfaces - and notably parallel
communications, which are common in Grid computing.

Our objective is to simplify the design of distributed Grid applications with multiway interactions.

The driving idea is to manage the semantics and behavior of collective communications at the level of the interfaces.

4.2.1. Motivations

Grid computing uses the resources of many separate computers connected by a network (usually the Internet) to solve large-
scale computation problems. Because of the number of available computers, it is fundamental to provide tools for facilitating
communications to and from these computers. Moreover, Grids may contain clusters of computers, where local parallel computations
can be very efficiently performed - this is part of the solution for solving large-scale computation problems - , which means that
programming models for Grid computing should include parallel programming facilities. We address this issue, in the context of a
component model for Grid computing, by introducing collective interfaces .

The component model that we use, Fractal, proposes two kinds of cardinalities for interfaces, singleton or collection , which result
in one-to-one bindings between client and server interfaces. It is possible though to introduce binding components, which act as
brokers and may handle different communication paradigms. Using these intermediate binding components, it is therefore possible
to achieve one-to-n, n-to-one or n-to-n communications between components. It is not possible however for an interface to express
a collective behavior: explicit binding components are needed in this case.

We propose the addition of new cardinalities in the specification of Fractal interfaces, namely multicast and gathercast . Multicast
and gathercast interfaces give the possibility to manage a group of interfaces as a single entity (which is not the case with
a collection interface, where the user can only manipulate individual members of the collection), and they expose the collective
nature of a given interface. Moreover, specific semantics for multiway invocations can be configured, providing users with flexible
communications to or from gathercast and multicast interfaces. Lastly, avoiding the use of explicit intermediate binding components
simplifies the programming model and type compatibility is automatically verified.

The role and use of multicast and gathercast interfaces are complementary. Multicast interfaces are used for parallel invocations,
whereas gathercast interfaces are used for synchronization and gathering purposes.

Note that in our implementation of collective interfaces, new features of the Java language introduced in Java 5 are extensively
used, notably annotations and generics.

4.2.2. Multicast interfaces

4.2.2.1. Definition

A multicast interface transforms a single invocation into a list of invocations

A multicast interface is an abstraction for 1-to-n communications. When a single invocation is transformed into a set of invocations,
these invocations are forwarded to a set of connected server interfaces. A multicast interface is unique and it exists at runtime (it
is not lazily created). The semantics of the propagation of the invocation and of the distribution of the invocation parameters are
customizable (through annotations), and the result of an invocation on a multicast interface - if there is a result - is always a list
of results.

Invocations forwarded to the connected server interfaces occur in parallel, which is one of the main reasons for defining this kind
of interface: it enables parallel invocations, with automatic distribution of invocation parameters .

GridCOMP FP6-034442 21 D.CFI.05

Figure 4.1. Multicast interfaces for primitive and composite component

4.2.2.2. Data distribution

A multicast invocation leads to the invocation services offered by one or several connected server interfaces, with possibly distinct
parameters for each server interface.

If some of the parameters of a given method of a multicast interface are lists of values, these values can be distributed in various ways
through method invocations to the server interfaces connected to the multicast interface. The default behavior - namely broadcast
- is to send the same parameters to each of the connected server interfaces. In the case some parameters are lists of values, copies
of the lists are sent to each receiver. However, similar to what SPMD programming offers, it may be adequate to strip some of
the parameters so that the bound components will work on different data. In MPI for instance, this can be explicitly specified by
stripping a data buffer and using the scatter primitive.

The following figure illustrates such distribution mechanisms: broadcast (a.) and scatter (b.)

GridCOMP FP6-034442 22 D.CFI.05

Figure 4.2. Broadcast and scatter of invocation parameters

Invocations occur in parallel and the distribution of parameters is automatic.

4.2.2.2.1. Invocation parameters distribution modes

4 modes of distribution of parameters are provided by default, and define distribution policies for lists of parameters:

• BROADCAST, which copies a list of parameters and sends a copy to each connected server interface.

 ParamDispatchMode.BROADCAST

• ONE-TO-ONE, which sends the ith parameter to the connected server interface of index i. This implies that the number of
elements in the annotated list is equal to the number of connected server interfaces.

 ParamDispatchMode.ONE_TO_ONE

• ROUND-ROBIN, which distributes each element of the list parameter in a round-robin fashion to the connected server
interfaces.

 ParamDispatchMode.ROUND_ROBIN

• RANDOM, which distributes each element of the list parameter in a random manner to the connected server interfaces.

 ParamDispatchMode.RANDOM

• UNICAST, which sends only one of the list parameter to one of the connected server interfaces.
Which argument and which server interface is determined by a custom controller that extends
org.objectweb.proactive.core.component.controller.MulticastController .

 ParamDispatchMode.UNICAST

It is also possible to define a custom distribution by specifying the distribution algorithm in a class which implements the
org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatch interface.

GridCOMP FP6-034442 23 D.CFI.05

 @ParamDispatchMetadata(mode
 =ParamDispatchMode.CUSTOM, customMode =
 CustomParametersDispatch.class))

4.2.2.2.2. Configuration through annotations

Note that our implementation of collective interfaces extensively uses new features of the Java language introduced in Java 5, such
as generics and annotations.

The distribution of parameters in our framework is specified in the definition of the multicast interface, using annotations.

Elements of a multicast interface which can be annotated are: interface, methods and parameters. The different distribution modes
are explained in the next section. The examples in this section all specify broadcast as the distribution mode.

Interface annotations

A distribution mode declared at the level of the interface defines the distribution mode for all parameters of all methods of this
interface, but may be overridden by a distribution mode declared at the level of a method or of a parameter.

The annotation for declaring distribution policies at level of an interface is
@org.objectweb.proactive.core.component.type.annotations.multicast.ClassDispatchMetadata

and is used as follows:

 @ClassDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST))
 interface MyMulticastItf {

 public void foo(List<T> parameters);
 }

Method annotations

A distribution mode declared at the level of a method defines the distribution mode for all parameters of this method, but may be
overridden at the level of each individual parameter.

The annotation for declaring distribution policies at level of a method is
@org.objectweb.proactive.core.component.type.annotations.multicast.MethodDispatchMetadata

and is used as follows:

 @MethodDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST))
 public void foo(List<T> parameters);

Parameter annotations

The annotation for declaring distribution policies at level of a parameter is
@org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatchMetadata

and is used as follows:

 public void foo(@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST)
 List<T> parameters);

GridCOMP FP6-034442 24 D.CFI.05

4.2.2.2.3. Results

For each method invoked and returning a result of type T , a multicast invocation returns an aggregation of the results: a List<T> .

There is a type conversion, from return type T in a method of the server interface, to return type List<T> in the corresponding
method of the multicast interface. The framework transparently handles the type conversion between return types, which is just an
aggregation of elements of type T into a structure of type list<T> .

This implies that, for the multicast interface, the signature of the invoked method has to explicitly specify List<T> as a return type.
This also implies that each method of the interface returns either nothing, or a list. Valid return types for methods of multicast
interfaces are illustrated as follows:

 public List<Something> foo();

 public void bar();

Otherwise, there is also a possibility to customize the result values by processing a reduction on them. This mechanism allows to
gather results and/or perform some operations on them.

There is one reduction mechanism provides by default: SELECT_UNIQUE_VALUE. It allows to extract of the list
of results the only one result that the list contains. In order to use it, the multicast interface must use the
org.objectweb.proactive.core.component.type.annotations.multicast.Reduce annotation at the level of the methods which
the results need to be reduced:

 @Reduce(reductionMode =
 ReduceMode.SELECT_UNIQUE_VALUE)

Or else, a custom reduce mode can also be used. For this case, the first step is to defined the reduction algorithm into a class which
implements the org.objectweb.proactive.core.component.type.annotations.multicast.ReduceBehavior interface. Then, the
multicast interface can use the Reduce annotation, always at the level of the methods, by specifying the mode (CUSTOM) and the
implementation class of the reduction to use:

 @Reduce(reductionMode = ReduceMode.CUSTOM,
 customReductionMode = MyReduction.class)

4.2.2.3. Binding compatibility

Multicast interfaces manipulate lists of parameters (say, List<ParamType>), and expect lists of results (say, List<ResultType>
). With respect to a multicast interface, connected server interfaces, on the contrary, may work with lists of parameters (
List<ParamType), but also with individual parameters (ParamType) and return individual results (ResultType).

Therefore, the signatures of methods differ from a multicast client interface to its connected server interfaces . This is
illustrated in the following figure: in a. the foo method of the multicast interface returns a list of elements of type T collected from
the invocations to the server interfaces, and in b. the bar method distributes elements of type A to the connected server interfaces.

GridCOMP FP6-034442 25 D.CFI.05

Figure 4.3. Comparison of signatures of methods
between client multicast interfaces and server interfaces.

For a given multicast interface, the type of server interfaces which may be connected to it can be infered by applying the following
rules: for a given multicast interface,

• the server interface must have the same number of methods

• for a given method method foo of the multicast interface, there must be a matching method in the server interface:

• named foo

• which returns:

• void if the method in the multicast method returns void

• T if the multicast method returns list<T>

• for a given parameter List<T> in the multicast method, there must be a corresponding parameter, either List<T> or T, in the
server interface, which matches the distribution mode for this parameter.

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented
IllegalBindingException if signatures are incompatible.

4.2.3. Gathercast interfaces

4.2.3.1. Definition

A gathercast interface transforms a list of invocations into a single invocation

A gathercast interface is an abstraction for n-to-1 communications. It handles data aggregation for invocation parameters, as well
as process coordination. It gathers incoming data, and can also coordinate incoming invocations before continuing the invocation
flow, by defining synchronization barriers.

Gathering operations require knowledge of the participants of the collective communication (i.e. the clients of the gathercast
interface). Therefore, the binding mechanism, when performing a binding to a gathercast interface, provides references on client
interfaces bound to the gathercast interface. This is handled transparently by the framework. As a consequence, bindings to gathercast
interfaces are bidirectional links.

GridCOMP FP6-034442 26 D.CFI.05

Figure 4.4. Gathercast interfaces for primitive and composite components

4.2.3.2. Data distribution

Gathercast interfaces aggregate parameters from method invocations from client interfaces into lists of invocations parameters, and
they redistribute results to each client interface.

4.2.3.2.1. Gathering of invocation parameters

Invocation parameters are simply gathered into lists of parameters. The indexes of the parameters in the list correspond the index
of the parameters in the list of connected client interfaces, managed internally by the gathercast interface.

GridCOMP FP6-034442 27 D.CFI.05

Figure 4.5. Aggregation of parameters with a gathercast interface

4.2.3.2.2. Redistribution of results

The result of the invocation transformed by the gathercast interface is a list of values. Each result value is therefore indexed and
redistributed to the client interface with the same index in the list of client interfaces managed internally by the gathercast interface.

Similarly to the distribution of invocation parameters in multicast interfaces, a redistribution function could be applied to the results
of a gathercast invocation, however this feature is not implemented yet.

4.2.3.3. Binding compatibility

Gathercast interfaces manipulate lists of parameters (say, List<ParamType>), and return lists of results (say, List<ResultType>
). With respect to a gathercast interface, connected client interface work with parameters which can be contained in the lists of
parameters of the methods of the bound gathercast interface (ParamType), and they return results which can be contained in the lists
of results of the methods of the bound gathercast interface (ResultType).

Therefore, by analogy to the case of multicast interfaces, the signatures of methods differ from a gathercast server interface
to its connected client interfaces . This is illustrated in the following figure: the foo method of interfaces which are client of the
gathercast interface exhibit a parameter of type V , the foo method of the gathercast interface exhibits a parameter of type List<V>
. Similarly, the foo method of client interfaces return a parameter of type T , and the foo method of the gathercast interface returns
a parameter of type List<T> .

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented
IllegalBindingException if signatures are incompatible

GridCOMP FP6-034442 28 D.CFI.05

Figure 4.6. Comparison of signature of methods for bindings to a gathercast interface

4.2.3.4. Process synchronization

An invocation from a client interface to a gathercast interface is asynchronous, provided it matches the usual conditions for
asynchronous invocations in ProActive, however the gathercast interface only creates and executes a new invocation with gathered
parameters when all connected client interfaces have performed an invocation on it.

It is possible to specify a timeout, which corresponds to the maximum amount of time between the moment the first invocation of
a client interface is processed by the gathercast interface, and the moment the invocation of the last client interface is processed.
Indeed, the gathercast interface will not forward a transformed invocation until all invocations of all client interfaces are processed
by this gathercast interface.

Timeouts for gathercast invocations are specified by an annotation on the method subject to the timeout, the value of the timeout
is specified in milliseconds:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(timeout=20)

If a timeout is reached before a gathercast interface could gather and process all incoming requests, a
org.objectweb.proactive.core.component.exceptions.GathercastTimeoutException is returned to each client participating
in the invocation. This exception is a runtime exception.

It is also possible for gathercast interface not to wait for all invocations from connected client interfaces to perform an invocation
by specifying the waitForAll attribute. Therefore, the gathercast interface will create and execute a new invocation on the first
invocation received from any of the connected client interfaces.

Thus, this specific feature can be used by the same annotation as for the timeout but with a different attribute:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(waitForAll=false)

Therefore, the waitForAll attribute accepts boolean values and has for default value "true" (same behavior as if the annotation is
not specified).

Furthermore, it is forbidden to combine timeout and waitForAll set to false (an
org.objectweb.fractal.api.factory.InstantiationException is raised) because il would be incoherent.

GridCOMP FP6-034442 29 D.CFI.05

4.3. Implementation specific API

4.3.1. fractal.provider

The API is the same for any Fractal implementation, though some classes are implementation-specific:

The fractal provider class, that corresponds to the fractal.provider parameters of the JVM, is
org.objectweb.proactive.core.component.Fractive . The Fractive class acts as:

• a bootstrap component

• a GenericFactory for instantiating new components

• a utility class providing static methods to create collective interfaces

4.3.2. Requirements

As this implementation is based on ProActive, several conditions are required (more in ???):

• the base class for the implementation of a primitive component has to provide a no-argument and preferably an empty
constructor.

• asynchronous method calls with transparent futures is a core feature of ProActive (???), and it allows concurrent processing.
Indeed, suppose a caller invokes a method on a callee. This method returns a result on a component. With synchronous method
calls, the flow of execution of the caller is blocked until the result of the method called is received. In the case of intensive
computations, this can be relatively long. With asynchronous method calls, the caller gets a future object and will continue
its tasks until it really uses the result of the method call. The process is then blocked (it is called wait-by-necessity) until the
result has effectively been calculated.

Thus, for asynchronous invocations, return types of the methods provided by the interfaces of the components have to be
reifiable (Non-final and serializable class) and methods must not throw exceptions.

4.3.3. Content and controller descriptions

When a component is instantiated with the public Component newFcInstance(Type type, Object controllerDesc, Object
contentDesc) throws InstantiationException method of the org.objectweb.fractal.api.factory.Factory class, in addition to
the type of the component have to be specified the controller description and the content description of the component.

The controller description (org.objectweb.proactive.core.component.ControllerDescription) is useful to describe the
controllers of components. It allows to define:

• the name of a component.

• the hierarchical type of a component.

• the custom controllers for a component. The configuration of the controllers is described in a properties file whose location can
be given as a parameter. The controllers configuration file is simple: it associates the signature of a controller interface with the
implementation that has to be used. During the construction of the component, the membrane is automatically constructed with
these controllers. The controllers are linked together, and requests targetting a control interface visit the different controllers
until they find the suitable controller, and then the request is executed on this controller.

The role of the content description (org.objectweb.proactive.core.component.ContentDescription) is to define some
informations about a component:

• the classname of the component (the only one information mandatory).

• the constructor parameters of the component (optional).

• the activity as defined in the ProActive model (optional). See ??? for more informations about activity in ProActive.

• the meta-object factory for the component (optional).

It is also possible to force that there is only one instance of this component when instantiating the component on a given multiple
virtual node by using the forceSingleInstance method.

4.3.4. Collective interfaces

Collective interactions are an extension to the Fractal model, described in section Section 4.2, “Collective interfaces” , that relies
on collective interfaces.

GridCOMP FP6-034442 30 D.CFI.05

This feature provides collective interactions (1-to-n and n-to-1 interactions between components), namely gathercast and multicast
interfaces

4.3.5. Priority controller

In order to define Non Functional prioritized requests (useful for instance for life cycle management, reconfiguration, ...), a partial
order between each kind of request is available to specify when an incoming request can pass requests already in the queue.

Here are the different priorities availables for the requests:

• F: Functional request. Always goes at the end of the requests queue.

• NF1: Standard Non Functional request. Also always goes at the end of the requests queue.

• NF2: Non Functional prioritized request. Pass the Functional requests into the requests queue but respect the order of the other
Non Functional requests.

• NF3: Non Functional most prioritized request. Pass all the other requests into the requests queue.

Thus, for prioritize non functional requests, a new controller,
org.objectweb.proactive.core.component.controller.PriorityController , has to be used:

package org.objectweb.proactive.core.component.controller;

import org.objectweb.proactive.annotation.PublicAPI;

/**
 * The priority controller interface. This controller manage the priority for methods exposed by
 the
 * component interfaces. It's an optional controller. If it is added in the definition of the
 * membrane the default component activity will be
 * {@link org.objectweb.proactive.core.component.body.ComponentActivityPriority
 ComponentActivityPriority}
 * otherwise
 * {@link org.objectweb.proactive.core.component.body.ComponentActivityPriority ComponentActivity}.
 *
 * @author The ProActive Team
 */
@PublicAPI
public interface PriorityController {

 /**
 * All the possible kind of priority for a request on a component.
 *
 */
 public enum RequestPriority {
 /**
 * Functional priority
 */
 F,
 /**
 * Non-Functional priority
 */
 NF1,
 /**
 * Non-Functional priority higher than Functional priority (F)
 */
 NF2,
 /**
 * Non-Functional priority higher than Functional priority (F) and Non-Functional priority

GridCOMP FP6-034442 31 D.CFI.05

 * (NF1 and NF2)
 */
 NF3;
 -}

 /**
 * Set priority of all methods named -'methodName' in the interface -'interfaceName' to
 * -'priority'.
 *
 * @param interfaceName
 * Name of the component interface providing the method
 * @param methodName
 * Name of the method on which set the priority
 * @param priority
 * The priority
 * @return true if success, else false
 */
 public void setPriority(String interfaceName, String methodName, RequestPriority priority);

 /**
 * Set priority of the method named -'methodName' with the signature defined by
 -'parametersTypes'
 * in the interface -'interfaceName' to -'priority'.
 *
 * @param interfaceName
 * Name of the component interface providing the method
 * @param methodName
 * Name of the method on which set the priority
 * @param parametersTypes
 * The type of the method's parameters signature
 * @param priority
 * The priority
 * @return true if success, else false
 */
 public void setPriority(String interfaceName, String methodName, Class<?>[] parametersTypes,
 RequestPriority priority);

 /**
 * Get the priority for a given method.
 *
 * @param interfaceName
 * Name of the component interface
 * @param methodName
 * Name of the method
 * @param parametersTypes
 * The type of the method's parameters signature
 * @return
 */
 public RequestPriority getPriority(String interfaceName, String methodName, Class<?>[]
 parametersTypes);
}

4.3.6. Stream ports

Stream ports allow to ensure to have components which only have one way communication methods (client side to server side).

Thus, by using the org.objectweb.proactive.core.component.StreamInterface interface as a tag on the java interface definition
of a component interface, the GCM implementation will check during the instantiation of a Fractal Interface Type created with

GridCOMP FP6-034442 32 D.CFI.05

createFcItfType(...) method, if all the methods of the given interface, and its parents, return void. If not, an exception is thrown: "
org.objectweb.fractal.api.factory.InstantiationException " accordingly to the Fractal specifications.

4.4. Advanced

4.4.1. Controllers and interceptors

This section explains how to customize the membranes of component through the configuration, composition and creation of
controllers and interceptors.

4.4.1.1. Configuration of controllers

It is possible to customize controllers, by specifying a control interface and an implementation.

Controllers are configured in a simple XML configuration file, which has the following structure:

 <componentConfiguration>
 <controllers>
 <controller>
 <interface>
 ControllerInterface
 </interface>
 <implementation>
 ControllerImplementation
 </implementation>
 </controller>
 -...

Unless they some controllers are also interceptors (see later on), the controllers do not have to be ordered.

A default configuration file is provided, it defines the default controllers available for every ProActive component (super, binding,
content, naming, lifecycle and component parameters controllers).

A custom configuration file can be specified (in this example with "thePathToMyConfigFile") for any component in the controller
description parameter of the newFcInstance method from the Fractal API:

 componentInstance = componentFactory.newFcInstance(myComponentType,
 new ControllerDescription("name",myHierarchicalType,thePathToMyControllerConfigFile),
 myContentDescription);

4.4.1.2. Writing a custom controller

The controller interface is a standard interface which defines which methods are available.

When a new implementation is defined for a given controller interface, it has to conform to the following rules:

1. The controller implementation must extend the AbstractProActiveController class, which is the base class for component
controllers in ProActive, and which defines the constructor AbstractProActiveController(Component owner).

2. The controller implementation must override this constructor:

 public ControllerImplementation(Component owner) {
 super(owner);
 }

GridCOMP FP6-034442 33 D.CFI.05

1. The controller implementation must also override the abstract method setControllerItfType(), which sets the type of the
controller interface:

 protected void setControllerItfType() {
 try {
 setItfType(ProActiveTypeFactory.instance().createFcItfType(
 "Name of the controller", TypeFactory.SINGLE));
 }
 catch (InstantiationException e) {
 throw new ProActiveRuntimeException("cannot create controller type: -"
 + this.getClass().getName());
 }
 }

1. The controller interface and its implementation have to be declared in the component configuration file.

4.4.1.3. Configuration of interceptors

Controllers can also act as interceptors: they can intercept incoming invocations and outgoing invocations. For each
invocation, pre and post processings are defined in the methods beforeInputMethodInvocation, afterInputMethodInvocation,
beforeOutputMethodInvocation, and afterOutputMethodInvocation. These methods are defined in the interfaces InputInterceptor
and OutputInterceptor, and take a MethodCall object as an argument. MethodCall objects are reified representations of method
invocations, and they contain Method objects, along with the parameters of the invocation.

Interceptors are configured in the controllers XML configuration file, by simply adding input-interceptor="true" or/and output-
interceptor="true" as attributes of the controller element in the definition of a controller (provided of course the specified interceptor
is an input or/and output interceptor). For example a controller that would be an input interceptor and an output interceptor would
be defined as follows:

 <componentConfiguration>
 <controllers>
 -...
 <controller input-interceptor="true" output-interceptor="true">
 <interface>
 InterceptorControllerInterface
 </interface>
 <implementation>
 ControllerImplementation
 </implementation>
 </controller>
 -...

Interceptors can be composed in a basic manner: sequentially.

For input interceptors, the beforeInputMethodInvocation method is called sequentially for each controller in the order they are
defined in the controllers configuration file. The afterInputMethodInvocation method is called sequentially for each controller in
the reverse order they are defined in the controllers configuration file.

If in the controller configuration file, the list of input interceptors is in this order (the order in the controller configuration file is
from top to bottom):

InputInterceptor1 InputInterceptor2

This means that an invocation on a server interface will follow this path:

GridCOMP FP6-034442 34 D.CFI.05

 --> caller ---> InputInterceptor1.beforeInputMethodInvocation --->
 InputInterceptor2.beforeInputMethodInvocation ---> callee.invocation --->
 InputInterceptor2.afterInputMethodInvocation --->
 InputInterceptor1.afterInputMethodInvocation

For output interceptors, the beforeOutputMethodInvocation method is called sequentially for each controller in the order they are
defined in the controllers configuration file. The afterOutputMethodInvocationmethod is called sequentially for each controller in
the reverse order they are defined in the

controllers configuration file.

If in the controller configuration file, the list of input interceptors is in this order (the order in the controller configuration file is
from top to bottom):

OutputInterceptor1 OutputInterceptor2

This means that an invocation on a server interface will follow this path

 --> currentComponent ---> OutputInterceptor1.beforeOutputMethodInvocation --->
 OutputInterceptor2.beforeOutputMethodInvocation ---> callee.invocation --->
 OutputInterceptor2.afterOutputMethodInvocation --->
 OutputInterceptor1.afterOutputMethodInvocation

4.4.1.4. Writing a custom interceptor

An interceptor being a controller, it must follow the rules explained above for the creation of a custom controller.

Input interceptors and output interceptors must implement respectively the interfaces InputInterceptor and OutputInterceptor, which
declare interception methods (pre/post interception) that have to be implemented.

Here is a simple example of an input interceptor:

 public class MyInputInterceptor extends AbstractProActiveController
 implements InputInterceptor, MyController {
 public MyInputInterceptor(Component owner) {
 super(owner);
 }

 protected void setControllerItfType() {
 try {
 setItfType(ProActiveTypeFactory.instance().createFcItfType("mycontroller",
 MyController.class.getName(),
 TypeFactory.SERVER,
 TypeFactory.MANDATORY,
 TypeFactory.SINGLE));
 }
 catch(InstantiationException e) {
 throw new ProActiveRuntimeException("cannot create controller" + this
.getClass().getName());
 }
 }

 // foo is defined in the MyController interface
 public void foo() {

GridCOMP FP6-034442 35 D.CFI.05

 // foo implementation
 }

 public void afterInputMethodInvocation(MethodCall methodCall) {
 System.out.println("post processing an intercepted an incoming functional invocation");
 // interception code
 }

 public void beforeInputMethodInvocation(MethodCall methodCall) {
 System.out.println("pre processing an intercepted an incoming functional invocation");
 // interception code
 }
 }

The configuration file would state:

 <componentConfiguration>
 <controllers>
 -...
 <controller input-interceptor="true">
 <interface>
 MyController
 </interface>
 <implementation>
 MyInputInterceptor
 </implementation>
 </controller>
 -...

4.4.2. Lifecycle: encapsulation of functional activity in component lifecycle

In this implementation of the Fractal component model, Fractal components are active objects. Therefore it is possible to redefine
their activity. In this context of component based programming, we call an activity redefined by a user a functional activity.

When a component is instantiated, its lifecycle is in the STOPPED state, and the functional activity that a user may have redefined
is not started yet. Internally, there is a default activity which handles controller requests in a FIFO order.

When the component is started, its lifecycle goes to the STARTED state, and then the functional activity is started: this activity is
initialized (as defined in InitActive), and run (as defined in RunActive).

2 conditions are required for a smooth integration between custom management of functional activities and lifecycle of the
component:

1. the control of the request queue must use the org.objectweb.proactive.Service class

2. the functional activity must loop on the body.isActive() condition (this is not compulsory, but it allows to automatically end
the functional activity when the lifecycle of the component is stopped. It may also be managed with a custom filter).

Control invocations to stop the component will automatically set the isActive() return value to false, which implies that when the
functional activity loops on the body.isActive() condition, it will end when the lifecycle of the component is set to STOPPED.

4.4.3. Structuring the membrane with non-functional components

Components running in dynamically changing execution environments need to adapt to these environments. In Fractal and GCM
(Grid Component Model) component models, adaptation mechanisms are triggered by the non- functional (NF) part of the

GridCOMP FP6-034442 36 D.CFI.05

components. Interactions with execution environments may require complex relationships between controllers. In this section we
focus on the adaptability of the membrane.Examples include changing communication protocols, updating security policies, or
taking into account new runtime environments in case of mobile components. Adaptability implies that evolutions of the execution
environments have to be detected and acted upon, and may also imply interactions with the environment and with other components
for realizing the adaptation.

We provide tools for adapting controllers. These tools manage (re)configuration of controllers inside the membrane.For this, we
provide a model and an implementation, using a standard component- oriented approach for both the application (functional) level
and the control (NF) level. Having a component-oriented approach for the non-functional aspects also allows them to benefit from
the structure, hierarchy and encapsulation provided by a component-oriented approach.

In this section, we propose to design NF concerns as compositions of components as suggested in the GCM proposal.Our general
objective is to allow controllers implemented as components to be directly plugged in a component membrane. These controllers
take advantage of the properties of component systems like reconfigurability , i.e. changing of the contained components and their
bindings.This allows components to be dynamically adapted in order to suit changing environmental conditions. Indeed, among
others, we aim at a component platform appropriate for autonomic Grid applications; those appli- cations aim to ensure some
quality of services and other NF features without being geared by an external entity.

Components in the membrane introduce two major changes : first, refinements of the Fractal/GCM model concerning the structure
of a membrane; second, a definition and an implementation of an API that allows GCM membranes to be themselves composed of
components, possibly distributed. Both for efficiency and for flexibility reasons, we provide an implementation where controllers
can either be classical objects or full components that could even be distributed. We believe that this high level of flexibility is a great
advantage of this approach over the existing ones [8, 7]. Our model refinements also provide a better structure for the membrane
and a better decoupling between the membrane and its externals. Finally, our approach gives the necessary tools for membrane
reconfiguration, providing flexibility and evolution abilities. The API we present can be split in two parts:

• Methods dedicated to component instantiation: they allow the specification of a NF type of a component, and the instantiation
of NF components;

• Methods for the management of the membrane: they consist in managing the content, introspecting , and managing the life-cycle
of the membrane. Those methods are proposed as an extension of the Fractal component model, and consequently of the GCM;

4.4.3.1. Motivating example

Here we present a simple example that shows the advantages of componen tizing controllers of GCM components. In our example,
we are considering a naive solution for securing communications of a composite component. As described in Figure Figure 4.7,
“ Example: architecture of a naive solution for secure communications ”, secure communications are implemented by three
components inside the membrane: Interceptor, Decrypt, and Alert. The scenario of the example is the following: the composite
component receives encrypted messages on its server functional interface. The goal is to decrypt those messages. First, the incoming
messages are intercepted by the Interceptor component. It forwards all the intercepted communications to Decrypt, which can
be an off-the-shelf component (written by cryptography specialists) implementing a specific decryption algorithm. The Decrypt
component receives a key for decryption through the non-functional server interface of the composite (interface number 1 on the
figure). If it successfully decrypts the message, the Decrypt component sends it to the internal functional components, using the
functional internal client interface (2). If a problem during decryption occurs, the Decrypt component sends a message to the Alert
component. The Alert component is charge to decide on how to react when a decryption fails. For example, it can contact the
sender (using the non-functional client interface – 3) and ask it to send the message again. Another security policy would be to
contact a “trust and reputation” authority to signal a suspicious behaviour of the sender. The Alert component is implemented by
a developer who knows the security policy of the system. In this example, we have three well-identified components, with clear
functionalities and connected through well-defined interfaces. Thus, we can dynamically replace the Decrypt component by another
one, implementing a different decryption algorithm. Also, for changing the security policy of the system, we can dynamically
replace the Alert component and change its connexions. Compared to a classical implementation of secure communications
(for example with objects), using components brings to the membrane a better structure and reconfiguration possibilities. To
summarize, componentizing the membrane in this example provides dynamic adaptability and reconfiguration; but also re-usability
and composition from off-the-shelf components.

GridCOMP FP6-034442 37 D.CFI.05

Figure 4.7. Example: architecture of a naive solution for secure communications

4.4.3.2. A structure for Componentized Membranes

Figure 4.8. Structure for the membrane of Fractal/GCM components

Figure Figure 4.8, “ Structure for the membrane of Fractal/GCM components ” shows the structure we suggest for the component
membrane. The membrane (in gray) consists of one object controller and two component controllers, the component controllers
are connected together and with the outside of the membrane by different bindings. For the moment, we do not specify whether
components are localized with the membrane, or distributed.

Before defining an API for managing components inside the membrane, the definition of the membrane given by the GCM
specification needs some refinements. Those refinements, discussed in this section, provide more details about the structure a

GridCOMP FP6-034442 38 D.CFI.05

membrane can adopt. Figure Figure 4.8, “ Structure for the membrane of Fractal/GCM components ” represents the structure of a
membrane and gives a summary of the different kinds of interface roles and bindings a GCM component can provide. As stated
in the GCM specification, NF interfaces are not only those specified in the Fractal specification, which are only external server
ones. Indeed, in order to be able to compose NF aspects, the GCM requires the NF interfaces to share the same specification as
the functional ones: role, cardinality, and contingency. For example, in GCM, client NF interfaces allow for the composition of NF
aspects and reconfigurations at the NF level. Our model is also flexible, as all server NF interfaces can be implemented by both
objects or components controllers.

All the interfaces showed in Figure Figure 4.8, “ Structure for the membrane of Fractal/GCM components ” give the membrane a
better structure and enforce decoupling between the membrane and its externals. For example, to connect nfc with fns, our model
adds an additional stage: we have first to perform binding b3, and then binding b9. This avoids nfc to be strongly coupled with fns:
to connect nfc to another fns, only binding b9 has to be changed. In Figure Figure 4.8, “ Structure for the membrane of Fractal/
GCM components ”, some of the links are represented with dashed arrows. Those links are not real bindings but “alias” bindings
(e.g. b3); the source interface is the alias and it is “merged” with the destination interface. These bindings are similar to the export/
import bindings existing in Fractal (b6, b10) except that no interception of the communications on these bindings is allowed.

4.4.3.2.1. Performance issues

While componentizing the membrane clearly improves its programmability and its capacity to evolve, one can wonder what happens
to performance. First, as our design choice allows object controllers, one can always keep the efficiency of crucial controllers by
keeping them as objects. Second, the overhead for using components instead of objects is very low if the controllers components
are local, and are negligible compared to the communication time, for example. Finally, if controllers components are distributed,
then there can be a significant overhead induced by the remote communications, but if communications are asynchronous, and
the component can run in parallel with the membrane, this method can also induce a significant speedup, and a better availability
of the membrane. To summarize, controllers invoked frequently and performing very short treatments, would be more efficiently
implemented by local objects or local components. For controllers called less frequently or which involve long computations, making
them distributed would improve performances and availability of the membrane.

4.4.3.3. An API for (Re)configuring Non-functional Aspects

4.4.3.3.1. Non-functional Type and Non-functional Components

To typecheck bindings between membranes, we have to extend the GCM model with a new concept: the non-functional type of
a component. This type is defined as the union of the types of NF interfaces the membrane exposes. To specify the NF type of a
component, we propose to overload the Fractal newFcInstance method (the one to create functional components) as follows:

 public Component newFcInstance(Type fType,Type nfType, any contentDesc, any
 controllerDesc);

In this method, nfType represents the NF type of the component; it can be specified by hand. Of course the standard Fractal type
factory has to be extended in order to support all possible roles of NF interfaces. Soon, it should be possible to specify the NF
type within a configuration file: the controller descriptor argument (controllerDesc) can be a file written in Architecture Description
Language (ADL) containing the whole description of the NF system.

Components inside the membrane are non-functional components. They are similar to functional ones. However, their purpose is
different because they deal with NF aspects of the host component. Thus, in order to enforce separation of concerns, we restrict
the interactions between functional and NF components. For example, a NF component cannot be included inside the functional
content of a composite. Inversely, a functional component cannot be added inside a membrane. As a consequence, direct bindings
between functional interfaces of NF and functional components are forbidden. To create NF components, we extend the common
Fractal factories (generic factory and ADL factory). For generic factory, we add a method named newNFcInstance that creates this
new kind of components:

 public Component newNFcInstance(Type fType,Type nfType, any contentDesc, any
 controllerDesc);

Parameters of this method are identical to its functional equivalent and NF components are created the same way as functional ones.

GridCOMP FP6-034442 39 D.CFI.05

4.4.3.3.2. API for the management of the membrane

 public void addNFSubComponent(Component component) throws IllegalContentException;
 public void removeNFSubComponent(Component component) throws IllegalContentException,
 IllegalLifeCycleException, NoSuchComponentException;
 public Component[] getNFcSubComponents();
 public Component getNFcSubComponent(string name) throws NoSuchComponentException;
 public void setControllerObject(string itf, any controllerclass) throws
 NoSuchInterfaceException;
 public void startMembrane() throws IllegalLifeCycleException;
 public void stopMembrane() throws IllegalLifeCycleException;

Figure 4.9. The primitives for managing the membrane.

To manipulate components inside membranes, we introduce primitives to perform basic operations like adding, removing or getting
a reference on a NF component. We also need to perform calls on well-known Fractal controllers (life-cycle controller, binding
controller, . . .) of these components. So, we extend Fractal/GCM specification by adding a new controller called membrane
controller. As we want it to manage all the controllers, it is the only mandatory controller that has to belong to any membrane. It
allows the manual composition of membranes by adding the desired controllers. The methods presented in Figure Figure 4.9, “ The
primitives for managing the membrane. ” are included in the MembraneController interface; they are the core of the API and are
sufficient to perform all the basic manipulations inside the membrane. They add, remove, or get a reference on a NF component.
They also allow the management of ob- ject controllers and membrane’s life-cycle. Referring to Fractal, this core API implements
a subset of the behavior of the life-cycle and content controllers specific to the membrane. This core API can be included in any
Fractal/GCM implementation. Reconfigurations of NF components inside the membrane are performed by calling standard Fractal
controllers. The general purpose API defines the following methods:

• addNFSubComponent(Component component): adds the NF component given as argument to the membrane;

• removeNFSubComponent(Component component): removes the specified component from the membrane;

• getNFcSubComponents(): returns an array containing all the NF components;

• getNFcSubComponent(string name): returns the specified NF component, the string argument is the name of the component;

• setControllerObject(string itf, any controllerclass): sets or replaces an existing controller object inside the membrane. Itf
specifies the name of the control interface which has to be implemented by the controller class, given as second parameter.
Replacing a controller object at runtime provides a very basic adaptivity of the membrane;

• startMembrane(): starts the membrane, i.e. allows NF calls on the host component to be served. This method can adopt a
recursive behavior, by starting the life-cycle of each NF component inside the membrane;

• stopMembrane(): Stops the membrane, i.e. prevents NF calls on the host component from being served except the ones on the
membrane controller. This method can adopt a recursive behavior, by stopping the life-cycle of each NF component.

GridCOMP FP6-034442 40 D.CFI.05

4.4.3.3.3. Higher level API

 public void bindNFc(String clientItf, String serverItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException,IllegalBindingException, NoSuchComponentException;
 public void bindNFc(String clientItf, Object serverItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException,IllegalBindingException, NoSuchComponentException;
 public void unbindNFc(String clientItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException, llegalBindingException, NoSuchComponentException;
 public String[] listNFc(String component) throws NoSuchComponentException;
 public Object lookupNFc(String itfname) throws
 NoSuchInterfaceException,NoSuchComponentException;
 public void startNFc(String component) throws IllegalLifeCycleException,
 NoSuchComponentException;
 public void stopNFc(String component) throws IllegalLifeCycleException,
 NoSuchComponentException;
 public String getNFcState(String component) throws NoSuchComponentException;

Figure 4.10. Higher level API

In Figure Figure 4.10, “ Higher level API ”, we present an alternative API, that addresses NF components by their names instead
of their references. These methods allow to make calls on the binding controller and on the life-cycle controller of NF components
that are hosted by the component membrane. Currently, they don’t take into account the hierarchical aspect of NF components.
The method calls address the NF components and call their controllers at once. For example, here is the Java code that binds two
components inside the membrane using the general purpose API. It binds the interface “i1” of the component “nfComp1” inside
the membrane to the interface “i2” of the component “nfComp2”. Suppose mc is a reference to the MembraneController of the
host component.

 Component nfComp1=mc.getNFcSubComponent("nfComp1");
 Component nfComp2=mc.getNFcSubComponent("nfComp2");
 Fractal.getBindingController(nfComp1).bindFc("i1",nfComp2.getFcInterface("i2"));

Using the API of Figure Figure 4.10, “ Higher level API ”, this binding can be realized by the following code, that binds the
component “nfComp1” correctly.

 mc.bindNFc("nfComp1.i1","nfComp2.i2");

Similarly to the example above, all the methods of Figure Figure 4.10, “ Higher level API ” result in calls on well-known Fractal
controllers. Interfaces are represented as strings of the form component.interface, where component is the name of the inner
component and interface is the name of its client or server interface. We use the name “mem- brane” to represent the membrane of
the host component, e.g. membrane.i1 is the NF interface i1 of the host component; in this case interface is the name of an interface
from the NF type. For example, bindNFc(string, string) allows to perform the bindings: b1, b2, b4, b3, b9, b7 and b5 of Figure
Figure 4.8, “ Structure for the membrane of Fractal/GCM components ”.

The API presented in Figure Figure 4.10, “ Higher level API ” introduced higher level mechanisms for reconfiguring the membrane.
It also solves the problem of local components inside the membrane. As usual in distributed programming paradigms, GCM objects/
components can be accessed locally or remotely. Remote references are accessible everywhere, while local refer- ences are accessible
only in a restricted address space. When returning a local object/component outside its address space, there are two alternatives:
create a remote reference on this entity; or make a copy of it. When considering a copy of a NF local component, the NF calls are not
consistent. If an invocation on getNFcSubComponent(string name) returns a copy of the specified NF component, calls performed
on this copy will not be performed on the “real” NF component inside the membrane. Methods introduced in Figure Figure 4.10,
“ Higher level API ” solve this problem.

GridCOMP FP6-034442 41 D.CFI.05

4.5. Short cuts

4.5.1. Principles

Communications between components in a hierarchical model may involve the crossing of several membranes, and therefore
paying the cost of several indirections. If the invocations are not intercepted in the membranes, then it is possible to optimize
the communication path by shortcutting: communicating directly from a caller component to a callee component by avoiding
indirections in the membranes.

In the Julia implementation, a shortcut mechanism is provided for components in the same JVM, and the implementation of this
mechanism relies on code generation techniques.

We provide a shortcut mechanism for distributed components, and the implementation of this mechanism relies on a "tensioning"
technique: the first invocation determines the shortcut path, then the following invocations will use this shortcut path.

For example, in the following figure, a simple component system, which consists of a composite containing two wrapped primitive
components, is represented with different distributions of the components. In a, all components are located in the same JVM,
therefore all communications are local communications. If the wrapping composites are distributed on different remote JVMs, all
communications are remote because they have to cross composite enclosing components. The short cut optimization is a simple
bypassing of the wrapper components, which results in 2 local communications for the sole functional interface.

Figure 4.11. Using shortcuts for minimizing remote communications.

4.5.2. Configuration

Shortcuts are available when composite components are synchronous components (this does not break the ProActive model, as
composite components are structural components). Components can be specified as synchronous in the ControllerDescription object
that is passed to the component factory:

 ControllerDescription controllerDescription = new ControllerDescription("name",
 Constants.COMPOSITE,
 Constants.SYNCHRONOUS);

When the system property proactive.components.use_shortcuts is set to true, the component system will automatically establish
short cuts between components whenever possible.

GridCOMP FP6-034442 42 D.CFI.05

Chapter 5. Architecture and design
The implementation of the Fractal model is achieved by reusing the extensible architecture of ProActive, notably the meta-object
protocol and the management of the queue of requests. As a consequence, components are fully compatible with standard active
objects and as such, inherit from the features active objects exhibit: mobility, security, deployment etc.

A fundamental idea is to manage the non-functional properties at the meta-level: each component is actually an active object
with dedicated meta-objects in charge of the component aspects.

5.1. Meta-object protocol

ProActive is based on a meta-object protocol (MOP), that allows the addition of many aspects on top of standard Java objects,
such as asynchronism and mobility. Active objects are referenced indirectly through stubs: this allows transparent communications,
would the active objects be local or remote.

The following diagram explains this mechanism:

Java objects 'b' and 'a' can be in different virtual machines (the network being represented here between the proxy and the body,
though the invocation might be local). Object 'b' has a reference on active object 'a' (of type A) through a stub (of type A because
it is generated as a subclass of A) and a proxy. When 'b' invokes a method on ' stub_A ', the invocation is forwarded through the
communication layer (possibly through a network) to the body of the active object. At this point, the call can be intercepted by meta-
objects, possibly resulting in induced actions, and then the call is forwarded to the base object 'a'.

Figure 5.1. ProActive's Meta-Objects Protocol.

The same idea is used to manage components: we just add a set of meta-objects in charge of the component aspects.

The following diagram shows what is changed:

A new set of meta-objects, managing the component aspect (constituting the controller of the component, in the Fractal terminology),
is added to the active object 'a'. The standard ProActive stub (that gives a representation of type A on the figure) is not used here,
as we manipulate components. In Fractal, a reference on a component is of type Component , and references to interfaces are of
type Interface . 'b' can now manipulate the component based on 'a' through a specific stub, called a component representative
. This component representative is of type Component , and also offers references to control and functional interfaces, of type

GridCOMP FP6-034442 43 D.CFI.05

Interface . Note that classes representing functional interfaces of components are generated on the fly: they are specific to each
component and can be unknown at compile-time.

Method invocations on Fractal interfaces are reified and transmitted (possibly through a network) to the body of the active object
corresponding to the component involved. All standard operations of the Fractal API are now accessible.

Figure 5.2. The ProActive MOP with component meta-objects and component representative

5.2. Components vs active objects

In our implementation, because we make use of the MOP's facilities, all components are constituted of one active object (at least),
are they composite or primitive components. If the component is a composite, and if it contains other components, then we can say
it is constituted of several active objects. Also, if the component is primitive, but the programmer of this component has put some
code within it for creating new active objects, the component is again constituted of several active objects.

As a result, a composite component is an active object built on top of the CompositeComponent class, and a parallel component
is built on top of the ParallelComponent class. These classes are empty classes, because for composite and parallel components,
all the action takes place in the meta-level. But they are used as a base to build active objects, and their names help to identify them
with the IC2D visual monitoring tool.

5.3. Method invocations on components interfaces

Invoking a method on an active object means invoking a method on the stub of this active object. What usually happens then is
that the method call is reified as a Request object and transferred (possibly through a network) to the body of the active object.
It is then redirected towards the queue of requests, and delegated to the base object according to a customizable serving policy
(standard is FIFO).

Component requests, on the other hand, are tagged so as to distinguish between functional requests and controller requests. A
functional request targets a functional interface of the component, while a controller request targets a controller of the component.

Like in the standard case (without components), requests are served from the request queue. The serving policy has to be FIFO to
ensure coherency. This is where the life cycle of the components is controlled : the dispatching of the request is dependent upon
the nature of the request, and corresponds to the following algorithm:

 loop if componentLifeCycle.isStarted() get next request -//
 all requests are served else if
 componentLifeCycle.isStopped() get next controller request
 // only controller requests are served -; if gotten request
 is a component life cycle request if request is start --->
 set component state to started -; if request is stop --->

GridCOMP FP6-034442 44 D.CFI.05

 set component state to stopped -; -; -;

GridCOMP FP6-034442 45 D.CFI.05

Chapter 6. Component examples
Three examples are presented: code snippets for visualizing the transition between active objects and components, the 'hello world',
from the Fractal tutorial, and C3D component version. The programming model is Fractal, and one should refer to the Fractal
documentation for other detailed examples.

6.1. From objects to active objects to distributed components

In Java, objects are created by instantiation of classes. With ProActive, one can create active objects from Java classes, while
components are created from component definitions. Let us first consider the 'A' interface:

public interface A {
 public String foo(); // dummy method
}

'AImpl' is the class implementing this interface:

public class AImpl implements A {
 public AImpl() {}
 public String foo() {
 // do something
 -}
}

The class is then instantiated in a standard way:

 A object = new AImpl();

Active objects are instantiated using factory methods from the ProActive class (see ???). It is also possible to specify the activity of
the active object, the location (node or virtual node), or a factory for meta-objects, using the appropriate factory method.

A active_object = (A)PAActiveObject.newActive(
 AImpl, // signature of the base class
 new Object[] {}, // Object[]
 aNode, // location, could also be a virtual node
);

As components are also active objects in this implementation, they benefit from the same features, and are configurable in a similar
way. Constructor parameters, nodes, activity, or factories, that can be specified for active objects, are also specifiable for components.
The definition of a component requires 3 sub-definitions: the type, the description of the content, and the description of the controller.

6.1.1. Type

The type of the component (i.e. the functional interfaces provided and required) is specified in a standard way: (as taken from the
Fractal tutorial)

We begin by creating objects that represent the types of the components of the application. In order to do this, we must first get a
bootstrap component. The standard way to do this is the following one (this method creates an instance of the class specified in the
fractal.provider system property, and uses this instance to get the bootstrap component):

 Component boot = Fractal.getBootstrapComponent();

We then get the TypeFactory interface provided by this bootstrap component:

 TypeFactory tf = (TypeFactory)boot.getFcInterface('type-factory');

We can then create the type of the first component, which only provides a A server interface named 'a':

GridCOMP FP6-034442 46 D.CFI.05

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
 tf.createFcItfType('a', -'A', false, false, false)
});

6.1.2. Description of the content

The second step in the definition of a component is the definition of its content. In this implementation, this is done through the
ContentDescription class:

ContentDescription contentDesc = new ContentDescription(
 AImpl, // signature of the base class
 new Object[] {}, // Object[]
 aNode // location, could also be a virtual node
);

6.1.3. Description of the controller

Properties relative to the controller can be specified in the ControllerDescription:

ControllerDescription controllerDesc = new ControllerDescription(
 -'myName', // name of the component
 Constants.PRIMITIVE // the hierarchical type of the component
 // it could be PRIMITIVE, COMPOSITE, or PARALLEL
);

Eventually, the component definition is instantiated using the standard Fractal API. This component can then be manipulated as
any other Fractal component.

Component component = componentFactory.newFcInstance(
 componentType, // type of the component (defining the client and server interfaces)
 controllerDesc, // implementation-specific description for the controller
 contentDesc // implementation-specific description for the content
);

6.1.4. From attributes to client interfaces

There are 2 kinds of interfaces for a component: those that offer services, and those that require services. They are named respectively
server and client interfaces.

From a Java class, it is fairly natural to identify server interfaces: they (can) correspond to the Java interfaces implemented by the
class. In the above example, 'a' is the name of an interface provided by the component, corresponding to the 'A' Java interface.

On the other hand, client interfaces usually correspond to attributes of the class, in the case of a primitive component. If the
component defined above requires a service from another component, say the one corresponding to the 'Service' Java interface,
the AImpl class should be modified. As we use the inversion of control pattern, a BindingController is provided, and a binding
operation on the 'requiredService' interface will actually set the value of the 'service' attribute, of type 'Service'.

First, the type of the component is changed:

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
 tf.createFcItfType('a', -'A', false, false, false),
 tf.createFcItfType('requiredService', -'A', true, false, false)
});

The Service interface is the following:

package org.objectweb.proactive.examples.components.helloworld;

GridCOMP FP6-034442 47 D.CFI.05

public interface Service {
 void print(String msg);
}

And the AImpl class is:

// The modified AImpl class
public class AImpl implements A, BindingController {
 Service service; // attribute corresponding to a client interface
 public AImpl() {}
 // implementation of the A interface
 public String foo() {
 return service.bar(); // for example
 -}
 // implementation of BindingController
 public Object lookupFc (final String cItf) {
 if (cItf.equals('requiredService')) {
 return service;
 -}
 return null;
 -}
 // implementation of BindingController
 public void bindFc (final String cItf, final Object sItf) {
 if (cItf.equals('requiredService')) {
 service = (Service)sItf;
 -}
 -}
 // implementation of BindingController
 public void unbindFc (final String cItf) {
 if (cItf.equals('requiredService')) {
 service = null;
 -}
 -}
}

6.2. The HelloWorld example

The mandatory helloworld example (from the Fractal tutorial) shows the different ways of creating a component system
(programmatically and using the ADL), and it can easily be implemented using ProActive.

6.2.1. Set-up

You can find the code for this example in the package org.objectweb.proactive.examples.components.helloworld of the ProActive
distribution.

The code is almost identical to the Fractal tutorial's example [http://fractal.objectweb.org/tutorials/fractal/index.html].

The differences are the following:

• The reference example is provided for level 3.3. implementation, whereas this current implementation is compliant up to level
3.2: templates are not provided. Thus you will have to skip the specific code for templates.

• The newFcInstance method of the GenericFactory interface, used for directly creating components, takes 2
implementation-specific parameters. So you should use the org.objectweb.proactive.component.ControllerDescription
and org.objectweb.proactive.component.ContentDescription classes to define ProActive components. (It is possible to
use the same parameters than in Julia, but that hinders you from using some functionalities specific to ProActive, such as
distributed deployment or definition of the activity).

GridCOMP FP6-034442 48 D.CFI.05

• Collective interfaces could be implemented the same way than suggested, but using the
Fractive.createCollectiveClientInterface method will prove useful with this implementation: you are then able to use the
functionalities provided by the typed groups API.

• Components can be distributed

• the ClientImpl provides an empty no-args constructor.

6.2.2. Architecture

The helloworld example is a simple client-server application, where the client (c) and the server (s) are components, and they are
both contained in the same root component (root).

Another configuration is also possible, where client and server are wrapped around composite components (C and S). The goal was
initially to show the interception shortcut mechanism in Julia. In the current ProActive implementation, there are no such shortcuts,
as the different components can be distributed, and all invocations are intercepted. The exercise is still of interest, as it involves
composite components.

Figure 6.1. Client and Server wrapped in composite components (C and S)

6.2.3. Distributed deployment

This section is specific to the ProActive implementation, as it uses the deployment framework of this library.

If the application is started with (only) the parameter 'distributed', the ADL used is 'helloworld-distributed-no-wrappers.fractal',
where virtualNode of the client and server components are exported as VN1 and VN2. Exported virtual node names from the ADL
match those defined in the deployment descriptor 'deployment.xml'.

One can of course customize the deployment descriptor and deploy components onto virtually any computer, provided it is
connectable by supported protocols. Supported protocols include LAN, clusters and Grid protocols (see ???).

Have a look at the ADL files 'helloworld-distributed-no-wrappers.fractal' and 'helloworld-distributed-wrappers.fractal'. In a nutshell,
they say: 'the primitive components of the application (client and server) will run on given exported virtual nodes, whereas the other
components (wrappers, root component) will run on the current JVM.

Therefore, we have the two following configurations:

GridCOMP FP6-034442 49 D.CFI.05

Figure 6.2. Without wrappers, the primitive components are distributed.

Figure 6.3. With wrappers, where again, only the primitive components are distributed.

Currently, bindings are not optimized. For example, in the configuration with wrappers, there is an indirection that can be costly,
between the client and the server. We are currently working on optimizations that would allow to shortcut communications, while
still allowing coherent dynamic reconfiguration. It is the same idea than in Julia, but we are dealing here with distributed components.
It could imply compromises between dynamicity and performance issues.

6.2.4. Execution

You can either compile and run the code yourself, or follow the instructions for preparing the examples and use the script
helloworld_fractal.sh (or .bat). If you choose the first solution, do not forget to set the fractal.provider system property.

If you run the program with no arguments (i.e. not using the parser, no wrapper composite components, and local deployment) ,
you should get something like this:

01 ---> This ClassFileServer is reading resources from classpath
02 Jini enabled
03 Ibis enabled
04 Created a new registry on port 1099
05 -//crusoe.inria.fr/Node363257273 successfully bound in registry at -//crusoe.inria.fr/Node363257273
06 Generating class: pa.stub.org.objectweb.proactive.core.component.type.Stub_Composite
07 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ClientImpl
08 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl

You can see:

GridCOMP FP6-034442 50 D.CFI.05

• line 01: the creation of the class file server which handles the on-the-fly generation and distribution of ProActive stubs and
component functional interfaces

• line 04: the creation of a rmi registry
• line 05: the registration of the default runtime node
• line 06 to 08: the on-the-fly generation of ProActive stubs (the generation of component functional interfaces is silent)

Then you have (the exception that pops out is actually the expected result, and is intended to show the execution path):

 1:Server: print method called
 2:at org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:37)
 3:at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 4:at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 5:at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 6:at java.lang.reflect.Method.invoke(Method.java:324)
 7:at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:373)
 8:at
 9: org.objectweb.proactive.core.component.request.ComponentRequestImpl.serveInternal(ComponentRequestI
 10:mpl.java:163)
 11:at org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:108)
 12:at org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:297)
 13:at org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:799)
 14:at org.objectweb.proactive.core.body.ActiveBody$FIFORunActive.runActivity(ActiveBody.java:230)
 15:at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:145)
 16:at java.lang.Thread.run(Thread.java:534)
 17:Server: begin printing...
 18: ---------> hello world
 19:Server: print done.
 20:

What can be seen is very different from the output you would get with the Julia implementation. Here is what happens (from bottom
to top of the stack):

• line 14: The active object runs its activity in its own Thread
• line 12: The default activity is to serve incoming request in a FIFO order
• line 08: Requests (reified method calls) are encapsulated in ComponentRequestImpl objects
• line 06: A request is served using reflection
• line 02: The method invoked is the print method of an instance of ServerImpl

Now let us have a look at the distributed deployment: execute the program with the parameters 'distributed parser'. You should get
something similar to the following:

01 ---> This ClassFileServer is reading resources from classpath
02 Jini enabled
03 Ibis enabled
04 Created a new registry on port 1099
05 ************* Reading deployment descriptor: file:/0/user/mmorel/ProActive/classes/org/objectweb/proactive/
examplescomponents/helloworld/deployment\
.xml ********************
06 created VirtualNode name=VN1
07 created VirtualNode name=VN2
08 created VirtualNode name=VN3
09 **** Starting jvm on crusoe.inria.fr
10 ---> This ClassFileServer is reading resources from classpath
11 Jini enabled
12 Ibis enabled
13 Detected an existing RMI Registry on port 1099
14 -//crusoe.inria.fr/VN1462549848 successfully bound in registry at -//crusoe.inria.fr/VN1462549848
15 **** Mapping VirtualNode VN1 with Node: -//crusoe.inria.fr/VN1462549848 done
16 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ClientImpl

GridCOMP FP6-034442 51 D.CFI.05

17 **** Starting jvm on crusoe.inria.fr
18 ---> This ClassFileServer is reading resources from classpath
19 Jini enabled
20 Ibis enabled
21 Detected an existing RMI Registry on port 1099
22 -//crusoe.inria.fr/VN21334775605 successfully bound in registry at -//crusoe.inria.fr/VN21334775605
23 **** Mapping VirtualNode VN2 with Node: -//crusoe.inria.fr/VN21334775605 done
24 Generating class: pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl
25 -//crusoe.inria.fr/Node1145479146 successfully bound in registry at -//crusoe.inria.fr/Node1145479146
26 Generating class: pa.stub.org.objectweb.proactive.core.component.type.Stub_Composite
27 MOPClassLoader: class not found, trying to generate it
28 ClassServer sent class Generated_java_lang_Runnable_r_representative successfully
39 MOPClassLoader: class not found, trying to generate it
30 ClassServer sent class Generated_java_lang_Runnable_r_representative successfully
31 MOPClassLoader: class not found, trying to generate it
32 ClassServer sent class
Generated_org_objectweb_proactive_examples_components_helloworld_Service_s_representative successfully
33 MOPClassLoader: class not found, trying to generate it
34 ClassServer sent class
Generated_org_objectweb_proactive_examples_components_helloworld_ServiceAttributes_attribute_controller_representative
succe\
ssfully
35 ClassServer sent class pa.stub.org.objectweb.proactive.examples.components.helloworld.Stub_ServerImpl
successfully

What is new is:

• line 05 the parsing of the deployment descriptor

• line 09 and 17: the creation of 2 virtual machines on the host 'crusoe.inria.fr'

• line 15 and 24: the mapping of virtual nodes VN1 and VN2 to the nodes specified in the deployment descriptor

• line 35: the dynamic downloading of the stub class for ServerImpl: the stub class loader does not find the classes of the stubs
in the current VM, and fetches the classes from the ClassServer

• line 28, 30, 32, 34: the dynamic downloading of the classes corresponding to the components functional interfaces (they were
silently generated)

Then we get the same output than for a local deployment, the activity of active objects is independent from its location.

01 Server: print method called
02 at org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:37)
03 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
04 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
05 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
06 at java.lang.reflect.Method.invoke(Method.java:324)
07 at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:373)
08 at
org.objectweb.proactive.core.component.request.ComponentRequestImpl.serveInternal(ComponentRequestImpl.java:163)
09 at org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:108)
10 at org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:297)
11 at org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:799)
12 at org.objectweb.proactive.core.body.ActiveBody$FIFORunActive.runActivity(ActiveBody.java:230)
13 at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:145)
14 at java.lang.Thread.run(Thread.java:534)
15 Server: begin printing...
16 -->hello world
17 Server: print done.

6.2.5. The HelloWorld ADL files

GridCOMP FP6-034442 52 D.CFI.05

org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name=
"org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers">
 <interface name="r" role="server" signature="java.lang.Runnable"/>
 <exportedVirtualNodes>
 <exportedVirtualNode name="VN1">
 <composedFrom>
 <composingVirtualNode component="client" name="client-node"/>
 </composedFrom>
 </exportedVirtualNode>
 <exportedVirtualNode name="VN2">
 <composedFrom>
 <composingVirtualNode component="server" name="server-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <component name="client-wrapper" definition=
"org.objectweb.proactive.examples.components.helloworld.ClientType">
 <component name="client" definition=
"org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 <binding client="this.r" server="client.r"/>
 <binding client="client.s" server="this.s"/>
 <controller desc="composite"/>
 </component>
 <component name="server-wrapper" definition=
"org.objectweb.proactive.examples.components.helloworld.ServerType">
 <component name="server" definition=
"org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
 <binding client="this.s" server="server.s"/>
 <controller desc="composite"/>
 </component>
 <binding client="this.r" server="client-wrapper.r"/>
 <binding client="client-wrapper.s" server="server-wrapper.s"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ClientType.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientType" extends=
"org.objectweb.proactive.examples.components.helloworld.RootType">
 <interface name="r" role="server" signature="java.lang.Runnable"/>
 <interface name="s" role="client" signature=
"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ClientImpl.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

GridCOMP FP6-034442 53 D.CFI.05

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ClientType">
 <exportedVirtualNodes>
 <exportedVirtualNode name="client-node">
 <composedFrom>
 <composingVirtualNode component="this" name="client-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <content class="org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 <virtual-node name="client-node" cardinality="single"/>
</definition>

org.objectweb.proactive.examples.components.ServerType

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerType">
 <interface name="s" role="server" signature=
"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ServerImpl

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ServerType">
 <exportedVirtualNodes>
 <exportedVirtualNode name="server-node">
 <composedFrom>
 <composingVirtualNode component="this" name="server-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <content class="org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
 <attributes signature=
"org.objectweb.proactive.examples.components.helloworld.ServiceAttributes">
 <attribute name="header" value="->"/>
 <attribute name="count" value="1"/>
 </attributes>
 <controller desc="primitive"/>
 <virtual-node name="server-node" cardinality="single"/>
</definition>

GridCOMP FP6-034442 54 D.CFI.05

Chapter 7. Component perspectives: a
support for advanced research

The ProActive/Fractal framework is a functional and flexible implementation of the Fractal API and model. One can configure and
deploy a system of distributed components, including Grids. The framework also proposes extensions for collective interactions
(gathercast and multicast interfaces), allocation configuration through virtual nodes extensions, and some optimizations.

It is now a mature framework for developing Grid applications, and as such it is a basis for experimenting new research paths.

7.1. Dynamic reconfiguration

One of the challenges of Grid computing is to handle changes in the execution environments, which are not predictable in systems
composed of large number of distributed components on heterogeneous environments. For this reason, the system needs to be
dynamically reconfigurable, and must exhibit autonomic properties.

Simple and deterministic dynamic reconfiguration is a real challenge in systems that contain hierarchical components that feature
their own activities and that communicate asynchronously.

A part of the solutions envisioned consist in designing a set of high-level reconfiguration primitives allowing to achieve complex
operations, but also to trigger such operations on specific events. This aspects consists in designing a set of such primitives (e.g.,
replace, add and bind, unbind and remove, duplicate, recursively add, ...) for reconfiguration ensuring more correctness properties
than the Fractal ones, and more autonomicity. By providing higher level of primitives, the principal aim is to help the programmer
to design safe scenarii. For example a replacement primitive seems safer and easier to verify than the equivalent sequence (stop
+unbind+remove+add+bind+start) that would implement it in Fractal. One of the difficulties is that most useful reconfigurations
involve changing or augmenting the available behaviors of the system components. During replacement, one can introduce new
interfaces, new dependencies between components.

Another issue related to reconfigurations and component life-cycle is the coherency in the component states along reconfigurations.
Indeed, suppose for example that two consecutive requests (on the same binding) should necessarily be addressed to the same
destination component (for example, the one requests sends additional informations necessary to fulfill the other one). Then, between
those two request, no reconfiguration can occur if it involves the binding used for the requests.

As a consequence, it is important designing a way of specifying synchronization between reconfiguration steps and the application,
this should be the main interaction between functional and non-functional aspects, and should be studied carefully in order to
maintain the "good separation of aspects" that exists in Fractal.

The autonomic computing paradigm is related to this challenge because is consists of building applications out of self-managed
components. Components which are self-managed are able to monitor their environment and adapt to it by automatically optimizing
and reconfiguring themselves. The resulting systems are autonomous and automatically fulfill the needs of the users, but the
complexity of adaptation is hidden to them. Autonomicity of components represents a key asset for large scale distributed computing.

7.2. Model-checking

Encapsulation properties, components with configurable activities, and system description in ADL files provide safe basis for model
checking of component systems.

For instance:

1. Behavioral information on components can be specified in extended ADL files.

2. Automatas can be generated from behavioral information and structural description.

3. Model checking tools are used to verify the automatas.

The Vercors [http://www-sop.inria.fr/oasis/Vercors/] platform investigates such kinds of scenarii.

Component-based software development (CBSD) has emerged as a response from both industries and academics for dealing
with software complexity and reusability. The main idea is to clearly define interfaces between components so that they can be
assembled and composed in several contexts. Unfortunately, software engineers often face non-trivial runtime incompatibilities

GridCOMP FP6-034442 55 D.CFI.05

when assembling off-the-shelf components. These arise due to an inadequate (or nonexistent) dynamic specification of the
component behaviour. In fact, state-of-the-art implementations of component models such as SOFA ??? , Fractal ??? and CORBA
Component Model ??? only consider interface type-compatibility (through Interface Description Languages or IDLs) for binding
interfaces. Nonetheless, a sound static compatibility check of bound interfaces can be achieved if behavioural information is added
to the components. There are several related works, that either introduce Behavioural IDLs ??? , ??? , ??? , ??? , or that describe
behaviour of components ???

We are building a tool platform for the analysis and verification of safety and security properties of distributed applications.
The central component of the platform is a method for generating finite models for distributed applications, from static analysis
of source code. We base this generation procedure on the strong semantic features provided by the ProActive library, and we
generate compositional models using synchronised labelled transition systems. Various tools for static analysis, model checking,
and equivalence checking can then operate on these models. One long term goal of this work is to integrate the various techniques
and tools involved in this software platform, so that the platform can be integrated in a development environment, and used by
non-specialists. At the same time, the platform must be flexible and open enough to serve as a basis for easy prototyping of new
techniques and tools on real Java/ProActive code.

Even if there are many specification languages in the literature, none fits well in the context of distributed components. In the GCM,
most difficulties come when specifying the synchronisations. Instead of proving that legacy code is safe, we take a constructive
approach similar to ??? , ??? . The idea is to specify the system, prove that the specification is correct, and then generate (Java) code
skeletons guaranteed to conform to the specification. pNets is left as the underlying formalism that interfaces with model-checkers,
and the programmer uses a high-level specification on top of pNets. The language is called Java Distributed Components (JDC
for short).

7.3. Pattern-based deployment

Distributed computational applications are designed by defining a functional or do- main decomposition, and these decompositions
often present structural similarities (master-slave, 2D-Grid, pipeline etc.).

In order to facilitate the design of complex systems with large number of entities and recurring similar configurations, we plan
to propose a mechanism for defining parameterizable assembly patterns in the Fractal ADL, particularly for systems that contain
parameterized numbers of identical components.

7.4. Graphical tools

We are developing the VCE (Vercors Component Environnement), that includes graphical editors for the architecture and the
behavior of GCM components.

The architecture diagrams traditionally feature hierarchical components, provided and required interfaces (with Java signatures
attached), and bindings. But they also distinguish GCM specific concepts, namely functional and non-functional interfaces, content
and membrane parts for composite components, multicast and gathercast interfaces. Diagrams are validated against a set of static
semantic rules. GCM-ADL files can be produced and read by the editor. The behavior diagrams express external behavior of
components. They are based on classical state-machines constructions, with specific constructs for GCM/Proactive, in particular for
expressing request queue selection, and multicast/gathercast policies.

GridCOMP FP6-034442 56 D.CFI.05

Chapter 8. GCM Components Tutorial
8.1. Introduction

This chapter introduces the ProActive/GCM implementation and presents a short user guide which explains how to use it. The
chapter will not explain how to program with components but instead focus on the particularities of the GCM implementation for
ProActive.

8.2. Key features of the ProActive/GCM Implementation
• Creation/usage of primitive and composite components

• Client, server and non-functional interfaces

In addition to single/collection cardinalities, the ProActive/GCM implementation also provides multicast and gathercast
cardinalities.

• ADL support

• Deployment descriptor files describing components deployment

Several components in an assembly can be distributed on different nodes on several computers using transparent remote
communication. Such an arhitecture is presented in the figure below.

Figure 8.1. Component with inner component distributed

8.2.1. Primitive and composite components

The GCM component model is hierarchical, so components can be either primitives or composites. A composite can contain one or
many inner components (primitive or composite). Non functional and functional interfaces can be defined.

ProActive/GCM provides the following defaults non functional interfaces thanks to the following controllers: binding-controller,
name-controller, lifecycle-controller, super-controller, content-controller as specified by the GCM specification. In addition, there
are other specific controllers in our implementation, namely migration-controller, multicast-controller, gathercast-controller and
component-parameters-controller. In the current implementation, the non functional part of a component can also be customized
and extended.

Furthermore, ProActive/GCM allows developers to define what a component needs and provides with its client and server interfaces.

8.2.2. Collective Interfaces

By using collective interfaces, component systems designers are able to specify parallelism, synchronization and data distribution.
Collective communications refer to multipoint interactions between software entities. Collective interfaces have two types of
cardinalities, multicast and gathercast.

GridCOMP FP6-034442 57 D.CFI.05

A collective interface gives the possibility to manage a group of interfaces as a single entity. This entity is itself an interface and
viewed likewise. The role and usage of multicast and gathercast interfaces are complementary.

8.2.3. Multicast Interfaces

Multicast interfaces are used for parallel invocations, parameters dispatching and results gathering. A multicast interface is an
abstraction for 1-to-n communications. When a single invocation is transformed into a set of invocations, these invocations are
forwarded to a set of connected server interfaces. Both the propagation of the invocation and the distribution of the invocation
parameters are customizable (through Java annotations in the Java interfaces definitions). The result of an invocation, if it isn’t a
void return type, on a multicast interface will be a list of results wherever applicable.

If some parameters in a given method of a multicast interface are lists of values, these values can be distributed in various ways
through method invocations to the server interfaces connected to the multicast interface (see Figure 2). The default behaviour –
namely broadcast – is to send the same parameters to each of the connected server interfaces (see Figure 2.a). In case some parameters
are list of values, copies of the lists are sent to each receiver. However, similar to what SPMD programming model offers, it may
be adequate to strip some of the parameters so that the bounded components will work on different data. In MPI, for instance, this
can be explicitly specified by stripping a data buffer and using the scatter primitive. In this case, you will use scatter or one-to-
one dispatch mode (see Figure 2.b).

Figure 8.2. Component parameters

GCM also specify result aggregation, but in the current state of the ProActive/GCM implementation the only available behaviour
is the aggregation of results as list.

8.2.4. Gathercast interfaces

Gathercast interfaces are used for synchronization, parameter gathering and result dispatching. A gathercast interface is an
abstraction for n-to-1 communications. It handles data aggregation for invocation parameters, as well as process coordination.
It gathers incoming data, and can also coordinate incoming invocations before continuing the invocation flow, by defining
synchronization barriers. Invocation parameters are simply gathered into lists of parameters as showed in the Figure 3.

GridCOMP FP6-034442 58 D.CFI.05

Figure 8.3. Invocation parameter with a gathercast interface

The following table summarizes the possible distribution policies based on parameters and return type.

Figure 8.4. Distribution policies

8.2.5. ADL file

The Architecture Description Language (ADL) is used to define component type, configure and deploy component systems. You
can define component and interface types, describe component membrane, and declare on which Virtual Node and you want deploy
each component. The architecture of the system is described in one or many XML file.

Components are defined in files ending with the .fractal extension. The syntax of the document is validated against a DTD retrieved
from the classpath classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd . This DTD extends the Fractal

GridCOMP FP6-034442 59 D.CFI.05

ADL DTD and the implementation reuses and extends the FractalADL project [2]. You can find tutorial and document on ADL
in this project1. The GCM specification [1] adds some keywords in the ADL definition which are supported by ProActive/GCM.
The following section illustrates how you can use these files to describe a component assembly, and how you can use it with the
Fractal/GCM API.

8.3. Creating and using components in a programatic way

Along this short user guide, we will show how to use concretely the features described previously: how to create primitive and
composite components, how to assemble them using Fractal/GCM API and Fractal API files, how to interoperate with components,
and then how to describe the deployment of components using deployment descriptor file.

The first step of this user guide explains how to create a single primitive component. Next, we will use an assembly of two primitive
components in a composite one.

8.3.1. The first component

We want to create a primitive component, called PrimitiveComputer. It exposes one server interface called computer-itf which
provides the two following methods: compute and doNothing. To do that, we need to write the two following classes.

package org.objectweb.proactive.examples.components.userguide.primitive;

public interface ComputeItf {
 int compute(int a);

 void doNothing();
}

package org.objectweb.proactive.examples.components.userguide.primitive;

import java.io.Serializable;

public class PrimitiveComputer implements ComputeItf, Serializable {
 public PrimitiveComputer() {
 -}

 public int compute(int a) {
 int result = a * 2;
 System.err.println(" PrimitiveComputer-->compute(" + a + "): -" + result);
 return result;
 -}

 public void doNothing() {
 System.err.println(" PrimitiveComputer-->doNothing()");
 -}
}

Now, we will discuss on the different ways to use this component. First, we must create the component with the ProActive/GCM
framework. Two kinds of component instantiation are shown. In the first case, we can do all these steps in the application. However,
in the second case, we will show how we can use the ADL files to simplify the application and create it in a simpler way.

In order to illustrate these different ways, a new class, Main, containing the possible main method of our application (see the source
code below), is written. In this main method, four different methods are called and will be described in the following parts of this
document, launchFirstPrimitive, launchWithoutADL, launchWithADL, and finally the last launchAndDeployWithADL. To launch
this class, you must put in your classpath all the libraries contained in the lib directory and subdirectories and the ProActive jar. And
finally, you must set the three Java properties (fractal.provider, java.security.policy, log4j.configuration) as shown in the command
line:

java

GridCOMP FP6-034442 60 D.CFI.05

 --Dfractal.provider=org.objectweb.proactive.core.component.Fractive
 --Djava.security.policy=file:<change_this_part>/
 ProActive/scripts/proactive.java.policy
 --Dlog4j.configuration=file:<change_this_part>/
 ProActive/scripts/proactive-log4j
 org.objectweb.proactive.examples.components.userguide.Main

package org.objectweb.proactive.examples.components.userguide;

import java.util.HashMap;
import java.util.Map;

import org.objectweb.fractal.adl.Factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.control.LifeCycleController;
import org.objectweb.fractal.api.factory.GenericFactory;
import org.objectweb.fractal.api.type.ComponentType;
import org.objectweb.fractal.api.type.InterfaceType;
import org.objectweb.fractal.api.type.TypeFactory;
import org.objectweb.fractal.util.Fractal;
import org.objectweb.proactive.api.PADeployment;
import org.objectweb.proactive.core.component.Constants;
import org.objectweb.proactive.core.component.ContentDescription;
import org.objectweb.proactive.core.component.ControllerDescription;
import org.objectweb.proactive.core.component.factory.ProActiveGenericFactory;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;
import org.objectweb.proactive.core.node.Node;
import org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf;
import org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveComputer;
import org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveMaster;

public class Main {
 public static void main(String[] args) {
 // System.out.println("Launch primitive component example");
 // Main.launchFirstPrimitive();
 System.out.println("Launch component assembly example");
 Main.launchWithoutADL();

 // System.out.println("Launch and deploy component assembly example");
 // Main.launchAndDeployWithoutADL();

 // System.out.println("Launch component assembly example with ADL");
 // Main.launchOneWithADL();
 //
 // System.out.println("Launch and deploy component assembly example with ADL");
 // Main.launchAndDeployWithADL();

 //System.err.println("The END...");
 //System.exit(0);
 -}

If we want to create and call components in a standard Java application, we need to use the GCM API [1]. The method
launchFirstPrimitive shows all the steps to create and use our first primitive component. Firstly, define the type of the component.
Secondly, create component using a factory. Thirdly, start the component. And finally, retrieve the component’s interface and use
it as a standard Java object to access our component.

 private static void launchFirstPrimitive() {

GridCOMP FP6-034442 61 D.CFI.05

 try {
 Component boot = Fractal.getBootstrapComponent();
 TypeFactory typeFact = Fractal.getTypeFactory(boot);
 GenericFactory genericFact = Fractal.getGenericFactory(boot);
 Component primitiveComputer = null;

 // type of PrimitiveComputer component
 ComponentType computerType = typeFact.createFcType(new InterfaceType[] { typeFact
 -.createFcItfType("compute-itf", ComputeItf.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});

 // component creation
 primitiveComputer = genericFact.newFcInstance(computerType, new ControllerDescription(
"root",
 Constants.PRIMITIVE), new ContentDescription(PrimitiveComputer.class.getName()));

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(primitiveComputer).startFc();
 ((LifeCycleController) primitiveComputer.getFcInterface("lifecycle-controller"
)).startFc();

 // get the compute-itf interface
 ComputeItf itf = ((ComputeItf) primitiveComputer.getFcInterface("compute-itf"));
 -;
 // call component
 itf.doNothing();
 int result = itf.compute(5);

 System.out.println("Result of computation whith 5 is: -" + result); //display 10
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

Uncomment the line calling the launchFirstPrimitive method in the main method, launch it and see below the expected output. The
first lines are ProActive log, and at the end, information printed in the component and in the Main class is visible.

8.3.2. Define an assembly

Now that we succeeded to create and use a primitive component, we will learn how to use it in a component assembly. First of all,
we want use the previous shown primitive component with another primitive component to explain how to define, implement and
use client interfaces. Moreover, in order to use composite component, we put the two primitive components in a composite. The
Figure 8.5, “Component assembly ” shows this assembly.

GridCOMP FP6-034442 62 D.CFI.05

Figure 8.5. Component assembly

To implement this assembly we need one more class, PrimitiveMaster. This class implements the following Java interfaces:
java.lang.Runnable and moreover the BindindController to allow binding on the compute-itf client interface. In the run method we
put the call to the PrimitiveComputer component, we don’t need to retrieve the compute-itf interface since the assembling it’s done
in the launchWithoutADL method or in the following part using ADL.

package org.objectweb.proactive.examples.components.userguide.primitive;

import java.io.Serializable;

import org.objectweb.fractal.api.NoSuchInterfaceException;
import org.objectweb.fractal.api.control.BindingController;
import org.objectweb.fractal.api.control.IllegalBindingException;
import org.objectweb.fractal.api.control.IllegalLifeCycleException;

public class PrimitiveMaster implements Runnable, Serializable, BindingController {
 private static final String COMPUTER_CLIENT_ITF = "compute-itf";
 private ComputeItf computer;

 public PrimitiveMaster() {
 -}

 public void run() {
 computer.doNothing();
 int result = computer.compute(5);
 System.out.println(" PrimitiveMaster-->run(): -" + "Result of computation whith 5 is: -" +
 result); //display 10
 -}

 //BINDING CONTROLLER implementation
 public void bindFc(String myClientItf, Object serverItf) throws NoSuchInterfaceException,
 IllegalBindingException, IllegalLifeCycleException {
 if (myClientItf.equals(COMPUTER_CLIENT_ITF)) {
 computer = (ComputeItf) serverItf;

GridCOMP FP6-034442 63 D.CFI.05

 -}
 -}

 public String[] listFc() {
 return new String[] { COMPUTER_CLIENT_ITF -};
 -}

 public Object lookupFc(String itf) throws NoSuchInterfaceException {
 if (itf.equals(COMPUTER_CLIENT_ITF)) {
 return computer;
 -}
 return null;
 -}

 public void unbindFc(String itf) throws NoSuchInterfaceException, IllegalBindingException,
 IllegalLifeCycleException {
 if (itf.equals(COMPUTER_CLIENT_ITF)) {
 computer = null;
 -}
 -}
}

In the launchWithoutADL method, we extend component type definition and component creation parts. And we add one more part,
the component assembling. In this part, at first we put the two primitives, PrimitiveComputer and PrimitiveMaster in the composite
component. Next, we make the binding between each component interfaces.

 private static void launchWithoutADL() {
 try {
 Component boot = Fractal.getBootstrapComponent();
 TypeFactory typeFact = Fractal.getTypeFactory(boot);
 GenericFactory genericFact = Fractal.getGenericFactory(boot);

 // component types: PrimitiveComputer, PrimitiveMaster, CompositeWrapper
 ComponentType computerType = typeFact.createFcType(new InterfaceType[] { typeFact
 -.createFcItfType("compute-itf", ComputeItf.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});
 ComponentType masterType = typeFact.createFcType(new InterfaceType[] {
 typeFact.createFcItfType("run", Runnable.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE),
 typeFact.createFcItfType("compute-itf", ComputeItf.class.getName(),
 TypeFactory.CLIENT,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});
 ComponentType wrapperType = typeFact.createFcType(new InterfaceType[] {
 typeFact.createFcItfType(
 "run", Runnable.class.getName(), TypeFactory.SERVER, TypeFactory.MANDATORY,
 TypeFactory.SINGLE) -});

 // components creation
 Component primitiveComputer = genericFact.newFcInstance(computerType, new
 ControllerDescription(
 "PrimitiveComputer", Constants.PRIMITIVE), new ContentDescription(PrimitiveComputer.
class
 -.getName()));
 Component primitiveMaster = genericFact.newFcInstance(masterType, new
 ControllerDescription(
 "PrimitiveMaster", Constants.PRIMITIVE), new ContentDescription(PrimitiveMaster.
class
 -.getName()));

GridCOMP FP6-034442 64 D.CFI.05

 Component compositeWrapper = genericFact.newFcInstance(wrapperType, new
 ControllerDescription(
 "CompositeWrapper", Constants.COMPOSITE), null);

 // component assembling
 Fractal.getContentController(compositeWrapper).addFcSubComponent(primitiveComputer);
 Fractal.getContentController(compositeWrapper).addFcSubComponent(primitiveMaster);
 Fractal.getBindingController(compositeWrapper).bindFc("run",
 primitiveMaster.getFcInterface("run"));
 Fractal.getBindingController(primitiveMaster).bindFc("compute-itf",
 primitiveComputer.getFcInterface("compute-itf"));

 // start CompositeWrapper component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the run interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

This way isn’t the simplest one to create and use component. There is a lot of code to write, that could introduce mistakes or errors
in an assembly. We will show an easier one next.

8.4. Create and use components using ADL

We want create the same component directly using ADL capabilities. The source code of the method launchWithADL shows how to
use it. Another factory is used, and we can create directly the component without defining at first its type. Utilization of the created
component is still the same. You can see that we don’t need to define and assemble parts any more. Moreover, we need to create
only one component, the other ones are automatically created.

 private static void launchWithADL() {
 try {
 Factory f = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map<String, Object> context = new HashMap<String, Object>();

 // component creation
 Component compositeWrapper = (Component) f.newComponent(
 "org.objectweb.proactive.examples.components.userguide.adl.CompositeWrapper",
 context);

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the run interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

GridCOMP FP6-034442 65 D.CFI.05

ADL allows describing a component assembly through a text file. In our case, we have defined fives files. These files need to be in the
classpath of the application, for instance the PrimitiveComputer.fractal file needs to be in the org/objectweb/proactive/examples/
components/userguide/adl directory in the classpath. The first one, PrimitiveComputerType.fractal, describes the component
type, in particular the interface and the membrane with the tags interface and controller. The second one, PrimitiveComputer.fractal,
adds two necessary information: the implementation class with the content tag and a virtual node with the virtual-node tag. These
tags are explained in the following section.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveComputerType">
 <interface
 signature="org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf"
 role="server" name="compute-itf" -/>
 <controller desc="primitive" -/>
</definition>

It is quite the same for the PrimitiveMaster component; just the name and definition class change, and there is one more interface,
a client one.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMasterType">
 <interface
 signature="org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf"
 role="client" name="compute-itf" -/>
 <interface signature="java.lang.Runnable" role="server" name="run" -/>
 <controller desc="primitive" -/>
</definition>

And finally, there is the composite one. It defines one interface, and include the two primitive described previously. The binding
tag is new; it describes the binding between the interface from composite and inner components.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 extends="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMasterType"
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMaster">
 <content
 class="org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveMaster" -/>
 <virtual-node name="primitive-node" cardinality="single" -/>
</definition>

Now, we can run the example; uncomment the line calling the launchWithADL method in the main and then you can see the same
output as in the previous section.

8.5. Creating, using and deploying components using ADL

To deploy components on a specific virtual node, we need to use ADL files. Just before we saw that the tag virtual-node allows to
specify which virtual node to use for a component. The virtual node is defined in a separate file: a deployment descriptor. You can
find more information on how to write a deployment descriptor file in the ProActive documentation, chapter 21, XML Deployment
Descriptors. The deployment descriptor file used in this example is in the Appendix: deploymentDescriptor.xml.

GridCOMP FP6-034442 66 D.CFI.05

Furthermore, we need to inform the factory how to use this deployment descriptor; we do this in the
launchPrimitiveADLAndDeployment method :

• We create a ProActiveDescriptor object

• We put this object in the context HashMap

• We give this HashMap to the factory

Thus, the factory can retrieve the virtual node defined, and use it as described in the ADL files.

There is another specific point in the end of this method with the deploymentDescriptor.killall(false); call. This method kills all
the JVM deployed using the original deployment descriptor file. Before this call, we need to suspend the program since the method
calls in GCM are asynchronous, in order to not kill JVM before the end of the component execution.

 private static void launchAndDeployWithADL() {
 try {
 // get the component Factory allowing component creation from ADL
 Factory f = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map<String, Object> context = new HashMap<String, Object>();

 // retrieve the deployment descriptor
 ProActiveDescriptor deploymentDescriptor = PADeployment.getProactiveDescriptor(Main.
class
 -.getResource("deploymentDescriptor.xml").getPath());
 context.put("deployment-descriptor", deploymentDescriptor);
 deploymentDescriptor.activateMappings();

 // component creation
 Component compositeWrapper = (Component) f.newComponent(
 "org.objectweb.proactive.examples.components.userguide.adl.CompositeWrapper",
 context);

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the compute-itf interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();

 Thread.sleep(1000);
 // wait for the end of execution
 // and kill JVM created with the deployment descriptor
 deploymentDescriptor.killall(false);
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

Now we can run this example; uncomment the line calling the launchPrimitiveADLAndDeployment method, launch it and see the
output. The first lines are ProActive log; it’s more verbose than during previous execution because we deploy the two JVMs defined
in the deployment descriptor file. After that, you can see information printed from the component and the Main class . And finally,
the ProActive log again when the created JVMs are killed.

8.6. Component interface Cardinality

Client and server also support multicast and gathercast interface cardinality. The GCM [1] explains which constraints the server and
client interfaces must respect and we discuss previously in the section 2.2 on their principles.

GridCOMP FP6-034442 67 D.CFI.05

For multicast interfaces you can specify the parameter dispatching mode thanks to Java annotations available in the
org.objectweb.proactive.core.component.type.annotations.multicast package.

8.7. Additional examples

Two component applications are included in ProActive the HelloWorld and C3D example.

A Hello World example is provided. It shows the different ways of creating a component system programmatically and using ADL.
You can find the code for this example in the package org.objectweb.proactive.examples.components.helloworld of the CFI
prototype distribution.

The example code can either be compiled and run manually or using scripts (hello-world_fractal.sh (or .bat) in the scripts/unix/
components directory) can be used to launch it. If you choose the first solution, do not forget to set the fractal.provider system
property.

The other example, C3D application — a parallel, distributed and collaborative 3D renderer, is in the
org.objectweb.proactive.examples.components.c3d package.

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns="urn:proactive:deployment:3.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:proactive:deployment:3.3
 http://www-sop.inria.fr/oasis/ProActive/schemas/deployment/3.3/deployment.xsd">
 <variables>
 <descriptorVariable name="PROACTIVE_HOME"
 value="/user/cdalmass/home/workspace/ProActiveLatest" -/>
 <!--CHANGE ME!!!! --->
 <descriptorVariable name="JAVA_HOME"
 value="/user/vcave/home/bin/jdk1.6.0_03" -/>
 <!-- -/user/cdalmass/home/pub/local/jdk1.5.0_09 Path of the remote JVM -, CHANGE ME!!!! --->
 </variables>
 <componentDefinition>
 <virtualNodesDefinition>
 <virtualNode name="primitive-node" -/>
 <virtualNode name="composite-node" -/>
 </virtualNodesDefinition>
 </componentDefinition>
 <deployment>
 <mapping>
 <map virtualNode="primitive-node">
 <jvmSet>
 <!-- <currentJVM -/>-->
 <vmName value="jvm1" -/>
 </jvmSet>
 </map>
 <map virtualNode="composite-node">
 <jvmSet>
 <!-- <currentJVM -/>-->
 <vmName value="jvm2" -/>
 </jvmSet>
 </map>
 </mapping>
 <jvms>
 <jvm name="jvm1">
 <creation>
 <processReference refid="rshProcess" -/>
 </creation>
 </jvm>
 <jvm name="jvm2">

GridCOMP FP6-034442 68 D.CFI.05

 <creation>
 <processReference refid="rshProcess" -/>
 </creation>
 </jvm>
 </jvms>
 </deployment>
 <infrastructure>
 <processes>
 <processDefinition id="jvmProcess">
 <jvmProcess
 class="org.objectweb.proactive.core.process.JVMNodeProcess">
 <classpath>
 <!-- <absolutePath value="${PROACTIVE_HOME}/bin" -/>-->
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Core" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Examples" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Extensions" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Extra" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classesGCMTests" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Tests" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Utils" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/javassist.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/bouncycastle.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/fractal.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/log4j.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/xercesImpl.jar" -/>
 </classpath>
 <javaPath>
 <absolutePath value="${JAVA_HOME}/bin/java" -/>
 </javaPath>
 <policyFile>
 <absolutePath
 value="${PROACTIVE_HOME}/scripts/proactive.java.policy" -/>
 </policyFile>
 <log4jpropertiesFile>
 <absolutePath
 value="${PROACTIVE_HOME}/scripts/proactive-log4j" -/>
 </log4jpropertiesFile>
 </jvmProcess>
 </processDefinition>
 <processDefinition id='rshProcess'>
 <sshProcess
 class='org.objectweb.proactive.core.process.ssh.SSHProcess'
 hostname='nyx.inria.fr'>
 <processReference refid='jvmProcess' -/>
 </sshProcess>
 </processDefinition>

GridCOMP FP6-034442 69 D.CFI.05

 </processes>
 </infrastructure>
</ProActiveDescriptor>

GridCOMP FP6-034442 70 D.CFI.05

Chapter 9. Annex
9.1. The starter example files

org.objectweb.proactive.examples.components.userguide.starter.Service

 package org.objectweb.proactive.examples.components.userguide.starter;

public interface Service {
 public void print(String msg);
}

org.objectweb.proactive.examples.components.userguide.starter.ServerImpl

 package org.objectweb.proactive.examples.components.userguide.starter;

public class ServerImpl implements Service {
 public void print(String msg) {
 System.err.println("=> Server: -" + msg);
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.Server.fractal

 <?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.userguide.starter.Server">
 <interface name="s" role="server" signature=
"org.objectweb.proactive.examples.components.userguide.starter.Service"/>

 <content class="org.objectweb.proactive.examples.components.userguide.starter.ServerImpl"/>

 <controller desc="primitive"/>
</definition>

org.objectweb.proactive.examples.components.userguide.starter.ClientImpl.java

 package org.objectweb.proactive.examples.components.userguide.starter;

import org.objectweb.fractal.api.control.BindingController;

public class ClientImpl implements Runnable, BindingController {
 private Service service;

 public ClientImpl() {
 // the following instruction was removed, because ProActive requires empty no-args

GridCOMP FP6-034442 71 D.CFI.05

 constructors
 // otherwise this instruction is executed also at the construction of the stub
 //System.err.println("CLIENT created");
 -}

 public void run() {
 System.err.println("---- Calling service method -----");
 service.print("hello world");
 -}

 public String[] listFc() {
 return new String[] { "s" -};
 -}

 public Object lookupFc(final String cItf) {
 if (cItf.equals("s")) {
 return service;
 -}
 return null;
 -}

 public void bindFc(final String cItf, final Object sItf) {
 if (cItf.equals("s")) {
 service = (Service) sItf;
 -}
 -}

 public void unbindFc(final String cItf) {
 if (cItf.equals("s")) {
 service = null;
 -}
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.Client.fractal

 <?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.userguide.starter.Client">
 <interface name="m" role="server" signature="java.lang.Runnable"/>
 <interface name="s" role="client" signature=
"org.objectweb.proactive.examples.components.userguide.starter.Service"/>

 <content class="org.objectweb.proactive.examples.components.userguide.starter.ClientImpl"/>

 <controller desc="primitive"/>
</definition>

org.objectweb.proactive.examples.components.userguide.starter.Main.java

 package org.objectweb.proactive.examples.components.userguide.starter;

GridCOMP FP6-034442 72 D.CFI.05

import java.util.HashMap;

import org.objectweb.fractal.adl.Factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.control.BindingController;
import org.objectweb.fractal.util.Fractal;
import org.objectweb.proactive.core.component.adl.FactoryFactory;
import org.objectweb.proactive.core.component.adl.Registry;
import org.objectweb.proactive.core.config.PAProperties;
import org.objectweb.proactive.extensions.gcmdeployment.PAGCMDeployment;
import org.objectweb.proactive.gcmdeployment.GCMApplication;

public class Main {
 public static void main(String[] args) throws Exception {
 PAProperties.FRACTAL_PROVIDER.setValue("org.objectweb.proactive.core.component.Fractive");
 GCMApplication gcma = PAGCMDeployment
 -.loadApplicationDescriptor(Main.class
 -.getResource(
"/org/objectweb/proactive/examples/components/userguide/starter/applicationDescriptor.xml"));
 gcma.startDeployment();

 Factory factory = FactoryFactory.getFactory();
 HashMap<String, GCMApplication> context = new HashMap<String, GCMApplication>(1);
 context.put("deployment-descriptor", gcma);

 // creates server component
 Component server = (Component) factory.newComponent(
 "org.objectweb.proactive.examples.components.userguide.starter.Server", context);

 // creates client component
 Component client = (Component) factory.newComponent(
 "org.objectweb.proactive.examples.components.userguide.starter.Client", context);

 // bind components
 BindingController bc = ((BindingController) client.getFcInterface("binding-controller"));
 bc.bindFc("s", server.getFcInterface("s"));

 // start components
 Fractal.getLifeCycleController(server).startFc();
 Fractal.getLifeCycleController(client).startFc();

 // launch the application
 ((Runnable) client.getFcInterface("m")).run();

 // stop components
 Fractal.getLifeCycleController(client).stopFc();
 Fractal.getLifeCycleController(server).stopFc();

 Registry.instance().clear();
 gcma.kill();
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.deploymentDescriptor.xml

GridCOMP FP6-034442 73 D.CFI.05

 <?xml version="1.0" encoding="UTF-8"?>
<GCMDeployment xmlns="urn:gcm:deployment:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:gcm:deployment:1.0
 http://proactive.inria.fr/schemas/gcm/1.0/ExtensionSchemas.xsd -">

 <environment>
 <javaPropertyVariable name="user.home"/>
 </environment>

 <resources>
 <host refid="localhost"/>
 </resources>

 <infrastructure>
 <hosts>
 <host id="localhost" os="unix" hostCapacity="1" vmCapacity="2">
 <homeDirectory base="root" relpath="${user.home}" -/>
 </host>
 </hosts>
 </infrastructure>

</GCMDeployment>

org.objectweb.proactive.examples.components.userguide.starter.applicationDescriptor.xml

 <?xml version="1.0" encoding="UTF-8"?>
<GCMApplication xmlns="urn:gcm:application:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:gcm:application:1.0
 http://proactive.inria.fr/schemas/gcm/1.0/ApplicationDescriptorSchema.xsd">

 <environment>
 <javaPropertyVariable name="proactive.home" -/>
 <javaPropertyVariable name="java.home" -/>
 <javaPropertyVariable name="user.dir" -/>
 </environment>

 <application>
 <proactive base="root" relpath="${proactive.home}">
 <configuration>
 <java base="root" relpath="${java.home}/bin/java"/>
 <proactiveClasspath type="append">
 <pathElement base="proactive" relpath="classes/Examples"/>
 <pathElement base="proactive" relpath="dist/lib/clover.jar"/>
 </proactiveClasspath>
 </configuration>
 <virtualNode id="VN">
 <nodeProvider refid="main-VN" -/>
 </virtualNode>
 </proactive>
 </application>

GridCOMP FP6-034442 74 D.CFI.05

 <resources>
 <nodeProvider id="main-VN">
 <file path="deploymentDescriptor.xml" -/>
 </nodeProvider>
 </resources>
</GCMApplication>

