

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform
for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.CFI.06 – CFI tuned prototype and final documentation (manual and detailed
architectural design)

Due date of deliverable: 01 December 2008

Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PP Public PP

Keyword List: component, GCM, grid, legacy code wrapping,
Responsible Partner: Denis Caromel, INRIA

GridCOMP FP6-034442 page 2 of 45 D.CFI.06

MODIFICATION CONTROL

Version Date Status Modifications made by
0 DD-MM-YYYY Template Patricia HO-HUNE
1 14-11-2008 Draft Cédric Dalmasso
2 27-11-2008 Draft Bastien Sauvan
3 28-11-2008 Draft Xiaofeng Wu
4 03-12-2008 Draft Bastien Sauvan
5 08-12-2008 Draft Clement Mathieu
6 09-12-2008 Draft Bastien Sauvan
7 18-12-2008 Draft Bastien Sauvan
8 19-01-2009 Final Denis Caromel

Deliverable manager

 Denis Caromel, INRIA

List of Contributors
 Denis Caromel, INRIA

 Cédric Dalmasso, INRIA

 Clément Mathieu, INRIA

 Bastien Sauvan, INRIA

 Xiaofeng Wu, TU

List of Evaluators

 Marco Aldinucci, UNIPI

 Yongwei Wu, TU

Summary

This document describes the architecture of the Component Framework Implementation (CFI)
prototype, which is the first implementation of the Grid Component Model (GCM) [GCM].
The CFI prototype and this document form the final deliverable D.CFI.06 of the Work
Package 2 within the context of the GridCOMP research project. This deliverable is
completed by two annexes:

• The sources for the legacy code wrapping as GCM components and its user
documentation.

• The CFI documentation.

The CFI prototype has been implemented using the ProActive Grid Middleware [PRO] as a
starting point. As a consequence, this document gives first a description of the ProActive’s
architecture and the model it uses. Then, a detailed description of how we used and extended
this architecture to implement the CFI prototype will follow the first part.

GridCOMP FP6-034442 page 3 of 45 D.CFI.06

Table of Content

1 INTRODUCTION ..5

2 THE PROACTIVE MIDDLEWARE6

2.1ACTIVE OBJECTS MODEL ..6
2.2THE PROACTIVE LIBRARY : PRINCIPLES AND ARCHITECTURE7

2.2.1 Implementation techniques 7

2.2.2 Semantics of communications between Active Object 8
2.2.3 Features of the library10

2.3CONCLUSION ...10

3 ARCHITECTURE OF THE CFI IMPLEMENTATION.............10

3.1DESIGN GOALS ..10
3.2AN ARCHITECTURE BASED ON PROACTIVE’S META-OBJECT PROTOCOL11

3.2.1 Component instance11
3.2.1.1 Primitive components ...13
3.2.1.2 Composite components ..13

3.2.2 Controllers.. ..14
MonitorController... 14
PriorityController.. 15

3.2.3 Lifecycle15
3.2.4 Interception mechanism17

3.2.5 Communications..................................... ...21
3.2.5.1 Optimization with short cuts (‘shortcut’) ..21
3.2.5.2 Stream ports ...23
3.2.5.3 Exporting components as Web Services ..23

3.3MECHANISM AND IMPLEMENTATION OF COLLECTIVE INTERFACE S24

3.3.1 Multicast interfaces25
3.3.1.1 Configuration ..26

Interface annotations... 26
Method annotations .. 26
Parameter annotations... 27
Available distribution policies .. 27
Dynamic dispatch ... 28
Reduction of results .. 28

3.3.2 Gathercast interfaces28
3.3.2.1 Asynchronism and management of futures...30
3.3.2.2 Timeout...31

3.4DEPLOYMENT ..32
Principles..32
XML deployment descriptors ..32
Retrieval of resources...34

Creation-based deployment: ... 34
Acquisition-based deployment: .. 35

Distribution of components ...35
3.5LEGACY CODE WRAPPING ...35

3.5.1 Overview of the Solutions.......................... ...35
3.5.2 The Framework of the Legacy Code Component36

GridCOMP FP6-034442 page 4 of 45 D.CFI.06

3.5.2.1 Characteristics of Legacy Code..36
3.5.2.2 The architecture of the Legacy Code Component ..37
3.5.2.3 Description of the Legacy Code..37
3.5.2.4 Related File Operations ..38
3.5.2.5 Execution Management ..39

3.5.3 Features added to the GCM40
3.5.3.1 API describing the Legacy Code...40
3.5.3.2 API for Related Files Operation ..40
3.5.3.3 Resource Requirement of the Legacy Code...41
3.5.3.4 The Running Process of the Legacy Code ...42
3.5.3.5 Wrap the Legacy Code to Component..42

4 CONCLUSION..42

5 BIBLIOGRAPHY43

6 APPENDIX A43

GridCOMP FP6-034442 page 5 of 45 D.CFI.06

1 Introduction

This document is part of the deliverable D.CFI.06, which is the final outcome of the Work
Package 2 of the GridCOMP project. The Work Package 2 aims at provide the reference
implementation of the Grid Component Model (GCM) [GCM] defined by the CoreGRID NoE
project [COR]. The GCM is an extension of the Fractal Component Model [FRAa] for the
Grid. GCM components turn standard code, potentially parallel and distributed, or legacy
code, into components able to be deployed and composed hierarchically. This implementation
is used in Work Package 3 to implement non-functional GCM features [NFC] and is
illustrated in the use cases [UC]. This deliverable is useful for anyone who wants to
understand and use the Component Framework Implementation (CFI) prototype.

The whole deliverable D.CFI.06 is made of two main parts:

• This document which describes the architecture of the CFI prototype.

• A zip file, D.CFI.06_Bundle.zip, containing the sources of the last version of the CFI
prototype, provided through the ProActive Grid Middleware [PRO] release 4.0.2,
since this prototype is build upon ProActive.

And two annexes:

• Another zip file, D.CFI.06_LegacyCode.zip, containing both the sources for legacy
code wrapping as GCM components and its user documentation. The legacy code
wrapping is provided separately as this feature is independent of the CFI prototype.
Nevertheless, the architecture is detailed in this document.

• A PDF file, D.CFI.06_CFI-documentation.pdf, providing the CFI documentation
which therefore is not provided in this document for the reason explained below.

To ease the distribution of the document in different format (PDF and HTML) we use the
DocBook1 technology. As a consequence, we can not include the CFI documentation in this
document. The documentation is available in a separate file, GridCOMP_D.CFI.06_CFI-
documentation.pdf. The CFI features implemented until now are documented. The
documentation contains:

• Documentation of the GCM deployment framework which implements ETSI
standards.

• Technical documentation describing how to use each feature included in the CFI.

• A tutorial providing a user guide explaining how to create primitive and composite
components along a simple example.

This documentation related to features developed in the frame of GridCOMP is also available
in the ProActive user documentation.

1 DocBook is an XML language for technical documentation, http://www.oasis-
open.org/docbook/

GridCOMP FP6-034442 page 6 of 45 D.CFI.06

As mentioned above, the present document describes the implementation architecture of the
Grid Component Model. Since the CFI is based on the ProActive middleware, we start by
providing an overview of ProActive’s architecture. We detail the model, the concept and the
techniques used to implement them and finally, we describe the ProActive’s features used in
our implementation.

Then, in a second part, we explain how we use and extend this architecture in our
implementation. We describe what we had to modify within ProActive and what we added on
the top of it in order to achieve the goals specified for this implementation.

2 The ProActive middleware

ProActive is an open source Java library for Grid computing. It allows concurrent and parallel
program and offers distributed and asynchronous communications, mobility, and a
deployment framework. With a reduced set of primitives, ProActive provides an API allowing
the development of parallel applications which may be deployed on distributed systems and
on Grids.

2.1 Active objects model

ProActive is based on the concept of Active Object (AO), which can be seen as an entity with
its own configurable activity.

Figure 1 Seamless sequential to multithreaded to distributed objects

A distributed or concurrent application built using ProActive is composed of a number of
active objects (Figure 1). Each active object has one distinguished element, the root, which is
the only entry point to the active object. Each active object has its own thread of control and
is granted the ability to decide in which order to serve the incoming method calls that are
automatically stored in a queue of pending requests. Method calls sent to active objects are
asynchronous with transparent future objects and synchronization is handled by a mechanism
known as wait-by-necessity [CAR 93]. Method calls can be asynchronous only if they fulfil
the following minimum conditions: reifiable return type and no declared exceptions in the
method. A future is a placeholder for the result of an invocation, which is given as a result to
the caller, and which is transparently updated when the result of the invocation is actually
computed. This whole mechanism results in a data-based synchronization. There is a short

GridCOMP FP6-034442 page 7 of 45 D.CFI.06

rendez-vous at the beginning of each asynchronous remote call, which blocks the caller until
the call has reached the context of the callee, in order to ensure causal dependency.

 Explicit message-passing based programming approaches were deliberately avoided: one
aim of the library is to enforce code reuse by applying the remote method invocation pattern,
instead of explicit message-passing.

2.2 The ProActive library: principles and architect ure

The ProActive library implements the concept of active objects and provides a deployment
framework in order to use the resources of a Grid.

ProActive is developed in Java in order to allow maximum portability. Moreover, ProActive
only relies on standard APIs and does not use any operating-system specific routine, other
than to run daemons or to interact with legacy applications. There are no modifications to the
JVM or to the semantics of the Java language, and the bytecode of the application classes is
never modified.

2.2.1 Implementation techniques

ProActive relies on extensible Meta-Object Protocol architecture (MOP), which uses
reflective techniques in order to abstract the distribution layer, and to offer features such as
asynchronism or group communications.

Figure 2 Meta-Object Architecture

The architecture of the MOP is presented in Figure 2.

An active object is concretely built out of a root object (here of type B), with its graph of
passive objects. A body object is attached to the root object, and this body references various
meta-objects, with different roles and providing features.

The body is responsible for receiving calls on the active object, storing these calls in the
queue of pending calls (also called requests). It will execute these calls in an order specified
by a specific synchronization policy. If no specific synchronization policy is provided, calls
are managed in a FIFO manner (first come, first served). The body is not visible from the
outside of the active object therefore the active object looks exactly like a standard object

GridCOMP FP6-034442 page 8 of 45 D.CFI.06

from the user's perspective. It is important to note that no parallelism is provided inside an
active object. This is an important decision in the design of ProActive which enables the use
of pre and post conditions and class invariants.

An active object is always indirectly referenced through a proxy and a stub which is a sub-
type of the root object. The proxy's main responsibility is to generate future objects for
representing future values, transform calls into request objects (in terms of meta-object
programming, this is a reification) and perform deep-copy of passive objects passed as
parameters. The passive objects are not shared between subsystems. Any call on a remote
active object using passive objects as arguments leads to a deep-copy of the passive objects
on the subsystem of the remote active object. The role of the stub is to reify all the method
calls that can be performed through a reference to the active object. Reifying a call simply
means constructing an object (in our case, all reified calls are instance of class MethodCall)
that represents the call, so that it can be manipulated as any other object. Thus, an invocation
to the active object is actually an invocation on the stub object, which creates a reified
representation of the invocation, with the method called and the parameters, and this reified
object is given to the proxy object. The proxy transfers the reified invocation to the body,
possibly through the network, and places the reified invocation in the request queue of the
active object. There are adapters in each side of the network part, for the proxy and the body,
allowing us to use several communication layers through the network. The request queue is
one of the meta-objects referenced by the body. If the method returns a result, a future object
is created and returned to the proxy, to the stub, then to the caller object.

However, the use of the stub, proxy, body, and queue is transparent. ProActive manages all of
them, with the user accessing the active objects in the same way as passive objects.

The active object has its own activity thread, which is usually used to pick-up reified
invocations from the request queue and serves them, i.e. execute them by reflection on the
root object. Reification and interception of invocations, along with ProActive’s customizable
MOP architecture, provide both transparency and the ground for adaptation of non-functional
features of active objects to fit various needs. It is possible to add custom meta-objects which
may act upon the reified invocation, for instance for providing mobility features, or as we will
see later, implement the GCM.

Active objects are instantiated using the ProActive API, by specifying the class of the root
object, the instantiation parameters, and optional location information:

// instantiate active object of class B on node1
// (a possibly remote location)
B b = (B) ProActive.newActive(''B'', new Object[]
 {aConstructorParamete r}, node1);

// use active object as any object of type B
Result r = b.foo();

// possible wait-by-necessity
System.out.println(r.printResult());

2.2.2 Semantics of communications between Active Object

In ProActive, the distribution is transparent: invoking methods on remote objects does not
require the developer to design remote objects with explicit mechanism allowing remote calls
(like Remote interfaces in Java RMI). Therefore, the developer can concentrate on the

GridCOMP FP6-034442 page 9 of 45 D.CFI.06

business logic as the distribution is automatically handled and transparent. Moreover, the
ProActive library preserves polymorphism on remote objects (through the reference stub,
which is a subclass of the remote root object).

Communications between active objects are realized through method invocations, which are
reified and passed as messages. Indeed, one part of the message contains routing information
towards the different elements of the library, and the other part contains the data to be
communicated to the called object.

Although all communications proceed through method invocations, the communication
semantics depends upon the signature of the method, and the resulting communication may
not always be asynchronous. Three cases are possible: synchronous invocation, one-way
asynchronous invocation, and asynchronous invocation with future result. By the way, since
the GCM prototype is based upon the ProActive library, GCM components use implicitly this
communication mechanism.

• Synchronous invocation:

o the method returns a non reifiable object: primitive type or final class:

public boolean foo()

o the method declares throwing an exception:

public void bar() throws AnException

In this case, the caller thread is blocked until the reified invocation is effectively processed
and the eventual result (or Exception) is returned. It is fundamental to keep this case in mind,
because some APIs define methods which throw exceptions or return non-reifiable results. It
is the case with some part of the GCM API.

• One-way asynchronous invocation: the method does not throw any exception
and does not return any result:

public void gee()

The invocation is asynchronous and the process flow of the caller continues once the reified
invocation has been received by the active object (in other words, once the rendez-vous is
finished).

• Asynchronous invocation with future result: the return type is a reifiable type,
and the method does not throw any exception:

public MyReifiableType baz()

In this case, a future object is returned and the caller continues its execution flow. The active
object will process the reified invocation according to its serving policy, and the future object
will then be updated with the value of the result of the method execution.

If an invocation from an object A on an active object B triggers another invocation on another
active object C, the future result received by A may be updated with another future object. In
that case, when the result is available from C, the future of B is automatically updated, and the
future object in A is also updated with this result value, through a mechanism called
automatic continuation.

GridCOMP FP6-034442 page 10 of 45 D.CFI.06

2.2.3 Features of the library

As stated above, the MOP architecture of the ProActive library is flexible and configurable; it
allows the addition of meta-objects for managing new required features. Moreover, the library
also proposes a deployment framework, which allows the deployment of active objects on
various infrastructures. The library may be represented in three layers: programming model,
detailed in the previous section 2.1; non-functional features, such as fault-tolerance and
security, and deployment facilities.

The deployment layer is not detailed in this document because it is not used in the CFI. The
ProActive deployment framework has several drawback and do not provides a fully and easy
interoperable way to deploy application on a grid as required in the GCM definition. The
main defects are the complexity to write deployment descriptors and the incapacity to easily
reuse already written deployment descriptor files with another application or infrastructure. A
new framework, named “GCM deployment” and detailed in the “Architecture of the CFI
implementation” part, has been designed and implemented to meet those requirements.
Nevertheless, the CFI is fully compatible with the ProActive deployment.

2.3 Conclusion

In this first part, we introduced the ProActive grid middleware and we described the
architecture of its current implementation. In the following section we will explain how we
used the ProActive framework to implement our prototype of component framework.

3 Architecture of the CFI implementation

In this section, we describe the architecture of the CFI, which implements the GCM. We
named this implementation ProActive/GCM. This prototype is based on the ProActive
middleware and extends its architecture.

3.1 Design goals

This framework was designed following these main objectives:

1. Follow the GCM specification.

2. Base the implementation on the concept of active objects. The components in this
framework are implemented as active objects, and as a consequence benefit from the
properties of the active object model.

3. Leverage the ProActive library by proposing a new programming model which may
be used to assemble and deploy active objects.

4. Provide a customizable framework, which may be adapted by the addition of non
functional controllers and interceptors for specific needs, and where the activity of
the components is also customizable.

 We also propose some optimizations that are achieved by trading-off between dynamicity
(the possibility to dynamically reconfigure the applications, or parts of the applications) and

GridCOMP FP6-034442 page 11 of 45 D.CFI.06

efficiency (direct or multithreaded invocations)An architecture based on ProActive’s Meta-
Object Protocol. These optimizations, such as the shortcut mechanism, are described
throughout this document.

3.2 An architecture based on ProActive’s Meta-Objec t Protocol

The ProActive/GCM framework is an implementation of the GCM specification which
extends the Fractal 2 specification [FRAa]. It follows the general model described in the
GCM specification and implements the GCM Java API.

Our implementation of GCM relies on ProActive’s Meta-Object Protocol (MOP) architecture.

3.2.1 Component instance

A ProActive/GCM component is implemented as an active object. The implementation of a
ProActive/GCM component therefore follows the general architecture represented in Figure
2. As we stated in the presentation of the ProActive library, the reflective framework may be
customized by adding or specializing meta-objects. This allowed us to implement GCM
components using a reflective framework.

 A component is instantiated using the GCM API (GCM is based on Fractal API, thus in the
following examples this API will be heavily used):

// get bootstrap component
Component boot = Fractal.getBootstrapComponent();
// get type factory
TypeFactory tf = Fractal.getTypeFactory(boot);
// get generic component factory
GenericFactory gf = Fractal.getGenericFactory(boot) ;
// define component type
ComponentType type = tf.createFcType(....);
// define controller description
ControllerDescription controllerDesc = new Controll erDescription(name,
 hierarchicalType);
// define content description
ContentDescription contentDesc = new
ContentDescription(implementationClass,
 constructorParameters);
// instantiate component
Component c = gf.newFcInstance(type, controllerDesc , contentDesc);

The bootstrap component is retrieved by checking the fractal.provider java property (in our
implementation, org.objectweb.proactive.core.component.Fractive). The
controller part of the component is described in a ControllerDescription object. The
content part of the component is described in a ContentDescription object.

The instance of a component is represented in Figure 3. The newFcInstance method on
the component factory returns a Component object. It is a remote reference of type
Component on the active object which implements the component.

GridCOMP FP6-034442 page 12 of 45 D.CFI.06

Figure 3 ProActive Meta-Object architecture for primitive components

Before describing the architecture of a component in the ProActive library, we first need to
clarify the terminology concerning the typing, between objects and components. In the Java
language, which follows the object paradigm, the live entities are objects. An object is an
instance of a class. The services offered by the class are defined by the methods of this class.
In the GCM, which follows the component paradigm, the live entities are instances of
components. The services offered by the component are defined by its server interfaces. These
server interfaces themselves define methods, which are the actual services.

As a consequence, in the object paradigm, an instantiation returns an object of a type
compatible with the specified class, whereas in the component paradigm, an instantiation
returns a component of type compatible with the specified component type. In the GCM Java
API, a reference on a component is a reference on an object of type Component.

Figure 3 represents an instance of a ProActive/GCM primitive component and Figure 4
represents a composite one.

The design of the implementation of ProActive/GCM components relies on the general design
of active objects represented in Figure 2. It however exhibits specificities. First of all, a
reference on a component from an object A is a reference on a Component object called the
representative, which we can clearly see in the bottom left-hand corner of the figure. This
Component object acts as a stub in the standard ProActive architecture, although for
performance reasons, a smart proxy pattern is implemented so that common operations, such
as getting a reference on a component interface, are performed locally. Using the services of a
component implies getting a reference on a given named interface (using the
getFcInterface method), then invoking methods on this interface. The instance of the
Component object holds references on local representatives of the functional and non
functional interfaces. These representatives act as stub objects, as they reify invocations and
transmit these reified invocations to the proxy. The interfaces representatives are generated
dynamically at the creation of the component, or when retrieving a reference on this

GridCOMP FP6-034442 page 13 of 45 D.CFI.06

component through a lookup mechanism. For the sake of clarity, only one of these
Interface object is represented on this figure, although all functional and non functional
interfaces are dynamically created locally when creating the reference to the component.

The controller part of the component is implemented as meta-objects as can be seen in the top
right-hand corner of the figures. These meta-objects implement controllers, in particular the
basic controllers (binding, lifecycle etc...).

Figure 4 ProActive Meta-Object architecture for composite components

3.2.1.1 Primitive components

In a primitive component, the content of the component corresponds to an implementation
class, which in ProActive is the root object of the active object, as represented on the bottom
right-hand corner of the Figure 3. Following the GCM specification, the primitive class may
have to implement some callback interfaces such as BindingController or
AttributeController , which are invoked from the meta-level for performing
operations which are dependent on the applicative implementation code.

3.2.1.2 Composite components

Figure 4 represents an instance of a composite component. A composite component is a
structuring component which does not have any business code. There is only one exception
case allowing a composite component to have an implementation class: if the composite
component has an AttributeController and therefore, the provided class is the
implementation of the AttributeController . Hence the empty composite object as the
root of the active object. However, a composite component still offers and requires functional
services, and the interface objects corresponding to these services are implemented as meta-
objects, as represented on the top right-hand corner of the figure. They may represent internal
client interfaces or external client interfaces. A composite component also offers a

GridCOMP FP6-034442 page 14 of 45 D.CFI.06

ContentController interface and implementation as a meta-object, for controlling the
components it may contain.

3.2.2 Controllers

The control part of the component is fully customizable, and the configuration is specified in
an XML file, which specifies which control interfaces are offered, and which control classes
implement the control interfaces. The default configuration file is provided in the Appendix
A. We can see the standard required controllers for binding, content, name, super ... The
binding controller is actually only instantiated in case of client interfaces, and the content
controller is only instantiated for composite components. Some other controllers are related to
the features offered by this implementation: migration, management of gathercast/multicast
interfaces and monitoring.

For instance with the BindingController , we can see that for each controller we define
the java interface and its implementation class. The section 3.2.4 shows how we can use this
configuration file to use controller as interceptor.

 < controller>
 < interface>
 org.objectweb.proactive.core.component.controller. ProActiveBindingCon
troller
 </ interface>
 < implementation>
 org.objectweb.proactive.core.component.controller. ProActiveBindingCon
trollerImpl
 </ implementation>
 </ controller>

MonitorController

The
org.objectweb.proactive.core.component.controller.M onitorContr
oller is an optional controller which can provide various statistics related to a given method
of the server interface of a component. It is needed for GCM autonomic features and provides
more information to user in the GIDE [GID] tool.

The statistics provided by the MonitorController allow users to be informed in real time on
the Quality of Service (QoS) of a component and thus, eventually, to decide to reconfigure
their application to improve the global performance.

In the ProActive library, each Active Objects, and so each component in the CFI, emits JMX
notifications at the time of the arrival and the departure of a request in the incoming queue of
a method of the Active Object, at the end of execution and when updating a future. JMX is a
notification mechanism, based on java events, that allows alerts to be sent to client
management applications. The MonitorController uses this feature to compute the
statistics of the component. For each method of each server interface of a component, the
MonitorController creates an instance of
org.objectweb.proactive.core.component.controller.M ethodStatis
tics. This instance will then stock all the generated ProActive JMX notifications related to
the method and, thus, can provide the different statistics available:

• The current number of pending request in the queue.

GridCOMP FP6-034442 page 15 of 45 D.CFI.06

• The average number of requests per second for the last past X milliseconds or since
the beginning of the monitoring.

• The latest service time in milliseconds. In the case of composite component, this
service time is related to the real execution time, i.e. to the time the subcomponent has
taken to execute the request. Moreover, if the interface is an internal multicast
interface, the service time retained is the one of the subcomponent which has taken the
most of time to execute the request.

• The average service time in milliseconds during the last N method calls or in the last
past X milliseconds or since the beginning of the monitoring.

• The latest inter-arrival time in milliseconds.

• The average inter-arrival time in milliseconds during the last N method calls or in the
last past X milliseconds or since the beginning of the monitoring.

• The average permanence time in the incoming queue in milliseconds during the last N
method calls or in the last past X milliseconds or since the beginning of the
monitoring.

• The list of all the method calls (server interfaces) invoked by an invocation on this
method.

PriorityController

In order to add the possibility of having Non Functional prioritized requests, a new controller
has been implemented:
org.objectweb.proactive.core.component.controller.P riorityCont
roller . This feature has been added to solve issues occurring for instance during
reconfiguration or for autonomic features developed in the WP3. Using this controller, non
functional requests may have a different priority and can pass other requests in the queue.
Thus, in a first step, the request types have been extended and a priority order has been
decided. Now, by using the priority controller to manage the priority of each method exposed
by a component, requests can be:

• Functional requests, which always go at the end of the queue.
• Standard Non Functional requests (NF1), which also go at the end of the queue.
• Non Functional prioritized requests (NF2), which can pass the Functional requests but

not pass the other Non Functional requests.
• Non Functional most prioritized requests (NF3), which can overtake all the other

requests.

3.2.3 Lifecycle

A component has a lifecycle which is managed by a controller allowing to set the state of the
component:

• Stopped: only control requests are served.

• Started: all requests, control and functional, are served.

This lifecycle is implemented by customizing the activity of the active objects.

GridCOMP FP6-034442 page 16 of 45 D.CFI.06

In the context of components, we distinguish the component activity (the non-functional
activity) from the functional activity. The component activity corresponds to the stopped state
of the lifecycle of the component (i.e. only control requests are served). The functional
activity is encapsulated and starts when the lifecycle is started. The default behaviour is to
serve all control requests in a FIFO order until the component is started using the
lifecycle-controller. T hen, a component serves all requests, control and
functional, in a FIFO order, until the lifecycle is stopped. The functional activity is
encapsulated in the component activity. This is illustrated in Figure 5.

Figure 5 Default component activity

By default in ProActive, an active object is active (the isActive () condition is true) until
the terminate method is called. With components, the isActive () condition is
overridden when the component is in the functional activity and corresponds then to the state
of the lifecycle. During the component activity, the isActive () condition reacts as for any
active objet.

GridCOMP FP6-034442 page 17 of 45 D.CFI.06

ProActive offers the possibility to customize the activity of an active object; this is actually a
fundamental feature of the library, as it allows to fully specify the behaviour of active objects.

Thus, in term of components, the component activity may be customized by implementing the
ComponentInitActive , ComponentRunActive and ComponentEndActive java
interfaces. By default, the component activity initialization and the component activity
termination are done only one time:

• The initialization phase is done during the instantiation of the component (directly
followed by the component activity execution). From this moment on, the component
is in the active state in term of activity of active object (the isActive () condition
on the Figure 5 Default component activity is true).

• The termination phase is done when the isActive () condition is false, i.e. when the
terminate method of the active object representing the component is called.

Second, the functional activity may also be customized by implementing the InitActive ,
RunActive and EndActive interfaces. Two conditions must be respected though, for a
smooth integration with the component lifecycle:

1. The control of the request queue must use the
org.objectweb.proactive.Service class.

2. The functional activity must loop on the isActive() condition (this is not
compulsory, but it allows to automatically end the functional activity when the
lifecycle of the component is stopped. It may also be managed with a custom filter
on the request queue).

By default, when the lifecycle is started, the functional activity is initialized, run, then ended
when the isActive() condition is false, i.e. when the lifecycle is stopped.

3.2.4 Interception mechanism

The GCM specification states that a component controller can intercept incoming and
outgoing operation invocations targeting or originating from the component’s subcomponents.
This feature is provided in the ProActive/GCM implementation, and it allows an interception
at the meta-level, of reified invocations, with configurable pre and post method processing. It
is an easy way of providing AOP-like features, in order to deal notably with non functional
concerns. Interceptors may intercept incoming and outgoing invocations, and they are
sequentially combined. An interceptor is a component controller with some additional
implemented interface allowing the definition of actions to do before and/or after a
communication. With these capabilities, the message may be inspected but can not be
modified. This mechanism could be used for example in a non-functional controller wanting
to react in function of the communication activities (time to serve request, number of served
request …).

An input interceptor is a controller which must implement the
org.objectweb.proactive.core.component.interception .InputInter
ceptor interface, which defines the following methods:

public void beforeInputMethodInvocation(MethodCall methodCall);

GridCOMP FP6-034442 page 18 of 45 D.CFI.06

public void afterInputMethodInvocation(MethodCall m ethodCall);

The MethodCall object represents the reified invocation in the ProActive library.
Similarly, an output interceptor must implement the
org.objectweb.proactive.core.component.interception .OutputInte
rceptor interface, which defines the following methods:

public void beforeOutputMethodInvocation(MethodCall methodCall);
public void afterOutputMethodInvocation(MethodCall methodCall);

The input interception mechanism occurs at the service of the request in the membrane: the
reified request is delegated to the input controllers before and after the method is processed.

 The output interception mechanism occurs in the interface representative (whose code is
dynamically generated as showed in the bottom left-hand corner Figure 3 and Figure 4) when
the invocation is reified: before and after transferring the invocation to the connected
component, the reified request is delegated to the output interceptors. The output interception
is realized by replacing, during a binding operation, the server interface representative by a
server interface representative of the same type, containing the interception code.

Interceptors are configured in the controllers XML configuration file, by simply adding
input-interceptor="true" or/and output-interceptor="true" as attributes
of the controller element in the definition of a controller (provided of course the specified
interceptor is an input or/and output interceptor). For example a controller that would be an
input interceptor and an output interceptor would be defined as follows:

 <controller input-interceptor="true" output-interceptor="true">
 <interface>InterceptorControllerInterface</int erface>
 <implementation>ControllerImplementation</impl ementation>
 </controller>

For input interceptors, the beforeInputMethodInvocation method is called
sequentially for each controller in the order in which they are defined in the controllers
configuration file. The afterInputMethodInvocation method is called sequentially
for each controller in the reverse order they are defined in the controllers configuration file.
For instance, in the following controller configuration file, the list of input interceptors
declares first, InputInterceptor1 , and second, InputInterceptor2; then, an
invocation on a server interface will follow the path described in Figure 6.

<?xml version="1.0" encoding="UTF-8"?>
<componentConfiguration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instan ce"
 xsi:noNamespaceSchemaLocation="component-config.xs d"
 name="defaultConfiguration">
 <!-- … other controllers -->

<!-- input interceptors -->
 <controllers>
 <controller input-interceptor="true">
 <interface> InputInterceptor1</interface>
 <implementation> InputInterceptor1Implementati on</implementation>
 </controller>
 <controller input-interceptor="true">
 <interface> InputInterceptor2</interface>
 <implementation> InputInterceptor2Implementati on</implementation>
 </controller>

</controllers>

GridCOMP FP6-034442 page 19 of 45 D.CFI.06

</componentConfiguration>

Figure 6 Execution sequence of an input interception

For output interceptors, the beforeOutputMethodInvocation method is called
sequentially for each controller in the order they are defined in the controllers configuration
file. The afterOutputMethodInvocation method is called sequentially for each
controller in the reverse order they are defined in the controllers configuration file. For
instance, in the following controller configuration file, the list of output interceptors declares
first OutputInterceptor1 and second OutputInterceptor2 ; then, an invocation
on a client interface will follow the path described in Figure 7.

<?xml version="1.0" encoding="UTF-8"?>
<componentConfiguration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instan ce"
 xsi:noNamespaceSchemaLocation="component-config.xs d"
 name="defaultConfiguration">
 <!-- … other controllers -->

<!-- output interceptors -->
 <controllers>
 <controller output-interceptor="true">
 <interface>OutputInterceptor1</interface>
 <implementation>OutputInterceptor1Implementati on</implementation>
 </controller>
 <controller output-interceptor="true">
 <interface>OutputInterceptor2</interface>
 <implementation>OutputInterceptor2Implementati on</implementation>
 </controller>

</controllers>
</componentConfiguration>

GridCOMP FP6-034442 page 20 of 45 D.CFI.06

Figure 7 Execution sequence of an output interception

An interceptor being a controller, it must follow the rules for the creation of a custom
controller (in particular, extend AbstractProActiveController). Input interceptors
and output interceptors must implement respectively the interfaces InputInterceptor
and OutputInterceptor respectively, which declare interception methods (pre/post
interception) that have to be implemented.

Here is a simple example of an input interceptor:

public class MyInputInterceptor extends AbstractProActiveController
 implements InputInterceptor, MyController {
 public MyInputInterceptor(Component owner) {
 super(owner);
 }
 // some init code
 ...
 // foo is defined in the MyController interface
 public void foo() {
 // foo implementation
 }
 public void afterInputMethodInvocation(MethodCall methodCall) {
 System.out.println("post processing an intercep ted an incoming
functional invocation");
 // interception code
 }
 public void beforeInputMethodInvocation(MethodCall methodCall) {
 System.out.println("pre processing an intercept ed an incoming
functional invocation");
 // interception code
 }
}

The controller is included in the configuration of a given component as follows:

<componentConfiguration>
 <controllers>

 <controller input-interceptor="true">
 <interface>MyController</interface>
 <implementation>MyInputInterceptor</implementa tion>
 </controller>
 ...

GridCOMP FP6-034442 page 21 of 45 D.CFI.06

3.2.5 Communications

Communications between components in ProActive/GCM occur through interface references,
and rely on the standard ProActive communication mechanism, or through web services.
They may therefore use any underlying protocol supported by ProActive (RMI, RMIssh,
http...), and the semantics of invocations are kept, which means that some conditions must be
respected for an invocation to be asynchronous. In particular, if the invoked method throws
any exception, the invocation is synchronous.

As well as standard communication, the GCM allows data, stream and event ports to be used
in component interaction. For the moment, there are requirements for this kind of
communication; consequently we are eventually going to provide the data/event ports. We
will consider results from other projects, such as the Dream project [DRE] in the Fractal
community that provides components implementing various communication paradigms
including event, data, etc.

3.2.5.1 Optimization with short cuts (‘shortcut’)

Communications between components in a hierarchical model may involve crossing several
membranes of enclosing composite components, and therefore paying the cost of several
indirections. If the invocations are not intercepted in the membranes, then it is possible to
optimize the communication path by communicating directly from a caller component to a
callee component, avoiding indirections in the membranes.

We provide a short cut mechanism for distributed components, and the implementation of this
mechanism relies on a tensioning technique: the first invocation determines the short cut path,
and then the following invocations will use this short cut path. As a consequence, the rendez-
vous of the communication between a client and a server interface, which guarantees causally
ordered communications, does not end until the effective server interface has been reached
(and the calling thread has returned).

GridCOMP FP6-034442 page 22 of 45 D.CFI.06

Figure 8 Using short cuts for minimizing remote communications

For instance, in Figure 8, a simple component system, which consists of a composite
containing two wrapped primitive components, is represented with different distributions of
the components. In a, all components are located in the same JVM, therefore all
communications are local communications. If the wrapping composites are distributed on
different remote JVMs, all communications are remote because they have to cross composite
enclosing components. The short cut optimization is a simple bypass of the wrapper
components, which results in 2 local communications for the sole functional interface. The
shortcut mechanism handle also other situation, in fact all communication through
synchronous composite component could be bypassed.

Short cuts are available when composite components are synchronous components (this does
not break the GCM model, as composite components are structural components unless that
composite used autonomic non functional features). Components can be specified as

GridCOMP FP6-034442 page 23 of 45 D.CFI.06

synchronous in the ControllerDescription object that is passed to the component
factory:

ControllerDescription controllerDescription =
 new ControllerDescription("name", Constants. COMPOSITE,
 Constants.SYNCHRON OUS);

When the system property proactive.components.use_shortcuts is set to true,
the component system automatically establishes short cuts between components whenever
possible.

3.2.5.2 Stream ports

A first support for stream ports is available by using the Java interface
org.objectweb.proactive.extensions.webservices.Stre amInterface
as a tag on the java interface definition of a component interface. During instantiation of a
Fractal interface type, the implementation ensures for each interface implementing the
StreamInterface that all methods it defined have a void return value, otherwise the type
creation failed. At the moment, there is no specific communication optimization, the provided
stream interfaces just allow to express in the design the stream behaviour of a port.

3.2.5.3 Exporting components as Web Services

The ProActive middleware offers the possibility of exporting each active object as web
service. Since, in our implementation, each component is implemented as an active object,
component can also be easily exported as web services.

A web service is a software entity, providing one or several functionalities that can be
exposed, discovered and accessed over the network. Moreover, web services technology
allows heterogeneous applications to communicate and exchange data in a remotely way. In
our case, the useful elements, of web services are:

• The SOAP Message: it is used to exchange XML based data over the Internet. It can
be sent via HTTP and provides a serialization format for communicating over a
network.

• The HTTP Server: HTTP is the standard web protocol generally used over the 80

port. Since ProActive 4.0.0, each ProActive runtime embeds a Jetty web server.
This avoids users to install their own web server.

• The SOAP Engine: a SOAP Engine is the mechanism responsible of making

transparent the unmarshalling of the request and the marshalling of the response.
Thus, the service developer doesn't have to worry with SOAP.

• The client: Client's role is to consume a web service. It is the producer of the SOAP

message. The client developer doesn't have to worry about how the service is
implemented.

GridCOMP FP6-034442 page 24 of 45 D.CFI.06

Figure 9 The figure shows the steps when an active object is called via SOAP.

However, there is a notable difference with active objects. When exposing a component as a
web service, all the methods of all its client interfaces are automatically exposed as web
services while with active objects, only one method can be exposed at once.

To export a component as web service, only one condition is required: the component must be
started. Once the component started, the exporting is done in one call with the
org.objectweb.proactive.extensions.webservices.WebS ervices
API:

WebService.exposeComponentAsWebService(Component component, String url,
String componentName)

In a same manner, unexpose a web service is done with the method:

WebService.unExposeAsWebService(String componentName, String url,
Component component)

3.3 Mechanism and implementation of collective inte rfaces

In order to provide facilities for parallel programming, GCM defines collective interfaces. To
sum it up, the idea is to introduce multicast and gathercast interfaces: multicast interfaces are
used for parallel invocations and data redistribution, and gathercast interfaces are used for
synchronization and data gathering. The configuration of the collective interfaces policies
uses annotations in Java interfaces.

The signatures of methods of client and server interfaces are different when using collective
interfaces and different dispatch or gather mode. For list parameters and return types, the
possibilities in our implementation are summarized in Figure 10. Broadcast mode is not yet
supported for the redistribution of results in gathercast interfaces.

GridCOMP FP6-034442 page 25 of 45 D.CFI.06

Figure 10 Adaptation of method signatures, with list parameters or return types, between client and

server interfaces for collective interfaces.

The framework provides transparent adaptation of method invocations and distribution of
parameters, through proxies and controllers. Compatibility of client and server interfaces is
checked at runtime, although this could be checked at design-time using assembly tools.

3.3.1 Multicast interfaces

The implementation of multicast interfaces relies on two principles: first, reuse the existing
mechanism for typed group communications in ProActive, and second use a delegation
mechanism for adapting the signatures of the interfaces. Therefore, two group proxies are
used for a multicast invocation: the first proxy corresponds to the signature of the client
interface, and the second one to the signature of the server interfaces. Bindings are
transparently handled so that the client component receives a reference on a group proxy of
the type of the client interface.

Figure 11 Adaptation and delegation mechanism for multicast invocations

This mechanism is illustrated in Figure 11, which corresponds to the design represented in
Figure 12.

GridCOMP FP6-034442 page 26 of 45 D.CFI.06

Figure 12 An example of multicast interfaces: the signature of an invoked method is exposed, and in this

case exhibits a scattering behaviour for the parameters

When an invocation is performed, a reified invocation is first created (here on method void
bar(List<A>)), given to the first group proxy, which delegates it to a second proxy of the
type of the server interfaces (for invocations on method void bar(A)). Parameters are then
automatically distributed according to the distribution policy specified as an annotation, and
the second proxy transfers the new reified invocations to connected server interfaces in a
parallel manner (using the standard multithreading mechanism of ProActive typed groups).
This delegation and adaptation process between group proxies is implemented by extending
the standard group proxy, the ProxyForGroup class, into the
ProxyForComponentInterfaceGroup .

3.3.1.1 Configuration

The distribution of parameters in our framework is specified in the definition of the multicast
interface, using annotations. Elements of a multicast interface which can be annotated are:
interface, methods and parameters. The different distribution modes are explained later. The
examples in this section all specify broadcast as the distribution mode.

Interface annotations

A distribution mode declared at the level of the interface defines the distribution mode for all
parameters of all methods of this interface, but may be overridden by a distribution mode
declared at the level of a method or of a parameter. The annotation for declaring distribution
policies at level of an interface is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.ClassDispatchMetadata and is used as follows:

@ClassDispatchMetadata(
 mode = @ ParamDispatchMetadata(mode = ParamDispatchMode.BROADCAST)
)
interface MyMulticastItf {
 public void foo(List<T> parameters);
}

Method annotations

A distribution mode declared at the level of a method defines the distribution mode for all
parameters of this method, but may be overridden at the level of each individual parameter.
The annotation for declaring distribution policies at level of a method is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.MethodDispatchMetadata and is used as follows:

@MethodDispatchMetadata(

GridCOMP FP6-034442 page 27 of 45 D.CFI.06

 mode = @ ParamDispatchMetadata(mode = ParamDispatchMode.BROADCAST)
)
public void foo(List<T> parameters);

Parameter annotations

The annotation for declaring distribution policies at level of a parameter is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.ParamDispatchMetadata and is used as follows:

public void foo(
 @ ParamDispatchMetadata(mode = ParamDispatchMode.BROADCAST)
 List<T> parameters);

For each method invoked and returning a result of type T, a multicast invocation returns an
aggregation of the results: a List<T>. There is a type conversion, from return type T in a
method of the server interface, to return type List<T> in the corresponding method of the
multicast interface. The framework transparently handles the type conversion between return
types.

Available distribution policies

Five modes of distribution of parameters are provided by default, and define distribution
policies for lists of parameters:

• BROADCAST copies a list of parameters and sends a copy to each connected server
interface.

• ONE-TO-ONE sends the ith parameter to the connected server interface of index i.
This implies that the number of elements in the annotated list must be equal to the
number of connected server interfaces.

• ROUND-ROBIN distributes each element of the list parameter in a round-robin
fashion to the connected server interfaces. For n elements in the list parameter, n
method calls are made.

• UNICAST sends one value of the list of parameters to only one of the connected
server interfaces. The index of the argument to send and the server interface are
specified by using a custom controller that extends MulticastController.

• RANDOM distributes each element of the list of values in a random manner.

It is also possible to define custom distributions by specifying the distribution algorithm in a
class. This class needs to implement the
org.objectweb.proactive.core.component.type.annotat ions.multic
ast.ParamDispatch interface, thereby defining the distribution algorithm which will be
used during the dispatch phase. There are only three methods to implement:

public List<Object> dispatch (Object inputParameter,
 int nbOutputReceivers) throws ParameterDispatchException;

public int expectedDispatchSize (Object inputParameter,
 int nbOutputReceivers) throws ParameterDispatchException;

public boolean match (Type clientSideInputParameter,

GridCOMP FP6-034442 page 28 of 45 D.CFI.06

 Type serverSideInputParameter) throws ParameterDispatchException;

Then the custom dispatch mode is used as follows:

@ParamDispatchMetadata(mode = ParamDispatchMode.CUSTOM,
 customMode = CustomParametersDispatch.class))

Dynamic dispatch

Moreover, as the implementation of multicast interfaces reuses the existing mechanism for
typed group communications in ProActive, it benefits from features offered by this
mechanism and in particular the dynamic dispatch.

First step is the partitioning of parameters according to the distribution mode as previously
described. A set of tasks is generated, corresponding to the given partitioning scheme. The
dispatch operation follows; it maps generated tasks to connected server interfaces, using one
of the available dispatch modes: broadcast, round robin, random, custom or dynamic. With
this last one, buffered tasks are statically allocated to connected server interfaces using the
default allocation mode. Then, remaining tasks (un-buffered) are dynamically allocated to
most appropriate connected server interfaces which increase the global performance of the
execution. The buffer size can also be configured. The dispatch policy is still specified
through an annotation, org.objectweb.proactive.core.group.Dispatch, at the method level:

@Dispatch(mode = DispatchMode.DYNAMIC, bufferdSize = myBufferSize)

Reduction of results

Usually, when calling a method on a multicast interface, the provided result, if there is a
result, is a list of values. But, with the reduction mechanism, developer can choose to reduce
the received results, i.e. gather and/or perform some operations on the list of values; for
instance compute the average on a list of int and eventually return a double as result. In order
to use it, the specific annotation
org.objectweb.proactive.core.component.type.annotations.multicast.Reduce must be
set at the method level and must specify the mode to be used. Two modes are provided in the
class org.objectweb.proactive.core.component.type.annotations.multicast.ReduceMode:

• SELECT_UNIQUE_VALUE, which considers that the list contains just one value and
returns this value.

• CUSTOM, which allows the developer to define its own reduction algorithm. This
algorithm must be defined in a class implementing the
org.objectweb.proactive.core.component.type.annotations.multicast.ReduceBehavior
interface.

Thus, the reduction mechanism is used as follow:

@Reduce(reductionMode = ReduceMode.SELECT_UNIQUE_VALUE)

If the reduction fails, a
org.objectweb.proactive.core.component.exceptions.ReductionException is raised.

3.3.2 Gathercast interfaces

The implementation of gathercast interfaces in our framework is restricted to the management
of a basic synchronization. Synchronization policy is not configurable, except for a timeout

GridCOMP FP6-034442 page 29 of 45 D.CFI.06

which can be specified if the method returns a result. Data redistribution policies for results
are not configurable and the redistribution of results occurs in a one-to-one manner to the
client interfaces.

Bindings to gathercast interfaces are bi-directional, since gathering operations require
knowledge of the participants, which means that the server gathercast interface holds a
reference to its clients. This is used for synchronization: once an invocation on a given
method foo1 comes from a client interface, the gathercast interface will create the
corresponding request to be processed by the server component until all clients have sent an
invocation on this method foo1 . Until this condition is reached, the requests are queued in a
special queue.

When the reified invocation on method foo1 from the last connected client is served, the
synchronization condition is reached, and a new reified invocation is created by gathering all
parameters from all client invocations. The new reified invocation is then served by the server
component.

The data structure representing the queues of requests (reified invocations) is illustrated in
Figure 13. In the figure, we can see the enqueued requests for one gathercast interface
(gathercastItf1) and two different methods. Suppose we have three clients, and Ri is an
incoming request from client i. In the case of foo1 , when the request on this method coming
from client 3 will be served, then a new request will be created and served by the component,
and the queue will be emptied of the corresponding requests (R1, R2 and R3 corresponding at
the first line of the box in column ‘request from client’ and line ‘foo1’ in the Figure 13). We
can also observe that client 1 invoked foo1 twice, but the mechanism waits for the first
queue to be full until processing any other queue, even though they are full. This is a way to
guarantee causal dependency.

Figure 13 Data structure for the buffering of requests in gathercast interfaces

GridCOMP FP6-034442 page 30 of 45 D.CFI.06

3.3.2.1 Asynchronism and management of futures

One fundamental feature of the ProActive/GCM is the asynchronism of method invocations:
we want to preserve it in the context of gathercast interfaces, not only between client and
server gathercast interface, but also for the transformed invocation in the gathercast interface.

When the invoked method returns void, there is no problem as this is considered as a one-way
invocation in ProActive, no future result is expected. If the invoked method returns a result
however, the method returns a future, although the invocation has not been processed yet (an
invocation on a gathercast interface will not proceed until all client interfaces invoked the
same method). We faced a complex problem: how to return and update futures of client
invocations on gathercast interfaces? We considered two strategies. The first one was to
customize the request queue so that a local data structure (similar to the one described in
Figure 13) would handle the incoming requests for gathercast interfaces. A second option was
to use a dedicated tier active object for handling futures

As we did not want to intervene in the core of the ProActive library by modifying the request
queue, we selected and implemented the second option. The mechanism is illustrated in
Figure 14. One futures handler active object is created for each gathercast request to be
processed. It has a special activity, which only serves distribute requests once it has received
the setFutureResult request.

When a request from a client is served by the gathercast interface, it is enqueued in the queue
data structure, and the result which is returned is the result of the invocation of the distribute
method (with an index) on the futures handler object. This result is therefore a future itself.

When all clients have invoked the same method on the gathercast interface, a new request is
built and served, which leads to an invocation which is performed either on the base object if
the component is primitive, or on another connected interface if the component is composite.
The result of this invocation is sent to the futures handler object, by invoking the
setFutureResult method. The futures handler will then block until the result value is
available. Then the distribute methods are served and the values of the futures received by the
clients are updated.

GridCOMP FP6-034442 page 31 of 45 D.CFI.06

Figure 14 Management of futures for gathercast invocations

Although this mechanism fulfils its role using the standard mechanism of the library, we
observed that it does not scale very well: one active object for managing futures is created for
each gathercast request, and even though we implemented a pool of active objects, there are
too many active objects created the gathercast interface is stressed. Therefore, the first
approach described above should be preferred in the future.

3.3.2.2 Timeout

It is possible to specify a timeout, which corresponds to the maximum amount of time
between the moment the first invocation of a client interface is processed by the gathercast
interface, and the moment the invocation of the last client interface is processed. Indeed, the
gathercast interface will not forward a transformed invocation until all invocations of all
client interfaces are processed by this gathercast interface. Timeouts for gathercast
invocations are specified by an annotation on the method subject to the timeout, the value of
the timeout is specified in milliseconds:

@org.objectweb.proactive.core.component.type.annota tions.gathercast.Met
hodSynchro(timeout = 20)

If a timeout is reached before a gathercast interface could gather and process all incoming
requests, a
org.objectweb.proactive.core.component.exceptions.G athercastTi
meoutException is returned to each client participating in the invocation. This exception
is a runtime exception. Timeouts are only applicable to methods which return a non-void
value: there is no simple way otherwise to inform the client that the timeout has been reached:
the client would need to provide a callback interface, which does not fit well with a simple
invocation-based programming model.

Nevertheless, a waitForAll mode is available for the MethodSynchro annotation in order to
relax the synchronisation constraints on gathercast interfaces. By using the waitForAll mode,
developer can choose to have a gathercast interface which will create and execute an

GridCOMP FP6-034442 page 32 of 45 D.CFI.06

invocation on the first request received from any of the connected client interfaces and
therefore to not wait requests from other connected client interfaces. The waitForAll mode
takes as parameter a boolean indicating if the method must wait or not requests from all
binded client interfaces:

@org.objectweb.proactive.core.component.type.annota tions.gathercast.Met
hodSynchro(waitForAll = false)

Moreover, using this mode does not require any specific changes on the client and server
interfaces.

Actually, this provides to gathercast interfaces a symmetrical behaviour to the multicast
unicast mode.

3.4 Deployment

The deployment of Grid applications is often done manually, using remote shells for
launching the various virtual machines or daemons on remote computers and clusters. The
commoditization of resources through Grids and the increasing complexity of applications are
making the task of deploying fundamental since it is harder to perform. The CFI succeeds in
completely avoiding scripts for configuration, getting computing resources, etc. It provides, as
a key approach to the deployment problem, an abstraction from the source code so as to gain
in flexibility. Now, we describe the fundamental principles of the deployment framework, and
more information and examples are available from the CFI documentation provided as annex
to this deliverable.

Principles

A first key principle is to fully eliminate from the source code the following elements:

• machine names,

• creation protocols,

• registry and lookup protocols.

The objective is to deploy any application anywhere without changing the source code.
Deployment sites are called nodes, and correspond for ProActive to JVMs which contain
active objects. A second key principle is the capability to abstractly describe an application, or
part of it, in terms of its conceptual activities. The two following requirements are needed to
abstract the underlying execution platform and keep the source code independent from
deployment:

• an abstract description of the distributed entities of a parallel program or
component,

• an external mapping of those entities to real machines, using actual creation,
registry, and lookup protocols.

XML deployment descriptors

GridCOMP FP6-034442 page 33 of 45 D.CFI.06

To answer these requirements, the deployment framework in the CFI relies on two XML
descriptors. Those descriptors have been standardized by the ETSI as “GCM Deployment
Descriptor” and “GCM Application Descriptor”.

The GCM Deployment Descriptor defines a set of physical resources to be used by the
application. It allows to describe:

• the way to create or to acquire JVMs,

• the way to register or to lookup JVMs.

The GCM Application Descriptor describes the application. It defines an application profile
(ProActive, MPI, Executable etc.) and all the options associated with the given profile. It also
introduces the notion of Virtual Node (VN):

• a VN is identified as a name (a simple string),

• a VN is used in a program source,

• a VN, after activation, is mapped to either one or a set of actual ProActive
nodes, following the mapping defined in an XML descriptor file.

• a VN represents a concept of a distributed program or component, while a node
is actually a deployment concept: it is an object that lives in a JVM, hosting
active objects. There is of course a mapping between virtual nodes and nodes
created by the deployment. This mapping is specified in the deployment
descriptor.

GridCOMP FP6-034442 page 34 of 45 D.CFI.06

Figure 15 The deployment framework in the CFI.

Figure 15 summarizes the deployment framework provided in the CFI. Deployment
descriptors can be separated in two parts: mapping and infrastructure. The VN, which is the
deployment abstraction for applications, is mapped to nodes in the deployment descriptors,
and nodes are mapped to physical resources, i.e. to the infrastructure.

Retrieval of resources

In the context of the ProActive middleware, nodes designate physical resources of a physical
infrastructure. They can be created or acquired. The deployment framework is responsible for
providing the nodes mapped to the virtual nodes used by the application. Nodes may be
created using remote connection and creation protocols. Nodes may also be acquired through
lookup protocols, which enable access to the ProActive peer-to-peer infrastructure, for
instance.

 Creation-based deployment: Machine names, connection and creation protocols are
strictly separated from the application code, and deployment descriptors provide the ability to
create remote nodes (remote JVMs). For instance, deployment descriptors are able to use
various protocols:

• local,

• ssh, gsissh, rsh, oarsh,

GridCOMP FP6-034442 page 35 of 45 D.CFI.06

• lsf, pbs, sun grid engine, oar, prun,

• glite,

• Microsoft CCS,

• Amazon EC2.

Deployment descriptors allow combining these protocols in order to create remote JVMs, e.g.
log on a remote cluster frontend with SSH, and then use pbs to book cluster nodes to start a
ProActive runtime on each. It is also possible to start a process on the local machine

 Acquisition-based deployment: The main goal of the peer-to-peer (P2P) infrastructure is
to provide a new way to build and use Grids. The infrastructure allows applications to
transparently and easily obtain computational resources from Grids composed of both clusters
and desktop machines. The burden of application deployment is eased by a seamless link
between applications and the infrastructure. This link allows applications to communicate,
and to manage the resources volatility.

Distribution of components

The deployment process is based on both the Fractal ADL [FRAb] capabilities and the
deployment framework. A component system is usually described using an ADL, and the
location of the components is specified in the ADL using the virtual node abstraction. Virtual
nodes are then mapped to the physical infrastructure by using the deployment mechanism.

3.5 Legacy code wrapping

We can deploy the legacy program as a component without re-engineering the code, or even
requiring access to the source files.

In order to take into account the legacy code requirements, we should provide interfaces to
specify the attributes it possesses to the component. We also design some methods to turn
legacy codes into components by providing some standard APIs to manipulate and control the
legacy codes.

3.5.1 Overview of the Solutions

Grid computing offers seamless integration of hardware and software resources, databases,
special devices and services into a geographically distributed environment. It facilitates
flexible, secure and coordinated resource sharing among participants. It has many potential
advantages for solving computation intensive tasks or supporting collaborative works.

A grid computing environment requires special grid applications for standard applications to
utilize the underlying grid middleware and infrastructure. Most grid projects develop new
applications, or significantly re-engineered existing codes in order to make them be able to
run on their platforms. However, since parallel code has been widely used in both scientific
and industrial fields, deploying legacy applications on this new platform is required and
practical. Unfortunately, many companies and institutions neglect or skirt this problem, and
the consequence of such decisions is making lots of existing application programs unable to

GridCOMP FP6-034442 page 36 of 45 D.CFI.06

run on the new platform. In order to obtain existing functionalities running on GridCOMP
environment, with the least effort and cost, the legacy applications should be reused in a grid
computing environment.

Our approach is based on creating a component capable of executing legacy code over grid.
We want to deploy the legacy codes as components without re-engineering the code, or even
access the source files.

A component, in this context, is a software module with a standardized description of what it
needs and what it provides, which can be manipulated by tools for composition and
deployment. It enables legacy codes written in any source language (FORTRAN, C, Java,
etc.) to be easily deployed as grid components without any programming effort from the end-
user. A component must be deployable on any machine flexibly, without mentioning the
computing environment. Actually, we assume that acquired resources are suitable for the
available legacy code binaries; this could be done using constraint at deployment time (see
section 3.5.3.3). Then, when users want to execute legacy codes, they will be able to deploy
the components to the remote computers immediately. A component must have complete
function modules for executing the legacy code. If so, the users will be able to manipulate the
components and control the execution state of the running process that belongs to the original
legacy code. Therefore, this solution is much more dynamic and flexible than ad-hoc solution.

3.5.2 The Framework of the Legacy Code Component

3.5.2.1 Characteristics of Legacy Code

Legacy code is understood as a black box with specified input and output parameters plus
some environmental requirements. Only the executable code is required, in this case, and
there is only a user-level understanding of the application. This scenario is very common in
both scientific and business applications.

The assumed general characteristics of any legacy code and its consequent wrapped solution
are as follows:

1. The source code is not available.
2. The program is poorly documented and the necessary expertise to do any

modifications has long left the organization.
3. The application has to be ported onto the grid within the shortest possible time and

smallest effort and cost.
4. The functionalities are offered to partner organizations but the source is not.

In order to wrap the legacy codes into GCM Components and make them executable over the
grid, we have researched the characteristics of the legacy code and then provided some
solutions.

Executing legacy code over the grid is very important and necessary. There are many kinds of
legacy codes, such as MPI programs, executable programs running on single computers or on
clusters. However, almost all legacy code can be executed through the pattern of terminal
command line. That means that we can control the running process of the legacy code through
the command line tools. Moreover, most legacy codes are command line programs running on
Linux or other operating system. Therefore, we can wrap the legacy code to a component by
describing the legacy code; this description includes the command line execution environment

GridCOMP FP6-034442 page 37 of 45 D.CFI.06

and related files. These elements are also important for executing the wrapped legacy code
over the grid.

The purpose of this framework is to develop techniques and methods for turning legacy codes
into components. According to our research, grid-enabling legacy code includes the following
actions:

1. For the legacy code, provide some APIs in a standard interface to describe the legacy
code attributes, such as the command line format and parameters.

2. For the related file operations, define some APIs in the interface to transfer the files
and set the files’ attributes.

3. For the resource requirement of the legacy code, include it in the “GCM application
description”.

4. For the running process of the legacy code, define the needed server and client
interfaces to manipulate and control the legacy code.

3.5.2.2 The architecture of the Legacy Code Compone nt

Figure 16 The architecture of the legacy code component demonstrates the architecture of the
legacy code component. It includes two interfaces: the AttributeController and the server
interface. Using these interfaces and java classes, we can create the Legacy Code Component.
Through these interfaces, we can describe the legacy code, set these files’ permissions and
control the running process of the legacy code, we also provide a separate class for file
transmission.. In the following chapters, we will describe each part in detail.

Controller

Content

Java Class�

LegacyCodeProxy

Legacy Code

The AttributeController :LegacyComponentAttributes

The server interface

for the

LegacyComponent:

LegacyCodeContro

llerInterface

File transfer and setting the files

attributions

Description of the Legacy code

Figure 16 The architecture of the legacy code component

3.5.2.3 Description of the Legacy Code

For running the legacy code over the grid, the most important thing is to describe the legacy
code, such as the command line, the execution environment, and the related files. Two
methods can achieve this purpose: extending the ADL or providing some API in a standard
Interface.

GridCOMP FP6-034442 page 38 of 45 D.CFI.06

Extending the ADL is not a good practice if we want a flexible and extensible solution. First,
when describing the specificities of the legacy code, we wanted to extend the ADL and
modify the schema of the ADL. A first successful prototype was implemented which
demonstrated the validity of all the identified needs for legacy code wrapping. However, we
decided to refine our solution to improve and ease the wrapping for both the user and the
developer. A first drawback with this solution is the difficulty to propose an ADL extension
able to manage any kind of legacy code. Actually, we can be sure that additional tags would
be added to the ADL, but it may also happen that some tags could be missed. Furthermore, we
do not want this extension to be linked with a specific version of the ADL. In summary,
extending and maintaining the ADL requires a lot of effort. Therefore, we propose a solution
which is more flexible and easy to adapt.

Our solution is to provide a predefined component type for legacy code wrapping (see the
user documentation of the annex D.CFI.06_LegacyCode.zip, Section 3.1: Standard legacy
code wrapper component). This component has an attribute controller which defines all
parameters. If you want to create a legacy code component you have to create a component
extending this predefined type and set the correct attributes.

• Using the ADL, you only have to write an ADL file extending this type and set the
right attributes to configure it correctly (see the user documentation of the annex
D.CFI.06_LegacyCode.zip, Section 3.2: Template to be filled in by the user).

• Using the API, you have to create a component with the defined factory
(LegacyComponent class), and next set attributes with the AttributeController
interface (see the user documentation of the annex D.CFI.06_LegacyCode.zip, Section
1: Wrapping code example).

Through the standard interface, all things which are specific to legacy code wrapping can be
managed by the component.

3.5.2.4 Related File Operations

The Related File Operations (RFO) are important for the execution of the legacy code
component over the grid. They define some APIs to transfer files and set the attributes of
those files.

For the file transfer, RFO implements legacy code and input files transfer between the user
site and target system. In our design, we reuse the file transfer mechanism provided by the
ProActive middleware. Currently supported protocols for file transfer deployment include the
ProActive File Transfer Protocol (PFTP), SSH, RSH and Nordugrid. The start of the File
Transfer will take place before the deployment of the component or after the successful
execution of the legacy code at the target computing node.

For the file attribute settings, we should set the permissions of the related files, such as
“read”, “write” or “execute”. It will ensure that the legacy code has the right permission and
executes successfully. By the end of the running process of the legacy code, we should delete
all the files no-longer needed. Depending on the attribute settings of those files, the
component could do the deletion automatically.

It should be noticed that some interesting things should be achieved, such as transferring the
ProActive libraries into the deploying machine using an on-the-fly style. This would enable

GridCOMP FP6-034442 page 39 of 45 D.CFI.06

the deployment of the components on remote machines without having ProActive pre-
installed. Even further, when the network allows it, it would also be possible to transfer other
required libraries like the JRE (Java Runtime Environment) to the target system.

There is one protocol, which behaves differently from the others mentioned above, the
ProActive File Transfer Protocol (PFTP). The main advantage of using PFTP is that no
external copy protocols are required to transfer files during deployment. Therefore, if the grid
infrastructure does not provide a way to transfer files, a file transfer deployment can still take
place by using the PFTP. On the other hand, the main drawback of using PFTP is that
ProActive must already be installed on the remote machines, and thus on-the-fly deployment
is not possible.

3.5.2.5 Execution Management

In order to run the legacy code successfully and control the running process of the legacy
code component, we define the execution management module, which contains the execution
status of the legacy code, defines the transition between the different execution status, and the
standard API for controlling the program.

When wrapping the legacy code to the component and running it, the legacy code includes
status states such as UNSTARTED, RUNNING, KILLED and FINISHED. Each status
defines the current state of the legacy code. It helps to keep the consistency of the legacy code
and a better control of the code when multiple instances are running. We also define a
standard API to control the component execution, with methods such as
startLegacyCode(), killLegacyCode(), restartLegacyC ode(),
getStatus() . According to this API, the user could control the running process of the
legacy code and have a good interactive interface. Meanwhile, the component monitors the
execution state and sends feedback to the user. Figure 17 shows the transition between the
different execution status of the wrapped legacy application by using the mechanisms
provided by the execution management module.

After running the legacy code successfully, the result files could be obtained and transferred
to the users by using a method from the standard API.

GridCOMP FP6-034442 page 40 of 45 D.CFI.06

Figure 17 The execution status transition of the legacy code

3.5.3 Features added to the GCM

3.5.3.1 API describing the Legacy Code

There should be some methods in the interface to describe the legacy code, such as the
command and its parameters.

public interface LegacyComponentAttributes extends AttributeController {
public void setComment (String value);
public String getComment ();

 public void setExecutable (String value);
public String getExecutable ();

 public void setParameters (String value);
public String getParameters ();

 public void setCommandLine(String CommandLine);
public String getCommandLine();

public void setFilePermission (String permission);
public void setFileDelete (String delete);

}

3.5.3.2 API for Related Files Operation

Part of the API is used to transfer the related file and retrieve the result file.

package org.tsinghua.gcm.legacyComponent.relatedfile;

GridCOMP FP6-034442 page 41 of 45 D.CFI.06

public class FileTransfer {
//The push methods transfer a file/directory or files available on the local
//node(srcNode) to the specified remote node(dstNode)
 public static void push (File [] srcFiles, Node dstNode, File [] dstFiles);
 public static void push (Node srcNode, File [] srcFiles, Node dstNode,
 File [] dstFiles);

public static void push(Node srcNode, File srcFile, Node dstNode, File dstFile);
public static void push(Node srcNode, File[] srcFiles, Node dstNode, File[]

dstFiles);

//The pull methods retrieve a file/directory or files located on a remote
//machine(srcNode) to the local machine(dstNode)
 public static void pull (Node srcNode, File srcFile, File dstFile);
 public static void pull (Node srcNode, File [] srcFile, File [] dstFile);

public static void pull(Node srcNode, File srcFile, Node dstNode, File dstFile);
public static void pull(Node srcNode, File[] srcFiles, Node dstNode, File[]

dstFiles);
}

3.5.3.3 Resource Requirement of the Legacy Code

For this part, we should extend the “GCM application descriptor” definition. This file coupled
to “GCM deployment descriptor” files allows users to describe how to acquire resources from
a given grid and deploy an application using these resources. Both are being standardized in
ETSI [DIS]; therefore, the proposed solution is a working solution but not a final one. The
main idea is to extend or reuse the definition of a virtual node in a “GCM application
descriptor” file with the specification of the following elements:

• operatingSystem: specify the required operating system, including a specific version

• CPUArchitecture: specify the required CPU architecture,

• CPUSpeed: specify the required CPU speed (with lower and upper bound)

• CPUCount: specify the required CPU count (with lower and upper bound)

• memory: specify the required amount of memory (with lower and upper bound)\

• networkBandwidth: specify the required network bandwidth (with lower and upper
bound)

• diskSpace: specify the required space disk (with lower and upper bound)

In fact, all these elements are often needed to know how and where to execute the legacy
application; but legacy applications are not the only case where a user may need to select the
node where he wants to deploy such component. Consequently, we have decided against a
specific solution for the legacy code wrapping with just those requirements and use instead
the work done at standardization level.

GridCOMP FP6-034442 page 42 of 45 D.CFI.06

3.5.3.4 The Running Process of the Legacy Code

package org.tsinghua.gcm.legacyComponent.legacyCode
 //define the interface to manipulate and control the code
public interface LegacyCodeControllerInterface {

 public LegacyCodeResult startLegacyCode();
 public LegacyCodeResult reStartLegacyCode();
 public boolean killLegacyCode();
 public String getStatus();
 public void setLegacyCodeCommand (String arguments);
 }

3.5.3.5 Wrap the Legacy Code to Component

package org.tsinghua.gcm.legacyComponent
//wrap the legacy code to Component
public class LegacyComponent{

 public Component LegacyComponent();
}

In conclusion, the presented solution for legacy application wrapping is to create a predefined
and already implemented component wrapper type to be used when executing it over the grid.
The designed architecture of the Legacy Code Component Wrapping provides some
interfaces to set the attributes of the legacy code and a standard API to manipulate and control
the legacy code execution. This wrapping component can be easily deployed remotely to
interact with other components.

4 Conclusion

This document demonstrates that we have developed an implementation of the GCM model,
which is based on the ProActive library and provides all the main features of the model, such
as primitive and composite components, single and collective bindings, ADL and deployment.
Thus, the CFI prototype can be used to design and implement grid component based
applications.

Among the future works, we will improve the possibility to have non functional components,
i.e. components managing non functional aspects put in the membrane. An early version of
this feature is already provided in the CFI prototype and documented in the CFI
documentation. However, we did not detail the architecture in this document but we have just
mentioned the feature as an on-going work since it is still under development and therefore
the architecture may evolve. This feature allows developer to create controllers of a
component as component themselves. Using non functional components, developer takes
advantage of the structure, the hierarchy and the encapsulation provided by a component-
oriented approach.

One of the main objectives of the GCM was to ensure the interoperability. The GCM
deployment standard already satisfies this point at deployment time with the support of
various middleware and schedulers. In addition, services offered by a GCM component can
be accessed through Web Service (WS). Next steps will be support of WS bindings allowing a
given GCM component to access another GCM component or application using WS. Such
features will improve the interoperability at the component communication level with other
middleware. A more general objective is to provide an SCA implementation with dynamicity

GridCOMP FP6-034442 page 43 of 45 D.CFI.06

at runtime thanks to the GCM features. Therefore, GCM components are the building blocks
for integrated SOA towards SLA and QoS.

In addition, projects such as SOA4ALL (EU) [SOA], INRIA ADT Galaxy [GAL], Pole de
Compétitivité AGOS (with HP, Oracle) [AGO], and QosCosGrid (EU) [QOS] use ProActive
the GCM reference implementation.

5 Bibliography

[AGO] Pole de Compétitivité AGOS, http://ralyx.inria.fr/2007/Raweb/oasis/uid91.html

[CAR 93] DENIS CAROMEL. Toward a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

[COR] CoreGRID Network of Excellence, European funded project, http://www.coregrid.net/

[DIS] D.DIS.02 - Standardization Strategy, GridCOMP deliverable

[DRE] Dream project,. http://dream.objectweb.org

[FRAa] Fractal Component Model specification,
http://fractal.objectweb.org/specification/index.html

[FRAb] Fractal ADL, http://fractal.objectweb.org/fractaladl/index.html

[GAL] INRIA ADT Galaxy, http://galaxy.gforge.inria.fr/Main/HomePage

[GCM] D.CFI.01 - Component model presentation and specification (XML schema or DTD),
GridCOMP deliverable

[GID] D.GIDE.04 - Grid IDE tuned prototype and final documentation (manual and detailed
architectural design), GridCOMP deliverable

[NFC] D.NFCF.05 - NFCF tuned prototype and final documentation (manual and detailed
architectural design), GridCOMP deliverable

[PRO] “ProActive web site”, http://proactive.objectweb.org

[QOS] QosCosGrid, European project, http://www.qoscosgrid.eu

[SOA] SOA4ALL, European project, http://www.soa4all.eu

[UC] D.UC.05 - Use cases: tuned prototypes and final documentation (manual and detailed
architectural design), GridCOMP deliverable

6 Appendix A

This is the default configuration file for the controllers and interceptors of a component in the
ProActive/GCM implementation.

<?xml version="1.0" encoding="UTF-8"?>

GridCOMP FP6-034442 page 44 of 45 D.CFI.06

<componentConfiguration xmlns:xsi="http://www.w3.or g/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="component- config.xsd"
 name="defaultConfiguration">
 <!-- This is the default configuration file for t he controllers and
interceptors of a component in the proactive implem entation.-->
 <controllers>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.ProActiveB
indingController</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.ProAc
tiveBindingControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.ProActiveC
ontentController</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.ProAc
tiveContentControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.ProActiveL
ifeCycleController</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.ProAc
tiveLifeCycleControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.ProActiveS
uperController</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.ProAc
tiveSuperControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.fractal.api.control.NameCo ntroller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.ProAc
tiveNameController</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.MulticastC
ontroller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Multi
castControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.Gathercast
Controller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Gathe
rcastControllerImpl</implementation>
 </controller>

GridCOMP FP6-034442 page 45 of 45 D.CFI.06

 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.MigrationC
ontroller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Migra
tionControllerImpl</implementation>
 </controller>
 <controller>

<interface>org.objectweb.proactive.core.component.c ontroller.MonitorCon
troller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Monit
orControllerImpl</implementation>
 </controller>
 </controllers>

</componentConfiguration>

