Tnformation Society

lechnologies

CEWdCxJNﬂD'

Effactive Componants for the Srids

Project no. FP6-034442

GridCOMP

Grid programming with COM Ponents : an advanced component platform
for an effectiveinvisiblegrid

STREP Project

Advanced Grid Technologies, Systems and Services

D.CFI1.06 — CFI tuned prototype and final documeata{manual and detailed
architectural design)

Due date of deliverable: 01 December 2008
Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this adezlble: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination L evel
PP Public PP

Keyword List: component, GCM, grid, legacy code pping,
Responsible Partner: Denis Caromel, INRIA

/\ /JM 3

wi é’:’f"qCDMP v<G$3J
MODIFICATION CONTROL
Version Date Status Modifications made by
0 DD-MM-YYYY Template | Patricia HO-HUNE
1 14-11-2008 Draft Cédric Dalmasso
2 27-11-2008 Draft Bastien Sauvan
3 28-11-2008 Draft Xiaofeng Wu
4 03-12-2008 Draft Bastien Sauvan
5 08-12-2008 Draft Clement Mathieu
6 09-12-2008 Draft Bastien Sauvan
7 18-12-2008 Draft Bastien Sauvan
8 19-01-2009 Final Denis Caromel

Deliver able manager
Denis Caromel, INRIA

List of Contributors
Denis Caromel, INRIA

Cédric Dalmasso, INRIA
Clément Mathieu, INRIA
Bastien Sauvan, INRIA
Xiaofeng Wu, TU

List of Evaluators
Marco Aldinucci, UNIPI

Yongwei Wu, TU

Summary

This document describes the architecture of the goor@ant Framework Implementation (CFl)
prototype, which is the first implementation of t8eid Component Model (GCM) [GCM].

The CFI prototype and this document form the fidaliverable D.CFI.06 of the Work
Package 2 within the context of the GridCOMP redeaproject. This deliverable is
completed by two annexes:

* The sources for the legacy code wrapping as GCM pooents and its user
documentation.

* The CFI documentation.

The CFI prototype has been implemented using tbAddive Grid Middleware [PRO] as a
starting point. As a consequence, this documergsgfirst a description of the ProActive’s
architecture and the model it uses. Then, a ddtaksscription of how we used and extended
this architecture to implement the CFI prototype Il wiollow the first part.

GridCOMP FP6-034442 page 2 of 45 D.CFI.06

Table of Content

1 INTRODUCGCTION et e et e e e e et s e et e e e et s e e s en s e e s enasaaeenes 5
2 THE PROACTIVE MIDDLEWAREcuoeie e et 6
2. JACTIVE OBJIECTS MODEL ivutttitnietiiteentitesntttsssetssnesnstssensetessaeeesseesneressneeraesneenns 6
2.2THE PROACTIVE LIBRARY : PRINCIPLES AND ARCHITECTURE ...cvivniitiiieiiiiieeeeieaneenns 7
2.2.1 Implementation teChNIQUESoovvviiiiiiiiiies e 7
2.2.2 Semantics of communications between Active Object.. 8
2.2.3 Features of the lIDrary ... e 10
P ©70] N L] I 1S] 10
3 ARCHITECTURE OF THE CFI IMPLEMENTATION ...ccoiviiit e 10
I B] =351 N 0 - Y I S 10
3.2AN ARCHITECTURE BASED ON PROACTIVE'S META-OBJECT PROTOCOLuv.u.e. 11
3.2.1 ComPOoNENt INSTANCEcoeeiiiiiiiiiiiiiiiis ceeee e e e e e e eaeeas 11
3.2.1.1 Primitive COMPONENES ...c.vvviieiiieiiieeeeeiiiee e e st eae e e eteeeeeesttaaeeeasteeeeeaassaeeeeanssseeaeansnseaaesansaeaeessssnneeeas 13
3.2.1.2 COMPOSILE COMPONENTS .. .ueeiiiiiiiieeeieiiieeeesiittaessstaeeeeesstaaeeeasssteeeaaasseseeeaassseaeeaasssesaesasaeeeessssnneeen 13
I O] 1 (o] | [T TR 14
1Yol g1 (o OXoT a1 i fo] 11T o PRUPRRR 14
L1041 YL @ a1 o] 11 PSSP 15
3.2.3 LIFECYCIE e e 15
3.2.4 Interception MECNANISIMuuuiiiiiiiiii e e e e e e 17
3.2.5 COMMUNICAIONS. .. e et et 21
3.2.5.1 Optimization with short Cuts (‘SNOMCUL)uvviiiiiiie e 21
B.2.5.2 SHBAIM POIS .eteeeiiiiiiie e ettt e e e e e e e e e e oot b bt ettt e e ee e e e e e e e bbb bbbt et e e eaaaaaeeea e e e ntbbbbbbbeaaaaaaaaaaaaanns 23
3.2.5.3 Exporting components as WED SEIVICEScoiuiiiiiiiiiiiiiiiiie st e e 23
3.3MECHANISM AND IMPLEMENTATION OF COLLECTIVE INTERFACE S ..cuvivuiivevnieneineennens 24
3.3.1 MURICASE INTEITACESceeiieeie s e 25
70 04 050 R @70 1o 0> 1 o o USROS 26
[a1 e g = (oo LT aT0] 7=V i[04 IS 26
LY =i ToTo J=TaT L0 r= 1 To) o T 26
o Ttz LT (A= 1 10] =11 0] R 27
Available diStriDULION POLICIEScciiueiiccmiie ettt e ettt e e s sttt e e e s st be e e e e s staeeeeesansaneeeennanes 27
[Y= Va0 1 o - Lo O SEP SR 28
REAUCTION OF TESUILS ...vvviii ittt eeeeee e ettt e et e e e et e e e eeeaaae e e eaeeeeeeeesssaaaba s aaeeeeeeeessresarsrnnnns 28
3.3.2 Gathercast INTEITACESoiiieiiiiiee et e 28
3.3.2.1 Asynchronism and management Of FULUIES...........cooiuiiiiiiiiie e 30
TR T2 110 1Yo 1F | PPN 31
I =1 =T 1@) Y 1= N ST 32
L T ToaT o] oSSR SPPPRR 32
DotV T e 1= o] (o) Vi 4 g T=T 01 o (=] od € o) (o] =R RRSRTTIR 32
RELTEVAI Of FTESOUITESo e oot e e e e s e e e e eeeeeeae e e aa b s e eeeeaeeseessstssbessbbaaesseeeeaaarans 34
Creation-based AePIOYMENT:ooiiiiii ittt e e s et e e et ee e s s nbe e e e e e sstteeeeesanntbeeeeenaren 34
PXolo (U111 (o] g B o F= T=To [(=T o] (o) Y70 1T o oo SR 35
DiIStribDULION Of COMPONENTS ...ttt e et e e et e e e st ee e e sattte e e e asbeeeesansbeeeeeannneeeeennnee 35
3.5LEGACY CODE WRAPPING .. cuuituititueeteeteetetteentesssnesssneetssssneessesesiesesassnrennees 35
3.5.1 Overview of the SOIULIONS.........oiiiiiiiiiiiies e 35
3.5.2 The Framework of the Legacy Code Componentcccccvvvvveeeennen. 36

GridCOMP FP6-034442 page 3 of 45 D.CFI.06

3.5.2.1 Characteristics of Legacy Code

3.5.2.2 The architecture of the Legacy Code Component

3.5.2.3 Description of the Legacy Code
3.5.2.4 Related File Operations
3.5.2.5 Execution Management

3.5.3 Features added to the GCM

3.5.3.1 API describing the Legacy Code
3.5.3.2 API for Related Files Operation

3.5.3.3 Resource Requirement of the Legacy Code
3.5.3.4 The Running Process of the Legacy Code
3.5.3.5 Wrap the Legacy Code to Component

4 CONCLUSION
5 BIBLIOGRAPHY

6 APPENDIX A

GridCOMP FP6-034442

page 4 of 45

D.CFI.06

O
- e M
GridComMP ("

1 Introduction

This document is part of the deliverable D.CFl.@#ijch is the final outcome of the Work
Package 2 of the GridCOMP project. The Work Packagems at provide the reference
implementation of the Grid Component Model (GCM)JK4] defined by the CoreGRID NoE
project [COR]. The GCM is an extension of the Fah@omponent Model [FRAa] for the
Grid. GCM components turn standard code, potewntipdirallel and distributed, or legacy
code, into components able to be deployed and csetbbierarchically. This implementation
is used in Work Package 3 to implement non-funetioBCM features [NFC] and is
illustrated in the use cases [UC]. This deliveraldeuseful for anyone who wants to
understand and use the Component Framework Implatieamn (CFI) prototype.

The whole deliverable D.CFI.06 is made of two maaints:
* This document which describes the architecturé®iGFI prototype.

* A zip file, D.CFI.06_Bundle.zip, containing the soes of the last version of the CFI
prototype, provided through the ProActive Grid Meldare [PRO] release 4.0.2,
since this prototype is build upon ProActive.

And two annexes:

* Another zip file, D.CFI.06_LegacyCode.zip, contamiboth the sources for legacy
code wrapping as GCM components and its user doaiatien. The legacy code
wrapping is provided separately as this featurmdependent of the CFl prototype.
Nevertheless, the architecture is detailed indbisument.

« A PDF file, D.CFI.06_CFI-documentation.pdf, providi the CFlI documentation
which therefore is not provided in this documenmttfee reason explained below.

To ease the distribution of the document in differeormat (PDF and HTML) we use the
DocBooK technology. As a consequence, we can not inclodeCFI documentation in this
document. The documentation is available in a sdpafile, GridCOMP_D.CFI1.06_CFI-
documentation.pdf. The CFI features implementedil unow are documented. The
documentation contains:

» Documentation of the GCM deployment framework whighplements ETSI
standards.

» Technical documentation describing how to use éaature included in the CFI.

* A tutorial providing a user guide explaining howdreate primitive and composite
components along a simple example.

This documentation related to features developdtarframe of GridCOMP is also available
in the ProActive user documentation.

! DocBook is an XML language for technical documéaotg http://www.oasis-
open.org/docbook/

GridCOMP FP6-034442 page 5 of 45 D.CFI.06

ooyt
X I{Cf MS\\TJ

GridCOMP (87
As mentioned above, the present document desdiiigesnplementation architecture of the
Grid Component Model. Since the CFI is based onRt@Active middleware, we start by
providing an overview of ProActive’s architectue detail the model, the concept and the
techniques used to implement them and finally, escdbe the ProActive’s features used in
our implementation.

Then, in a second part, we explain how we use axtdnd this architecture in our
implementation. We describe what we had to moditpiw ProActive and what we added on
the top of it in order to achieve the goals spedifior this implementation.

2 The ProActive middleware

ProActive is an open source Java library for Godhputing. It allows concurrent and parallel
program and offers distributed and asynchronous nwamications, mobility, and a
deployment framework. With a reduced set of priveisi, ProActive provides an API allowing
the development of parallel applications which raydeployed on distributed systems and
on Grids.

2.1 Active objects model

ProActive is based on the concept aftike Object{AO), which can be seen as an entity with
its own configurable activity.

Sl Bl RS Wl e
oo &) los & %i

O Threaded object Q Passive object G Java virtual machine

Figure 1 Seamless sequential to multithreaded to distributed objects

A distributed or concurrent application built usiRgoActive is composed of a number of
active objects (Figure 1). Each active object has distinguished element, the root, which is
the only entry point to the active object. Eachvacobject has its own thread of control and
is granted the ability to decide in which orderstrve the incoming method calls that are
automatically stored in a queue of pending requédethod calls sent to active objects are
asynchronous with transparent future objects andhsynization is handled by a mechanism
known as wait-by-necessity [CAR 93]. Method caliérde asynchronous only if they fulfil

the following minimum conditions: reifiable retutgpe and no declared exceptions in the
method. A future is a placeholder for the resulaofinvocation, which is given as a result to
the caller, and which is transparently updated wthenresult of the invocation is actually
computed. This whole mechanism results in a dasadaynchronization. There is a short

GridCOMP FP6-034442 page 6 of 45 D.CFI.06

BridCOMP & 65"

rendez-vous at the beginning of each asynchroremste call, which blocks the caller until
the call has reached the context of the calleerder to ensure causal dependency.

Explicit message-passing based programmingoappes were deliberately avoided: one
aim of the library is to enforce code reuse by wipgl the remote method invocation pattern,
instead of explicit message-passing.

2.2 The ProActive library: principles and architect ure

The ProActive library implements the concept ofiaciobjects and provides a deployment
framework in order to use the resources of a Grid.

ProActive is developed in Java in order to allowximaum portability. Moreover, ProActive
only relies on standard APIs and does not use @eyating-system specific routine, other
than to run daemons or to interact with legacy iappbns. There are no modifications to the
JVM or to the semantics of the Java language, hadytecode of the application classes is
never modified.

2.2.1 Implementation techniques

ProActive relies on extensible Meta-Object Proto@sthitecture (MOP), which uses
reflective techniques in order to abstract therithistion layer, and to offer features such as
asynchronism or group communications.

Figure 2 Meta-Object Architecture

The architecture of the MOP is presented in Figure

An active object is concretely built out of a ramiject (here of type B), with its graph of
passive objects. Aodyobject is attached to the root object, and bimdy references various
meta-objects, with different roles and providingttees.

The body is responsible for receiving calls on the actigeot, storing these calls in the
gueueof pending calls (also called requests). It wieeute these calls in an order specified
by a specific synchronization policy. If no specifiynchronization policy is provided, calls
are managed in a FIFO manner (first come, firstestyt Thebody is not visible from the

outside of the active object therefore the actibiect looks exactly like a standard object

GridCOMP FP6-034442 page 7 of 45 D.CFI.06

GridCOMP © 6%

from the user's perspective. It is important toentbtat no parallelism is provided inside an
active object. This is an important decision in design of ProActive which enables the use
of pre and post conditions and class invariants.

An active object is always indirectly referencedotigh aproxy and astubwhich is a sub-
type of the root object. Thproxys main responsibility is to generate future olgefuir
representing future values, transform calls intquesst objects (in terms of meta-object
programming, this is a reification) and perform geepy of passive objects passed as
parameters. The passive objects are not sharecedetaubsystems. Any call on a remote
active object using passive objects as argumeatsléo a deep-copy of the passive objects
on the subsystem of the remote active object. ohe of thestubis to reify all the method
calls that can be performed through a referendddoactive object. Reifying a call simply
means constructing an object (in our case, alletitalls are instance of class MethodCall)
that represents the call, so that it can be maaipdlas any other object. Thus, an invocation
to the active object is actually an invocation twe stub object, which creates a reified
representation of the invocation, with the methatled and the parameters, and this reified
object is given to theroxy object. Theproxy transfers the reified invocation to thedy
possibly through the network, and places the mkifirevocation in the requesjueueof the
active object. There are adapters in each sideeohétwork part, for thproxy and thebody,
allowing us to use several communication layersugh the network. The requesgtieueis
one of the meta-objects referenced bylibdy If the method returns a result, a future object
is created and returned to geXxy, to thestuly then to the caller object.

However, the use of theuly proxy, body, andqueueis transparent. ProActive manages all of
them, with the user accessing the active objedisdrsame way as passive objects.

The active object has its own activity thread, wahis usually used to pick-up reified
invocations from the request queue and serves themexecute them by reflection on the
root object. Reification and interception of invtoas, along with ProActive’s customizable
MOP architecture, provide both transparency andytbend for adaptation of non-functional
features of active objects to fit various needss fiossible to add custom meta-objects which
may act upon the reified invocation, for instan@egdroviding mobility features, or as we will
see later, implement the GCM.

Active objects are instantiated using the ProAc#R, by specifying the class of the root
object, the instantiation parameters, and optietion information:

// instantiate active object of class B on nodel

/I (a possibly remote location)

Bb=(B) ProActi ve. newAct i ve("B", new Object|]
{aConstructorParamete r}, nodel);

I/ use active object as any object of type B
Result r = b.foo();

Il possible wait-by-necessity

System.out.printin(r.printResult());

2.2.2 Semantics of communications between Active Object

In ProActive, the distribution is transparent: ikim@y methods on remote objects does not
require the developer to design remote objects aifblicit mechanism allowing remote calls
(like Remote interfaces in Java RMI). Thereforee theveloper can concentrate on the

GridCOMP FP6-034442 page 8 of 45 D.CFI.06

GridCOMP © 6%

business logic as the distribution is automatichigndled and transparent. Moreover, the
ProActive library preserves polymorphism on remotgects (through the reference stub,
which is a subclass of the remote root object).

Communications between active objects are realizemlgh method invocations, which are
reified and passed as messages. Indeed, one ghd ofessage contains routing information
towards the different elements of the library, ahd other part contains the data to be
communicated to the called object.

Although all communications proceed through methodocations, the communication
semantics depends upon the signature of the metimatithe resulting communication may
not always be asynchronous. Three cases are passijghichronous invocation, one-way
asynchronous invocation, and asynchronous invatatith future result. By the way, since
the GCM prototype is based upon the ProActive fjgr&CM components use implicitly this
communication mechanism.

* Synchronous invocation

o0 the method returns a non reifiable object: pringitiype or final class:
I public boolean foo()

o the method declares throwing an exception:
I public void bar() throws AnException

In this case, the caller thread is blocked un# thified invocation is effectively processed
and the eventual result (or Exception) is returried. fundamental to keep this case in mind,
because some APIs define methods which throw eixeepor return non-reifiable results. It
is the case with some part of the GCM API.

* One-way asynchronous invocatiathe method does not throw any exception
and does not return any result:

I public void gee()

The invocation is asynchronous and the process dibthe caller continues once the reified
invocation has been received by the active objiecbther words, once the rendez-vous is
finished).

* Asynchronous invocation with future resutie return type is a reifiable type,
and the method does not throw any exception:

I public MyReifiableType baz()

In this case, a future object is returned and Hikeiccontinues its execution flow. The active
object will process the reified invocation accoglin its serving policy, and the future object
will then be updated with the value of the res@ith@ method execution.

If an invocation from an object A on an active abjB triggers another invocation on another
active object C, the future result received by Ayrba updated with another future object. In
that case, when the result is available from Cfuh&e of B is automatically updated, and the
future object in A is also updated with this resudtlue, through a mechanism called
automatic continuation.

GridCOMP FP6-034442 page 9 of 45 D.CFI.06

O
- e M
GridComMP ("

2.2.3 Features of the library

As stated above, the MOP architecture of the PrigAdibrary is flexible and configurable; it
allows the addition of meta-objects for managing mequired features. Moreover, the library
also proposes a deployment framework, which alltves deployment of active objects on
various infrastructures. The library may be repnése in three layers: programming model,
detailed in the previous section 2.1; non-functiofeatures, such as fault-tolerance and
security, and deployment facilities.

The deployment layer is not detailed in this docotriecause it is not used in the CFI. The
ProActive deployment framework has several drawlswk do not provides a fully and easy
interoperable way to deploy application on a gridraquired in the GCM definition. The
main defects are the complexity to write deployn@gscriptors and the incapacity to easily
reuse already written deployment descriptor filéh @nother application or infrastructure. A
new framework, named “GCM deployment” and detailedhe “Architecture of the CFI
implementation” part, has been designed and imphedeto meet those requirements.
Nevertheless, the CFl is fully compatible with r@Active deployment.

2.3 Conclusion

In this first part, we introduced the ProActive dyrmiddleware and we described the
architecture of its current implementation. In tbowing section we will explain how we
used the ProActive framework to implement our prgie of component framework.

3 Architecture of the CFIl implementation

In this section, we describe the architecture &f @Fl, which implements the GCM. We
named this implementation ProActive/GCM. This ptgpe is based on the ProActive
middleware and extends its architecture.

3.1 Design goals

This framework was designed following these maijectives:
1. Follow the GCM specification.

2. Base the implementation on the concept of actijeatd The components in this
framework are implemented as active objects, aral@sequence benefit from the
properties of the active object model.

3. Leverage the ProActive library by proposing a neagpamming model which may
be used to assemble and deploy active objects.

4. Provide a customizable framework, which may be sathpy the addition of non
functional controllers and interceptors for specifieeds, and where the activity of
the components is also customizable.

We also propose some optimizations that aréeeaet by trading-off between dynamicity
(the possibility to dynamically reconfigure the dpgtions, or parts of the applications) and

GridCOMP FP6-034442 page 10 of 45 D.CFI.06

/C,{?L"‘OJ\\«,
GridCOMP § e
et G o e Gk (L —ERQU
efficiency (direct or multithreaded invocations)Aanchitecture based on ProActive’'s Meta-
Object Protocol. These optimizations, such as thertsut mechanism, are described
throughout this document.

3.2 An architecture based on ProActive’s Meta-Objec t Protocol

The ProActive/GCM framework is an implementation toe GCM specification which
extends the Fractal 2 specification [FRAa]. It dals the general model described in the
GCM specification and implements the GCM Java API.

Our implementation of GCM relies on ProActive’s éDbject Protocol (MOP) architecture.

3.2.1 Component instance

A ProActive/GCM component is implemented as anvactbject. The implementation of a
ProActive/GCM component therefore follows the geherchitecture represented in Figure
2. As we stated in the presentation of the Proclibrary, the reflective framework may be
customized by adding or specializing meta-obje€tsis allowed us to implement GCM

components using a reflective framework.

A component is instantiated using the GCM ABCM is based on Fractal API, thus in the
following examples this API will be heavily used):

/I get bootstrap component

Component boot = Fractal.getBootstrapComponent();

I get type factory

TypeFactory tf = Fractal.getTypeFactory(boot);

/I get generic component factory

GenericFactory gf = Fractal.getGenericFactory(boot) ;

I/ define component type

ComponentType type = tf.createFcType(....);

// define controller description

ControllerDescription controllerDesc = new Controll erDescription(name,
hierarchicalType);

/I define content description

ContentDescription contentDesc = new

ContentDescription(implementationClass,
constructorParameters);

/l instantiate component

Component ¢ = gf.newFclnstance(type, controllerDesc , contentDesc);

The bootstrap component is retrieved by checkimgfthctal.provider java property (in our

implementation,org.objectweb.proactive.core.component.Fractive). The
controller part of the component is described @amtrollerDescription object. The
content part of the component is described @oatentDescription object.

The instance of a component is represented in EiuiThenewFcinstance method on
the component factory returns a Component objdctis la remote reference of type
Component on the active object which implements the companen

GridCOMP FP6-034442 page 11 of 45 D.CFI.06

4
|
|
|
|
1

i |

. |
|
|
1
1
|
|
1
1

e i
Gunpnnem:

componsnt
mets-objecta

——————————————

“primitive component
implemantation

references on the component

Figure 3 ProActive M eta-Object ar chitecturefor primitive components

Before describing the architecture of a componerthe ProActive library, we first need to
clarify the terminology concerning the typing, betm objects and components. In the Java
language, which follows the object paradigm, the lentities are objects. An object is an
instance of a class. The services offered by thgschre defined by the methods of this class.
In the GCM, which follows the component paradigre tlive entities are instances of
components. The services offered by the componrerdefined by its server interfaces. These
server interfaces themselves define methods, vdrelthe actual services.

As a consequence, in the object paradigm, an itistenm returns an object of a type
compatible with the specified class, whereas in dbmponent paradigm, an instantiation
returns a component of type compatible with thecsigel component type. In the GCM Java
API, a reference on a component is a referencen@bgect of type Component.

Figure 3 represents an instance of a ProActive/G@Whitive component and Figuré
represents a composite one.

The design of the implementation of ProActive/GCiMnponents relies on the general design
of active objects represented in Figure 2. It haaveexhibits specificities. First of all, a
reference on a component from an object A is aeaf®e on &omponent object called the
representative, which we can clearly see in théobotieft-hand corner of the figure. This
Component object acts as a stub in the standarécBve architecture, although for
performance reasons, a smart proxy pattern is imgadted so that common operations, such
as getting a reference on a component interfaegpenformed locally. Using the services of a
component implies getting a reference on a givermeth interface (using the
getFcinterface method), then invoking methods on this interfatiee instance of the
Component object holds references on local representatifeth® functional and non
functional interfaces. These representatives astwds objects, as they reify invocations and
transmit these reified invocations to the proxyeThterfaces representatives are generated
dynamically at the creation of the component, oremwiretrieving a reference on this

GridCOMP FP6-034442 page 12 of 45 D.CFI.06

X ,«ff@m
GridCOMP © 55
component through a lookup mechanism. For the gsakelarity, only one of these
Interface object is represented on this figure, althoughfwaictional and non functional
interfaces are dynamically created locally wherating the reference to the component.

The controller part of the component is implemerasaneta-objects as can be seen in the top
right-hand corner of the figures. These meta-obj@&oiplement controllers, in particular the
basic controllers (binding, lifecycle etc...).

femmmeemmemmmeemeoeee e
! o dynamically generated object

]
*

B

functional imtarfaces

) Component

raified e m =T R ohjsct
__invocation . N N e e e e e e e ;

componant
meta-ohjecta

composite root objsct

)
1
1
I
i
1
]
]
i
1
1
]
4

references on the component

Figure 4 ProActive M eta-Object architecture for composite components

3.2.1.1 Primitive components

In a primitive component, the content of the congrincorresponds to an implementation
class, which in ProActive is the root object of Hutive object, as represented on the bottom
right-hand corner of the Figure 3. Following the I&Gpecification, the primitive class may
have to implement some callback interfaces such BasdingController or
AttributeController , which are invoked from the meta-level for perforg
operations which are dependent on the applicatiygementation code.

3.2.1.2 Composite components

Figure 4 represents an instance of a composite componemorposite component is a
structuring component which does not have any lessirtode. There is only one exception
case allowing a composite component to have aneimghtation class: if the composite
component has arittributeController and therefore, the provided class is the
implementation of théttributeController . Hence the empty composite object as the
root of the active object. However, a composite ponent still offers and requires functional
services, and the interface objects correspondiripdse services are implemented as meta-
objects, as represented on the top right-hand coifritde figure. They may represent internal
client interfaces or external client interfaces. cdmposite component also offers a

GridCOMP FP6-034442 page 13 of 45 D.CFI.06

/C,{?/Za\\«
X A =M-0N
SridCoMP S g8 "
ContentController interface and implementation as a meta-objectcéortrolling the

components it may contain.

3.2.2 Controllers

The control part of the component is fully custoatile, and the configuration is specified in
an XML file, which specifies which control interfag are offered, and which control classes
implement the control interfaces. The default ogufation file is provided in the Appendix
A. We can see the standard required controllersbiinding, content, name, super ... The
binding controller is actually only instantiated @¢ase of client interfaces, and the content
controller is only instantiated for composite coments. Some other controllers are related to
the features offered by this implementation: migrat management of gathercast/multicast
interfaces and monitoring.

For instance with th8indingController , We can see that for each controller we define
the java interface and its implementation clas® $éction 3.2.4 shows how we can use this
configuration file to use controller as interceptor
< control ler>
< interface>
org.objectweb.proactive.core.component.controller. ProActiveBindingCon
troller
</ interface>
< inplenentation>
org.objectweb.proactive.core.component.controller. ProActiveBindingCon
trollerimpl
</ inplenmentation>
</ controller>

Monitor Controller

The

org.objectweb.proactive.core.component.controller.M onitorContr

oller is an optional controller which can provide vasaiatistics related to a given method
of the server interface of a component. It is nddde GCM autonomic features and provides
more information to user in the GIDE [GID] tool.

The statistics provided by the MonitorControlleloal users to be informed in real time on
the Quality of Service (QoS) of a component andstraventually, to decide to reconfigure
their application to improve the global performance

In the ProActive library, each Active Objects, asaleach component in the CFI, emits JMX
notifications at the time of the arrival and theaeure of a request in the incoming queue of
a method of the Active Object, at the end of exeocuand when updating a future. JIMX is a
notification mechanism, based on java events, tibitws alerts to be sent to client
management applications. TidonitorController uses this feature to compute the
statistics of the component. For each method oh essever interface of a component, the
MonitorController creates an instance of
org.objectweb.proactive.core.component.controller.M ethodStatis

tics. This instance will then stock all the generated®etive JMX notifications related to
the method and, thus, can provide the differetissizs available:

» The current number of pending request in the queue.

GridCOMP FP6-034442 page 14 of 45 D.CFI.06

GridCOMP © 6%

» The average number of requests per second foaligpast X milliseconds or since
the beginning of the monitoring.

* The latest service time in milliseconds. In theecas composite component, this
service time is related to the real execution tinge,to the time the subcomponent has
taken to execute the request. Moreover, if therfite is an internal multicast
interface, the service time retained is the ont@fsubcomponent which has taken the
most of time to execute the request.

» The average service time in milliseconds duringlés¢ N method calls or in the last
past X milliseconds or since the beginning of thanitoring.

* The latest inter-arrival time in milliseconds.

* The average inter-arrival time in milliseconds dgrihe last N method calls or in the
last past X milliseconds or since the beginninthefmonitoring.

* The average permanence time in the incoming queuaelliseconds during the last N
method calls or in the last past X milliseconds simce the beginning of the
monitoring.

» The list of all the method calls (server interfgcewoked by an invocation on this
method.

PriorityController
In order to add the possibility of having Non Fuowal prioritized requests, a new controller

has been implemented:
org.objectweb.proactive.core.component.controller.P riorityCont
roller . This feature has been added to solve issues rgugufor instance during

reconfiguration or for autonomic features developethe WP3. Using this controller, non
functional requests may have a different prioritid a&an pass other requests in the queue.
Thus, in a first step, the request types have lee¢ended and a priority order has been
decided. Now, by using the priority controller t@nage the priority of each method exposed
by a component, requests can be:
* Functional requests, which always go at the erttiefjueue.
» Standard Non Functional requests (NF1), which gésat the end of the queue.
* Non Functional prioritized requests (NF2), whicim gess the Functional requests but
not pass the other Non Functional requests.
* Non Functional most prioritized requests (NF3), abhican overtake all the other
requests.

3.2.3 Lifecycle

A component has a lifecycle which is managed bgraroller allowing to set the state of the
component:

» Stopped: only control requests are served.
» Started: all requests, control and functional semed.

This lifecycle is implemented by customizing théaty of the active objects.

GridCOMP FP6-034442 page 15 of 45 D.CFI.06

. ,«{Cf@M

BridCOMP © 657
In the context of components, we distinguish thenponent activity (the non-functional
activity) from the functional activity. The companteactivity corresponds to the stopped state
of the lifecycle of the component (i.e. only comtrequests are served). The functional
activity is encapsulated and starts when the lgkrys started. The default behaviour is to
serve all control requests in a FIFO order untié tbomponent is started using the
lifecycle-controller. T hen, a component serves all requests, control and
functional, in a FIFO order, until the lifecycle stopped. The functional activity is
encapsulated in the component activity. This issthated in Figure 5.

? creation of active object
Component activity initialization i

Component activity execution '

[Functionat activity initialization |

b

[Functional activity execution]

4c>{ Component activity end]

-

.tenninalion of active object

__

related to component activity

related to encapsulated functional activity

Figure 5 Default component activity

By default in ProActive, an active object is actitke isActive () condition is true) until
the terminate method is called. With components, th®Active () condition is
overridden when the component is in the functi@eivity and corresponds then to the state
of the lifecycle. During the component activityetisActive () condition reacts as for any
active objet.

GridCOMP FP6-034442 page 16 of 45 D.CFI.06

GridCOMP © 6%

ProActive offers the possibility to customize thativty of an active object; this is actually a
fundamental feature of the library, as it allowsulty specify the behaviour of active objects.

Thus, in term of components, the component activiyy be customized by implementing the
ComponentinitActive , ComponentRunActive and ComponentEndActive java
interfaces. By default, the component activity ialization and the component activity
termination are done only one time:

* The initialization phase is done during the ingtdimn of the component (directly
followed by the component activity execution). Fréms moment on, the component
is in the active state in term of activity of aetiebject (thesActive () condition
on the Figure 5 Default component activity is true)

* The termination phase is done whenig#ctive () condition is false, i.e. when the
terminate method of the active object representing the corapbis called.

Second, the functional activity may also be cuskamhiby implementing thiitActive ,
RunActive andEndActive interfaces. Two conditions must be respected thotmy a
smooth integration with the component lifecycle:

1. The control of the request gueue must use the
org.objectweb.proactive.Service class.

2. The functional activity must loop on thgActive() condition (this is not
compulsory, but it allows to automatically end themctional activity when the
lifecycle of the component is stopped. It may disomanaged with a custom filter
on the request queue).

By default, when the lifecycle is started, the fiimaal activity is initialized, run, then ended
when theisActive() condition is false, i.e. when the lifecycle isggted.

3.2.4 Interception mechanism

The GCM specification states that a component obfletr can intercept incoming and
outgoing operation invocations targeting or origimg from the component’s subcomponents.
This feature is provided in the ProActive/GCM immlentation, and it allows an interception
at the meta-level, of reified invocations, with figarable pre and post method processing. It
is an easy way of providing AOP-like features, mer to deal notably with non functional
concerns. Interceptors may intercept incoming amtbaing invocations, and they are
sequentially combined. An interceptor is a componeontroller with some additional
implemented interface allowing the definition oftians to do before and/or after a
communication. With these capabilities, the messagy be inspected but can not be
modified. This mechanism could be used for exanmple non-functional controller wanting
to react in function of the communication acti\atigime to serve request, number of served
request ...).

An input interceptor is a controller which must iempent the
org.objectweb.proactive.core.component.interception Inputinter
ceptor interface, which defines the following methods:

I public void beforelnputMethodInvocation(MethodCall methodCall);

GridCOMP FP6-034442 page 17 of 45 D.CFI.06

I public void afterinputMethodInvocation(MethodCall m ethodCall);

The MethodCall object represents the reified invocation in theoAetive library.

Similarly, an output interceptor must implement the
org.objectweb.proactive.core.component.interception .Outputinte
rceptor interface, which defines the following methods:

public void beforeOutputMethodlInvocation(MethodCall methodCall);

public void afterOutputMethodInvocation(MethodCall methodCall);

The input interceptionmechanism occurs at the service of the requesteirmembrane: the
reified request is delegated to the input contrsllefore and after the method is processed.

The output interceptionrmechanism occurs in the interface representatieoge code is
dynamically generated as showed in the bottomhiaftd corner Figure 3 and Figutewhen

the invocation is reified: before and after transfg the invocation to the connected
component, the reified request is delegated tathput interceptors. The output interception
is realized by replacing, during a binding opematithe server interface representative by a
server interface representative of the same tygp®aming the interception code.

Interceptors are configured in the controllers XMbanfiguration file, by simply adding
input-interceptor="true" or/andoutput-interceptor="true" as attributes
of the controller element in the definition of antwller (provided of course the specified
interceptor is an input or/and output intercept&Qr example a controller that would be an
input interceptor and an output interceptor woldddefined as follows:

<controller i nput-interceptor="true" output-interceptor="true">
<interface>InterceptorControllerinterface</int erface>
<implementation>Controllerimplementation</impl ementation>

</controller>

For input interceptors, thebeforelnputMethodinvocation method is called
sequentially for each controller in the order inieththey are defined in the controllers
configuration file. TheafterinputMethodInvocation method is called sequentially
for each controller in theeverse ordethey are defined in the controllers configuratie.
For instance, in the following controller configtiom file, the list of input interceptors
declares first,Inputinterceptorl , and second]nputinterceptor2; then, an
invocation on a server interface will follow thetipaescribed in Figure 6.

<?xml version="1.0" encoding="UTF-8"?>
<componentConfiguration

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instan ce"
xsi:noNamespaceSchemalocation="component-config.xs d"
name="defaultConfiguration">

<l-- ... other controllers -->

<!-- input interceptors -->
<controllers>

<controller i nput-interceptor="true">

<interface> | nput | nt er cept or 1</interface>

<implementation> Inputinterceptorlimplementati on</implementation>
</controller>
<controller i nput-interceptor="true">

<interface> | nput | nt er cept or 2</interface>

<implementation> Inputinterceptor2lmplementati on</implementation>

</controller>
</controllers>

GridCOMP FP6-034442 page 18 of 45 D.CFI.06

o

I§

I </componentConfiguration>

caller
InputInterceptorl (kheforeInputMethodInvocation)
InputInterceptor? (heforeInputMethodInvocation)
callee
InputInterceptor? (afterInputMethodInvocation)
InputInterceptorl (afterInputMethodInvocation)

Figure 6 Execution sequence of an input inter ception

For output interceptors, théeforeOutputMethodInvocation method is called
sequentially for each controller in the order tlaeg defined in the controllers configuration
file. The afterOutputMethodInvocation method is called sequentially for each
controller in thereverse orderthey are defined in the controllers configuratide. For
instance, in the following controller configuratidite, the list of output interceptors declares
first Outputinterceptorl and secondutputinterceptor2 ; then, an invocation
on a client interface will follow the path describi@ Figure 7.

<?xml version="1.0" encoding="UTF-8"?>
<componentConfiguration

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instan ce"
xsi:noNamespaceSchemalocation="component-config.xs d"
name="defaultConfiguration">

<!I-- ... other controllers -->

<!I-- output interceptors -->
<controllers>
<controller output-interceptor="true">
<interface>Outputinterceptorl</interface>
<implementation>Outputinterceptorlimplementati on</implementation>
</controller>
<controller output-interceptor="true">
<interface>Outputinterceptor2</interface>
<implementation>Outputinterceptor2Implementati on</implementation>
</controller>
</controllers>
</componentConfiguration>

GridCOMP FP6-034442 page 19 of 45 D.CFI.06

o

caller
CutputInterceptorl (beforefutputMethodInvocation)
CutputInterceptor? (beforefutputMethodInvocation)
callee
OutputInterceptor? (afterCutputMethodInvocation)
OutputInterceptorl (afterfutputMethodInvocation)

Figure 7 Execution sequence of an output inter ception

An interceptor being a controller, it must followet rules for the creation of a custom
controller (in particular, extené\bstractProActiveController). Input interceptors
and output interceptors must implement respectitiedy interfacesnputinterceptor

and Outputinterceptor respectively, which declare interception methogee/post
interception) that have to be implemented.

Here is a simple example of an input interceptor:

public class Mylnputinterceptor extends Abstract ProActiveController
implements I nput | nt er cept or, MyController {
public Mylnputinterceptor(Component owner) {
super(owner);

/l some init code

})Ifoo is defined in the MyController interface
public void foo() {
/I foo implementation

public void af t er | nput Met hodl nvocat i on(MethodCall methodCall) {
System.out.printin("post processing an intercep ted an incoming
functional invocation");

/I interception code

public void bef or el nput Met hodl nvocat i on(MethodCall methodCall) {

System.out.printin("pre processing an intercept ed an incoming
functional invocation™);

/I interception code
}
}

The controller is included in the configurationao§iven component as follows:

<componentConfiguration>
<controllers>

<controller i nput-interceptor="true">
<interface>MyController</interface>
<implementation>MyInputinterceptor</implementa tion>

</controller>

GridCOMP FP6-034442 page 20 of 45 D.CFI.06

B0
GridCOMP (e
3.2.5 Communications

Communications between components in ProActive/Gdgur through interface references,
and rely on the standard ProActive communicatiorchraaism, or through web services.
They may therefore use any underlying protocol sugg by ProActive (RMI, RMIssh,
http...), and the semantics of invocations are,kepich means that some conditions must be
respected for an invocation to be asynchronoupahticular, if the invoked method throws
any exception, the invocation is synchronous.

As well as standard communication, the GCM alloatadstream and event ports to be used
in component interaction. For the moment, there erquirements for this kind of
communication; consequently we are eventually gamgrovide the data/event ports. We
will consider results from other projects, suchtlas Dream project [DRE] in the Fractal
community that provides components implementingiovs communication paradigms
including event, data, etc.

3.2.5.1 Optimization with short cuts (‘shortcut’)

Communications between components in a hierarchicalel may involve crossing several

membranes of enclosing composite components, agefdre paying the cost of several
indirections. If the invocations are not intercepta the membranes, then it is possible to
optimize the communication path by communicatingeaiy from a caller component to a

callee component, avoiding indirections in the meanbs.

We provide a short cut mechanism for distributeshpgonents, and the implementation of this

mechanism relies on a tensioning technique: tisé ifivocation determines the short cut path,

and then the following invocations will use thioshcut path. As a consequence, the rendez-
vous of the communication between a client andneesénterface, which guarantees causally

ordered communications, does not end until thectife server interface has been reached
(and the calling thread has returned).

GridCOMP FP6-034442 page 21 of 45 D.CFI.06

FTaIN
GridCamE

e

a. all components are colocated: 5 local communications

c. optimization through shortcuts: 2 local communications

Figure 8 Using short cutsfor minimizing remote communications

For instance, in Figure 8, a simple component systehich consists of a composite
containing two wrapped primitive components, isrespnted with different distributions of
the components. Ima, all components are located in the same JVM, toereall
communications are local communications. If the ppiag composites are distributed on
different remote JVMs, all communications are regno¢cause they have to cross composite
enclosing components. The short cut optimizationaisimple bypass of the wrapper
components, which results in 2 local communicatitorsthe sole functional interface. The
shortcut mechanism handle also other situation,faot all communication through
synchronous composite component could be bypassed.

Short cuts are available when composite comporaetsynchronous components (this does
not break the GCM model, as composite componemtsiauctural components unless that
composite used autonomic non functional featur€&)mponents can be specified as

GridCOMP FP6-034442 page 22 of 45 D.CFI.06

GridCOMP © 6%

synchronous in th&€ontrollerDescription object that is passed to the component

factory:
ControllerDescription controllerDescription =
new ControllerDescription("name”, Constants. COMPOSITE,
Constants.SYNCHRON ous);
When the system properfyroactive.components.use_shortcuts is set to true,

the component system automatically establishest shus between components whenever
possible.

3.2.5.2 Stream ports

A first support for stream ports is available by ings the Java interface
org.objectweb.proactive.extensions.webservices.Stre aminterface

as a tag on the java interface definition of a congmt interface. During instantiation of a
Fractal interface type, the implementation ensui@seach interface implementing the
StreamInterface that all methods it defined have a void return gahtherwise the type
creation failed. At the moment, there is no spe@bmmunication optimization, the provided
stream interfaces just allow to express in thegiefie stream behaviour of a port.

3.2.5.3 Exporting components as Web Services

The ProActive middleware offers the possibility etporting each active object as web
service. Since, in our implementation, each compbig implemented as an active object,
component can also be easily exported as web ssrvic

A web service is a software entity, providing one several functionalities that can be
exposed, discovered and accessed over the netwWtmteover, web services technology
allows heterogeneous applications to communicateexchange data in a remotely way. In
our case, the useful elements, of web services are:

» The SOAP Message: it is used to exchange XML bdag&lover the Internet. It can
be sent via HTTP and provides a serialization farfoba communicating over a
network.

 The HTTP Server: HTTP is the standard web protgewierally used over the 80
port. Since ProActive 4.0.0, each ProActive runtiemabeds a Jetty web server.
This avoids users to install their own web server.

« The SOAP Engine: a SOAP Engine is the mechanismorsible of making
transparent the unmarshalling of the request aadnthrshalling of the response.
Thus, the service developer doesn't have to woitty SOAP.

* The client: Client's role is to consume a web it is the producer of the SOAP
message. The client developer doesn't have to waogut how the service is
implemented.

GridCOMP FP6-034442 page 23 of 45 D.CFI.06

SN
I

=L

]

ProActive

Communication Communication

PROACTIVE
APACHE SOAP RUNTIME

| 2. Data
> Unmarshalling

1. Service Call

Service S
Consumer M
-

6. Return result

to consumer 5. Marshllin
of a SOAP

response

4.ProActive call

=re

1

3. Get the ProActive
reference
of the service

Figure 9 The figure shows the steps when an active object iscalled via SOAP.

However, there is a notable difference with actbgects. When exposing a component as a
web service, all the methods of all its client ifaees are automatically exposed as web
services while with active objects, only one methad be exposed at once.

To export a component as web service, only oneitionds required: the component must be
started. Once the component started, the exportingdone in one call with the
org.objectweb.proactive.extensions.webservices.WebS ervices

API:

WebSer vi ce. exposeConponent AsWebSer vi ce(Component component, String url,
String componentName)

In a same manner, unexpose a web service is dahehegi method:

WebSer vi ce. unExposeAsWebSer vi ce(String componentName, String url,
Component component)

3.3 Mechanism and implementation of collective inte rfaces

In order to provide facilities for parallel prograning, GCM defines collective interfaces. To
sum it up, the idea is to introduce multicast aathgrcast interfaces: multicast interfaces are
used for parallel invocations and data redistrdnytiand gathercast interfaces are used for
synchronization and data gathering. The configarabf the collective interfaces policies
uses annotations in Java interfaces.

The signatures of methods of client and serverfaxtes are different when using collective
interfaces and different dispatch or gather mode. [t parameters and return types, the
possibilities in our implementation are summariaedrigure 10. Broadcast mode is not yet
supported for the redistribution of results in gatast interfaces.

GridCOMP FP6-034442 page 24 of 45 D.CFI.06

33

LA

GridComp ‘f

'\(

,g-,\:
C

GC/ =

ar

1

client inferface server interface

A foo (List=B>) (broadcast mode)

mulficast List<A> foo (List<B=)
A foo (B) (scatter mode)

A bar (B) (scatter mode)
gathercast List<A= bar (List<B=)

Hatfe-bar-B dreadenstrroded

Figure 10 Adaptation of method signatures, with list parameters or return types, between client and
server interfacesfor collectiveinterfaces.

The framework provides transparent adaptation othote invocations and distribution of
parameters, through proxies and controllers. Coitifigt of client and server interfaces is
checked at runtime, although this could be cheeltatksign-time using assembly tools.

3.3.1 Multicast interfaces

The implementation of multicast interfaces reliestwo principles: first, reuse the existing

mechanism for typed group communications in ProAgtiand second use a delegation
mechanism for adapting the signatures of the iated. Therefore, two group proxies are
used for a multicast invocation: the first proxyrresponds to the signature of the client
interface, and the second one to the signaturehef gerver interfaces. Bindings are
transparently handled so that the client componecgives a reference on a group proxy of
the type of the client interface.

delegatee interfece group

invocation adaptation
and delegation
batwean group proxies

void barfList<A=) void bar(A)
reified invocationa

Figure 11 Adaptation and delegation mechanism for multicast invocations

This mechanism is illustrated in Figure 11, whidtresponds to the design represented in
Figure 12.

GridCOMP FP6-034442 page 25 of 45 D.CFI.06

o

I§

void barl)

void bar{l ist =A=)

void barl -Ilh

Figure 12 An example of multicast interfaces. the signature of an invoked method isexposed, and in this
case exhibits a scattering behaviour for the parameters

When an invocation is performed, a reified invomatis first created (here on metheoid
bar(List<A>)), given to the first group proxy, which delegaitet® a second proxy of the
type of the server interfaces (for invocations athodvoid bar(A)). Parameters are then
automatically distributed according to the disttibo policy specified as an annotation, and
the second proxy transfers the new reified invoretito connected server interfaces in a
parallel manner (using the standard multithreadimechanism of ProActive typed groups).
This delegation and adaptation process betweerpgoonxies is implemented by extending
the standard group proxy, the ProxyForGroup class, into the
ProxyForComponentinterfaceGroup

3.3.1.1 Configuration

The distribution of parameters in our frameworlspecified in the definition of the multicast
interface, using annotations. Elements of a mudtigaterface which can be annotated are:
interface, methods and parameters. The differesitibluition modes are explained later. The
examples in this section all specify broadcashadistribution mode.

I nterface annotations

A distribution mode declared at the level of theeiface defines the distribution mode for all
parameters of all methods of this interface, buy rha overridden by a distribution mode
declared at the level of a method or of a param@tes annotation for declaring distribution

policies at level of an interface is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.ClassDispatchMetadata and is used as follows:

@ assDi spat chMet adat a(
mode = @ Par anDi spat chMet adat a(mode = Par anDi spat chMbde. BROADCAST)

)
interface MyMulticastltf {

public void foo(Li st <T> parameters);

}

Method annotations

A distribution mode declared at the level of a roethiefines the distribution mode for all
parameters of this method, but may be overriddaheltevel of each individual parameter.
The annotation for declaring distribution policieat level of a method is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.MethodDispatchMetadata and is used as follows:

I @kt hodDi spat chMet adat a(

GridCOMP FP6-034442 page 26 of 45 D.CFI.06

S -0

GridComMP (e

/
e

ohe Grics @)

mode = @ Par anDi spat chMet adat a(mode = Par anDi spat chMbde. BROADCAST)
public void foo(List<T> parameters);

Parameter annotations

The annotation for declaring distribution policieat level of a parameter is
@org.objectweb.proactive.core.component.type.annota tions.multi
cast.ParamDispatchMetadata and is used as follows:

public void foo(
@ Par anDi spat chMet adat a(mode = Par anDi spat chMbde. BROADCAST)

List<T> parameters);

For each method invoked and returning a resulypé T, a multicast invocation returns an
aggregation of the results: a List<T>. There ig/@etconversion, from return type T in a
method of the server interface, to return type 4Jst in the corresponding method of the
multicast interface. The framework transparentlydias the type conversion between return

types.
Available distribution policies

Five modes of distribution of parameters are predidy default, and define distribution
policies for lists of parameters:

« BROADCAST copies a list of parameters and sends a copydo eannected server
interface.

* ONE-TO-ONE sends theth parameter to the connected server interface axind
This implies that the number of elements in thectamed list must be equal to the
number of connected server interfaces.

« ROUND-ROBIN distributes each element of the list parameter inound-robin
fashion to the connected server interfaces. iF@ements in the list parameter,
method calls are made.

* UNICAST sends one value of the list of parameters to onky of the connected
server interfaces. The index of the argument tadsamd the server interface are
specified by using a custom controller that extdviditicastController.

+ RANDOM distributes each element of the list of values raradlom manner.

It is also possible to define custom distributidaysspecifying the distribution algorithm in a
class. This class needs to implement the
org.objectweb.proactive.core.component.type.annotat ions.multic
ast.ParamDispatch interface, thereby defining the distribution aigfan which will be
used during the dispatch phase. There are onlg thiethods to implement:

public List<Object> di spatch (Object i nputParaneter,
int nbQut put Recei ver s) throws ParameterDispatchException;

public int expect edDi spat chSi ze (Object i nput Par anet er,
int nbQut put Recei ver s) throws ParameterDispatchException;

public boolean mat ch (Type client Sidel nput Paraneter,

GridCOMP FP6-034442 page 27 of 45 D.CFI.06

7o «
GridCOMP otk
I Type server Si del nput Par anet er) throws ParameterDispatchException;

Then the custom dispatch mode is used as follows:

@rar anDi spat chMet adat a(mode = Par anDi spat chbde. CUSTOV
customMode = Cust onmPar anet er sDi spat ch. cl ass))

Dynamic dispatch

Moreover, as the implementation of multicast irdeds reuses the existing mechanism for
typed group communications in ProActive, it berseffrom features offered by this
mechanism and in particular the dynamic dispatch.

First step is the partitioning of parameters aciogrdo the distribution mode as previously
described. A set of tasks is generated, correspgndi the given partitioning scheme. The
dispatch operation follows; it maps generated tasksonnected server interfaces, using one
of the available dispatch modes: broadcast, roobhihy random, custom or dynamic. With
this last one, buffered tasks are statically aiedao connected server interfaces using the
default allocation mode. Then, remaining tasks luffered) are dynamically allocated to
most appropriate connected server interfaces wimctease the global performance of the
execution. The buffer size can also be configufBae dispatch policy is still specified
through an annotation, org.objectweb.proactive.gooeip.Dispatch, at the method level:

I @i spat ch(mode = Di spat chMode. DYNAM C, bufferdSize = myBufferSize)

Reduction of results

Usually, when calling a method on a multicast ifatee, the provided result, if there is a
result, is a list of values. But, with the reduntimechanism, developer can choose to reduce
the received results, i.e. gather and/or perfornmes@mperations on the list of values; for
instance compute the average on a list of int aedteally return a double as result. In order
to use it, the specific annotation
org.objectweb.proactive.core.component.type.annotations.multicast.Reduce must be
set at the method level and must specify the modetused. Two modes are provided in the
class org.objectweb.proactive.core.component.tyoeiations. multicast. ReduceMode:

« SELECT_UNIQUE_VALUE, which considers that the kigintains just one value and
returns this value.

« CUSTOM, which allows the developer to define itsnoveduction algorithm. This
algorithm must be defined in a class implementing he t
org.objectweb.proactive.core.component.type.aniooigimulticast. ReduceBehavior
interface.

Thus, the reduction mechanism is used as follow:
I @reduce(reductionMode = ReduceMode. SELECT_UNI QUE_VALUE)

If the reduction fails, a
org.objectweb.proactive.core.component.excepticduRtionException is raised.

3.3.2 Gathercast interfaces

The implementation of gathercast interfaces inframework is restricted to the management
of a basic synchronization. Synchronization poigyot configurable, except for a timeout

GridCOMP FP6-034442 page 28 of 45 D.CFI.06

which can be specified if the method returns alteBata redistribution policies for results
are not configurable and the redistribution of hssoccurs in a one-to-one manner to the
client interfaces.

Bindings to gathercast interfaces are bi-directiorsgnce gathering operations require
knowledge of the participants, which means that skever gathercast interface holds a
reference to its clients. This is used for synclmation: once an invocation on a given
method fool comes from a client interface, the gathercastrfeate will create the
corresponding request to be processed by the seowmgponent until all clients have sent an
invocation on this methofbol . Until this condition is reached, the requestscareued in a
special queue.

When the reified invocation on methéaobl from the last connected client is served, the
synchronization condition is reached, and a nefiettinvocation is created by gathering all

parameters from all client invocations. The neMiediinvocation is then served by the server
component.

The data structure representing the queues of sexjeeified invocations) is illustrated in
Figure 13. In the figure, we can see the enqueeedests for one gathercast interface
(gathercastltfl) and two different methods. Suppose we have ttliepts, ancRi is an
incoming request from cliemt In the case dfool , when the request on this method coming
from client3 will be served, then a new request will be created served by the component,
and the queue will be emptied of the correspondigiestsR1, R2 andR3correspondingt
the first line of the box in columméquest from clientand line fool’ in the Figure 13). We
can also observe that cliebtinvokedfool twice, but the mechanism waits for the first
gueue to be full until processing any other quewen though they are full. This is a way to
guarantee causal dependency.

gathercast interface name invoked method
fool
gathercastiti1
foo2

. '
. /

Figure 13 Data structurefor the buffering of requestsin gather cast interfaces

GridCOMP FP6-034442 page 29 of 45 D.CFI.06

3.3.2.1 Asynchronism and management of futures

One fundamental feature of the ProActive/GCM is d@isgnchronism of method invocations:
we want to preserve it in the context of gatheraatstrfaces, not only between client and
server gathercast interface, but also for the toameed invocation in the gathercast interface.

When the invoked method returns void, there ismblem as this is considered as a one-way
invocation in ProActive, no future result is expastt If the invoked method returns a result
however, the method returns a future, althoughirtfiecation has not been processed yet (an
invocation on a gathercast interface will not pexteauntil all client interfaces invoked the
same method). We faced a complex problem: how tiarrreand update futures of client
invocations on gathercast interfaces? We considesedstrategies. The first one was to
customize the request queue so that a local datatwte (similar to the one described in
Figure 13) would handle the incoming requests &ihgrcast interfaces. A second option was
to use a dedicated tier active object for handiirigres

As we did not want to intervene in the core of BreActive library by modifying the request
gueue, we selected and implemented the secondnoplize mechanism is illustrated in
Figure 14. One futures handler active object isate@ for each gathercast request to be
processed. It has a special activity, which onlyee distribute requests once it has received
the setFutureResult request.

When a request from a client is served by the gedis¢ interface, it is enqueued in the queue
data structure, and the result which is returndatiesresult of the invocation of the distribute
method (with an index) on the futures handler dbj€bis result is therefore a future itself.

When all clients have invoked the same method ergtthercast interface, a new request is
built and served, which leads to an invocation Wwhgperformed either on the base object if
the component is primitive, or on another conneatéetface if the component is composite.
The result of this invocation is sent to the futurbandler object, by invoking the
setFutureResult method. The futures handler will then block utiié result value is
available. Then the distribute methods are serneldtlae values of the futures received by the
clients are updated.

GridCOMP FP6-034442 page 30 of 45 D.CFI.06

{7
s

e

</

/
e

2
S

the Grids

GridCOMP ¢

Tut handler active object

gathen:agl clients

gathercast server component

tier mpm&t to which is
delegated the gath T it

e

requests on gathercast interface
futuresHandler distribute(id)

®&a
ORORCRCRD

result of futuresHandler_distribute(id)
conditions reached: serving gathercast request
futures handler gets the future from 7

Figure 14 Management of futuresfor gathercast invocations

Although this mechanism fulfils its role using teandard mechanism of the library, we
observed that it does not scale very well: onevaaibject for managing futures is created for
each gathercast request, and even though we imptetha pool of active objects, there are
too many active objects created the gathercastface is stressed. Therefore, the first
approach described above should be preferred ifuthee.

3.3.2.2 Timeout

It is possible to specify a timeout, which corrasg® to the maximum amount of time
between the moment the first invocation of a cliemérface is processed by the gathercast
interface, and the moment the invocation of thé déient interface is processed. Indeed, the
gathercast interface will not forward a transformedocation until all invocations of all
client interfaces are processed by this gatherdagrface. Timeouts for gathercast
invocations are specified by an annotation on te¢hod subject to the timeout, the value of
the timeout is specified in milliseconds:

@org.objectweb.proactive.core.component.type.annota tions.gathercast.Met
hodSynchro(timeout = 20)

If a timeout is reached before a gathercast interi@ould gather and process all incoming
requests, a
org.objectweb.proactive.core.component.exceptions.G athercastTi
meoutException is returned to each client participating in theocation. This exception

is a runtime exception. Timeouts are only applieaid methods which return a non-void
value: there is no simple way otherwise to infohm tlient that the timeout has been reached:
the client would need to provide a callback integfawhich does not fit well with a simple
invocation-based programming model.

Nevertheless, aaitForAll mode is available for thilethodSynchro annotation in order to
relax the synchronisation constraints on gatherocéstfaces. By using theaitForAll mode,
developer can choose to have a gathercast intesfdmeh will create and execute an

GridCOMP FP6-034442 page 31 of 45 D.CFI.06

GridCOMP © 6%

invocation on the first request received from arytlee connected client interfaces and
therefore to not wait requests from other connectaht interfaces. ThevaitForAll mode
takes as parameter a boolean indicating if the ogethust wait or not requests from all
binded client interfaces:

@org.objectweb.proactive.core.component.type.annota tions.gathercast.Met
hodSynchro(waitForAll = false)

Moreover, using this mode does not require any iBpethanges on the client and server
interfaces.

Actually, this provides to gathercast interfacesyametrical behaviour to the multicast
unicast mode.

3.4 Deployment

The deployment of Grid applications is often donanomally, using remote shells for
launching the various virtual machines or daemamgemote computers and clusters. The
commoditization of resources through Grids andiniceesasing complexity of applications are
making the task of deploying fundamental since iharder to perform. The CFI succeeds in
completely avoiding scripts for configuration, gegtcomputing resources, etc. It provides, as
a key approach to the deployment problem, an atigirafrom the source code so as to gain
in flexibility. Now, we describe the fundamentainmiples of the deployment framework, and
more information and examples are available froen@Fl documentation provided as annex
to this deliverable.

Principles

A first key principle is to fully eliminate from #ghsource code the following elements:
* machine names,
» creation protocols,
» registry and lookup protocols.

The objective is to deploy any application anywhai¢hout changing the source code.
Deployment sites are called nodes, and correspondPfoActive to JVMs which contain
active objects. A second key principle is the cijgio abstractly describe an application, or
part of it, in terms of its conceptual activitid$ie two following requirements are needed to
abstract the underlying execution platform and kéep source code independent from
deployment:

e an abstract description of the distributed entitedsa parallel program or
component,

* an external mapping of those entities to real nred)i using actual creation,
registry, and lookup protocols.

XML deployment descriptors

GridCOMP FP6-034442 page 32 of 45 D.CFI.06

/C,{?L"‘OJ\\«,
GridCoMP G2
To answer these requirements, the deployment framew the CFI relies on two XML
descriptors. Those descriptors have been standdrdiy the ETSI as “GCM Deployment
Descriptor” and “GCM Application Descriptor”.

-

The GCM Deployment Descriptor defines a set of majsresources to be used by the
application. It allows to describe:

» the way to create or to acquire JVMs,

» the way to register or to lookup JVMs.

The GCM Application Descriptor describes the apglan. It defines an application profile
(ProActive, MPI, Executable etc.) and all the opti@ssociated with the given profile. It also
introduces the notion of Virtual Node (VN):

* a VN isidentified as a name (a simple string),
 aVNisused in a program source,

* a VN, after activation, is mapped to either oneaoset of actual ProActive
nodes, following the mapping defined in an XML dfstor file.

* a VN represents a concept of a distributed progragomponent, while a node
is actually a deployment concept: it is an objéett tives in a JVM, hosting
active objects. There is of course a mapping betwatual nodes and nodes
created by the deployment. This mapping is spetiiie the deployment
descriptor.

GridCOMP FP6-034442 page 33 of 45 D.CFI.06

o

I§

Application code

infrastructure
description

Physical infrastructure

Figure 15 The deployment framework in the CFI.

Figure 15 summarizes the deployment framework plexviin the CFI. Deployment
descriptors can be separated in two parts: mapgiaginfrastructure. The VN, which is the
deployment abstraction for applications, is mapfedodes in the deployment descriptors,
and nodes are mapped to physical resources, tlee iafrastructure.

Retrieval of resources

In the context of the ProActive middleware, nodesignate physical resources of a physical
infrastructure. They can be created or acquire@. déployment framework is responsible for
providing the nodes mapped to the virtual nodesl use the application. Nodes may be
created using remote connection and creation potdoblodes may also be acquired through
lookup protocols, which enable access to the Pigécpeer-to-peer infrastructure, for
instance.

Creation-based deployment: Machine names, connection and creation protocods a
strictly separated from the application code, aepl@yment descriptors provide the ability to
create remote nodes (remote JVMs). For instancglogiment descriptors are able to use
various protocols:

* local,

* ssh, gsissh, rsh, oarsh,

GridCOMP FP6-034442 page 34 of 45 D.CFI.06

the Grid:

» Isf, pbs, sun grid engine, oar, prun,
o (lite,

* Microsoft CCS,

 Amazon EC2.

Deployment descriptors allow combining these prok®a order to create remote JVMs, e.g.
log on a remote cluster frontend with SSH, and thes pbs to book cluster nodes to start a
ProActive runtime on each. It is also possibletéwtsa process on the local machine

Acquisition-based deployment: The main goal of the peer-to-peer (P2P) infrastmécis
to provide a new way to build and use Grids. Thigastructure allows applications to
transparently and easily obtain computational ressifrom Grids composed of both clusters
and desktop machines. The burden of applicatiodogieent is eased by a seamless link
between applications and the infrastructure. Timk &llows applications to communicate,
and to manage the resources volatility.

Distribution of components

The deployment process is based on both the Fradl [FRADb] capabilities and the
deployment framework. A component system is usud#igcribed using an ADL, and the
location of the components is specified in the Aling the virtual node abstraction. Virtual
nodes are then mapped to the physical infrastreidiyrusing the deployment mechanism.

3.5 Legacy code wrapping

We can deploy the legacy program as a componehbuiitre-engineering the code, or even
requiring access to the source files.

In order to take into account the legacy code regquents, we should provide interfaces to
specify the attributes it possesses to the compoi®ea also design some methods to turn
legacy codes into components by providing somedst@ahAPIs to manipulate and control the
legacy codes.

3.5.1 Overview of the Solutions

Grid computing offers seamless integration of handwand software resources, databases,
special devices and services into a geographidadiyributed environment. It facilitates
flexible, secure and coordinated resource shanmgng participants. It has many potential
advantages for solving computation intensive tasksupporting collaborative works.

A grid computing environment requires special grplications for standard applications to
utilize the underlying grid middleware and infrastiure. Most grid projects develop new
applications, or significantly re-engineered exigtcodes in order to make them be able to
run on their platforms. However, since parallel €ddhs been widely used in both scientific
and industrial fields, deploying legacy applicatoon this new platform is required and
practical. Unfortunately, many companies and ingths neglect or skirt this problem, and
the consequence of such decisions is making loexisting application programs unable to

GridCOMP FP6-034442 page 35 of 45 D.CFI.06

GridCOMP © 6%

run on the new platform. In order to obtain exigtiunctionalities running on GridCOMP
environment, with the least effort and cost, thgaty applications should be reused in a grid
computing environment.

Our approach is based on creating a component leap&lexecuting legacy code over grid.
We want to deploy the legacy codes as componetik®uti re-engineering the code, or even
access the source files.

A component, in this context, is a software moduih a standardized description of what it
needs and what it provides, which can be manipdildtg tools for composition and
deployment. It enables legacy codes written in soyrce language (FORTRAN, C, Java,
etc.) to be easily deployed as grid componentsowitlany programming effort from the end-
user. A component must be deployable on any mackéxély, without mentioning the
computing environment. Actually, we assume thatuaeq resources are suitable for the
available legacy code binaries; this could be desiag constraint at deployment time (see
section 3.5.3.3). Then, when users want to exdegtecy codes, they will be able to deploy
the components to the remote computers immediafelgomponent must have complete
function modules for executing the legacy codeolfthe users will be able to manipulate the
components and control the execution state ofuhaing process that belongs to the original
legacy code. Therefore, this solution is much nayreamic and flexible than ad-hoc solution.

3.5.2 The Framework of the Legacy Code Component
3.5.2.1 Characteristics of Legacy Code

Legacy code is understood as a black box with §pdcinput and output parameters plus
some environmental requirements. Only the execeitabtle is required, in this case, and
there is only a user-level understanding of thdiemjion. This scenario is very common in
both scientific and business applications.

The assumed general characteristics of any legaag and its consequent wrapped solution
are as follows:

1. The source code is not available.

2. The program is poorly documented and the necessapertise to do any
modifications has long left the organization.

3. The application has to be ported onto the grid iwithe shortest possible time and
smallest effort and cost.

4. The functionalities are offered to partner orgatiazes but the source is not.

In order to wrap the legacy codes into GCM Comptsand make them executable over the
grid, we have researched the characteristics oflégacy code and then provided some
solutions.

Executing legacy code over the grid is very impatrnd necessary. There are many kinds of
legacy codes, such as MPI programs, executablegrsgrunning on single computers or on
clusters. However, almost all legacy code can lecweed through the pattern of terminal
command line. That means that we can control thaing process of the legacy code through
the command line tools. Moreover, most legacy catescommand line programs running on
Linux or other operating system. Therefore, we waap the legacy code to a component by
describing the legacy code; this description inekithe command line execution environment

GridCOMP FP6-034442 page 36 of 45 D.CFI.06

B,
EridCOMP ;
and related files. These elements are also impoftarexecuting the wrapped legacy code
over the grid.

The purpose of this framework is to develop techeggand methods for turning legacy codes
into components. According to our research, gridibéing legacy code includes the following
actions:

1. For the legacy code, provide some APIs in a stahoerface to describe the legacy
code attributes, such as the command line forndparameters.

2. For the related file operations, define some ARIthe interface to transfer the files
and set the files’ attributes.

3. For the resource requirement of the legacy codaydie it in the “GCM application
description”.

4. For the running process of the legacy code, defiree needed server and client
interfaces to manipulate and control the legacyecod

3.5.2.2 The architecture of the Legacy Code Compone nt

Figure 16 The architecture of the legacy code corapbdemonstrates the architecture of the
legacy code component. It includes two interfadhs: AttributeController and the server
interface. Using these interfaces and java clasgesan create the Legacy Code Component.
Through these interfaces, we can describe the yegade, set these files’ permissions and
control the running process of the legacy code,alg® provide a separate class for file
transmission.. In the following chapters, we walsdribe each part in detail.

The AttributeController :LegacyComponentAttributes
T T T
Controller

Content

Description of the Legacy code

Java Classl
LegacyCodeProxy

The server interface
for the
LegacyComponent:
LegacyCodeContro
llerInterface

Legacy Code

File transfer and setting the files
attributions

Figure 16 The architecture of the legacy code component
3.5.2.3 Description of the Legacy Code

For running the legacy code over the grid, the nmagrtant thing is to describe the legacy
code, such as the command line, the execution amvient, and the related files. Two
methods can achieve this purpose: extending the ADproviding some API in a standard
Interface.

GridCOMP FP6-034442 page 37 of 45 D.CFI.06

/C,{?L"‘OJ\\«,
GridCcomMP § &™)
Extending the ADL is not a good practice if we warftexible and extensible solution. First,
when describing the specificities of the legacy esode wanted to extend the ADL and
modify the schema of the ADL. A first successfubtotype was implemented which
demonstrated the validity of all the identified dedor legacy code wrapping. However, we
decided to refine our solution to improve and etdmewrapping for both the user and the
developer. A first drawback with this solution fetdifficulty to propose an ADL extension
able to manage any kind of legacy code. Actually,can be sure that additional tags would
be added to the ADL, but it may also happen thatestags could be missed. Furthermore, we
do not want this extension to be linked with a #iiewersion of the ADL. In summary,
extending and maintaining the ADL requires a loetibrt. Therefore, we propose a solution
which is more flexible and easy to adapt.

-

Our solution is to provide a predefined compongpetfor legacy code wrapping (see the
user documentation of the annex D.CFIl.06_LegacyaueSection 3.1: Standard legacy
code wrapper component). This component has aibw#r controller which defines all
parameters. If you want to create a legacy codepooent you have to create a component
extending this predefined type and set the coatdbutes.

« Using the ADL, you only have to write an ADL filtending this type and set the
right attributes to configure it correctly (see thser documentation of the annex
D.CFI.06_LegacyCode.zip, Section 3.2: Templateetdileed in by the user).

* Using the API, you have to create a component wille defined factory
(LegacyComponent class), and next set attributeth e AttributeController
interface (see the user documentation of the abn€¥1.06_LegacyCode.zip, Section
1: Wrapping code example).

Through the standard interface, all things whiah specific to legacy code wrapping can be
managed by the component.

3.5.2.4 Related File Operations

The Related File Operations (RFO) are important tfee execution of the legacy code
component over the grid. They define some APIsrdosfer files and set the attributes of
those files.

For the file transfer, RFO implements legacy codd mput files transfer between the user
site and target system. In our design, we reusdilthéransfer mechanism provided by the
ProActive middleware. Currently supported protodoisfile transfer deployment include the

ProActive File Transfer Protocol (PFTP), SSH, RSt &Nordugrid. The start of the File

Transfer will take place before the deployment lod tomponent or after the successful
execution of the legacy code at the target comgutode.

For the file attribute settings, we should set pegmissions of the related files, such as
“read”, “write” or “execute”. It will ensure thaht legacy code has the right permission and
executes successfully. By the end of the runninggss of the legacy code, we should delete
all the files no-longer needed. Depending on theibate settings of those files, the
component could do the deletion automatically.

It should be noticed that some interesting thingsutd be achieved, such as transferring the
ProActive libraries into the deploying machine gsan on-the-fly style. This would enable

GridCOMP FP6-034442 page 38 of 45 D.CFI.06

/C,{?L"‘OJ\\«,
GridCoMP G2
the deployment of the components on remote machwi#®out having ProActive pre-
installed. Even further, when the network allowstitvould also be possible to transfer other
required libraries like the JRE (Java Runtime Emvinent) to the target system.

-

There is one protocol, which behaves differentlgnirthe others mentioned above, the
ProActive File Transfer Protocol (PFTP). The madvantage of using PFTP is that no
external copy protocols are required to transfesfduring deployment. Therefore, if the grid
infrastructure does not provide a way to transfesf a file transfer deployment can still take
place by using the PFTP. On the other hand, then deawback of using PFTP is that
ProActive must already be installed on the remoéehines, and thus on-the-fly deployment
is not possible.

3.5.2.5 Execution Management

In order to run the legacy code successfully anatrobthe running process of the legacy
code component, we define the execution managemedtile, which contains the execution
status of the legacy code, defines the transitetwéen the different execution status, and the
standard API for controlling the program.

When wrapping the legacy code to the componentranding it, the legacy code includes
status states such as UNSTARTED, RUNNING, KILLEDdaRINISHED. Each status
defines the current state of the legacy code.lfish® keep the consistency of the legacy code
and a better control of the code when multipleanses are running. We also define a
standard APl to control the component execution,thwimethods such as
startLegacyCode(), killLegacyCode(), restartLegacyC ode(),
getStatus() . According to this API, the user could control thaaning process of the
legacy code and have a good interactive interfteanwhile, the component monitors the
execution state and sends feedback to the userreFly shows the transition between the
different execution status of the wrapped legacyliegtion by using the mechanisms
provided by the execution management module.

After running the legacy code successfully, thelltefdes could be obtained and transferred
to the users by using a method from the standatd AP

GridCOMP FP6-034442 page 39 of 45 D.CFI.06

e

IR v

LegacyCompon {ft.newlnstance()

killLegacyCode(),
restartLegacyCode()

UNSTARTED

startLegacyCode()
A

-

estartLegacyCod;X{ RUNNING restartLegacyCode()

killLegacyCode() ™ Wait-by-necessity

startL.egacyCode :
KILLED FINISHED

startl ‘cgacy('od\g(\)\\\ ///slarll .egacyCode()

I

e illegalStateException

Figure 17 The execution statustransition of the legacy code

3.5.3 Features added to the GCM
3.5.3.1 API describing the Legacy Code

There should be some methods in the interface soribe the legacy code, such as the
command and its parameters.

public interface LegacyComponentAttributes exteAttsbuteController {
public void setComment (String value);
public String getComment ();

public void setExecutable (String value);
public String getExecutable ();

public void setParameters (String value);
public String getParameters ();

public void setCommandLine(String CommandLine);
public String getCommandLine();

public void setFilePermission (String permission);
public void setFileDelete (String delete);

}
3.5.3.2 API for Related Files Operation

Part of the API is used to transfer the relatezldihd retrieve the result file.

package or g.tsinghua.gcm.legacyComponent.r elatedfile;

GridCOMP FP6-034442 page 40 of 45 D.CFI.06

I,

SridCOMP Sg&

public class FileTransfer {
/IThe push methods transfer a file/directory cediavailable on the local
/Inode(srcNode) to the specified remote node(dsgNod
public static void push (File [] srcFiles, NodeéNisde, File [] dstFiles);
public static void push (Node srcNode, File [JFkes, Node dstNode,
File [] dstFiles);
public static void push(Node srcNode, File srcANede dstNode, File dstFile);
public static void push(Node srcNode, File[] sreBjINode dstNode, File[]
dstFiles);

/[The pull methods retrieve a file/directory oefllocated on a remote
/Imachine(srcNode) to the local machine(dstNode)
public static void pull (Node srcNode, File srefiFile dstFile);
public static void pull (Node srcNode, File [] Bite, File [] dstFile);
public static void pull(Node srcNode, File srcFidgde dstNode, File dstFile);
public static void pull(Node srcNode, File[] sra#sl Node dstNode, File[]
dstFiles);

3.5.3.3 Resource Requirement of the Legacy Code

For this part, we should extend the “GCM applicatitescriptor” definition. This file coupled
to “GCM deployment descriptor” files allows useosdescribe how to acquire resources from
a given grid and deploy an application using theseurces. Both are being standardized in
ETSI [DIS]; therefore, the proposed solution is arking solution but not a final one. The
main idea is to extend or reuse the definition ofirdual node in a “GCM application
descriptor” file with the specification of the folking elements:

» operatingSystenspecify the required operating system, includirspecific version
* CPUArchitecturespecify the required CPU architecture,

» CPUSpeedspecify the required CPU speed (with lower and uppend)

» CPUCount:specify the required CPU count (with lower and ugpzund)

* memory:specify the required amount of memory (with lowed aipper bound)

* networkBandwidthspecify the required network bandwidth (with lowaard upper
bound)

» diskSpacespecify the required space disk (with lower andasggund)

In fact, all these elements are often needed tavknow and where to execute the legacy
application; but legacy applications are not thly @ase where a user may need to select the
node where he wants to deploy such component. Quasdy, we have decided against a
specific solution for the legacy code wrapping wiilst those requirements and use instead
the work done at standardization level.

GridCOMP FP6-034442 page 41 of 45 D.CFI.06

O
- e M
GridComMP ("

3.5.3.4 The Running Process of the Legacy Code

package or g.tsinghua.gcm.legacyComponent.legacyCode
/ldefine the interface to manipulate and contra@ tode
public interface LegacyCodeControllerinterface {

public LegacyCodeResult startLegacyCode();
public LegacyCodeResult reStartLegacyCode();
public boolean killLegacyCode();
public String getStatus();
public void setLegacyCodeCommand (Stringuargnts);

}
3.5.3.5 Wrap the Legacy Code to Component

package or g.tsinghua.gcm.legacyComponent
/lwrap the legacy code to Component
public class LegacyComponent{
public Component LegacyComponent();
}

In conclusion, the presented solution for legagyliaption wrapping is to create a predefined
and already implemented component wrapper type tosied when executing it over the grid.
The designed architecture of the Legacy Code CommtoWrapping provides some
interfaces to set the attributes of the legacy @uka standard API to manipulate and control
the legacy code execution. This wrapping compormamt be easily deployed remotely to
interact with other components.

4 Conclusion

This document demonstrates that we have developechlementation of the GCM model,
which is based on the ProActive library and prosidé the main features of the model, such
as primitive and composite components, single afléative bindings, ADL and deployment.
Thus, the CFI prototype can be used to design amglement grid component based
applications.

Among the future works, we will improve the poskipito have non functional components,
i.e. components managing non functional aspectsmptite membrane. An early version of
this feature is already provided in the CFI propetyand documented in the CFlI
documentation. However, we did not detail the dedhure in this document but we have just
mentioned the feature as an on-going work sinde still under development and therefore
the architecture may evolve. This feature allowwettgper to create controllers of a
component as component themselves. Using non amaticomponents, developer takes
advantage of the structure, the hierarchy and tfeapsulation provided by a component-
oriented approach.

One of the main objectives of the GCM was to endhee interoperability. The GCM

deployment standard already satisfies this pointlegggloyment time with the support of
various middleware and schedulers. In additionvises offered by a GCM component can
be accessed through Web Service (WS). Next stdpbensupport of WS bindings allowing a
given GCM component to access another GCM compomeapplication using WS. Such
features will improve the interoperability at thengponent communication level with other
middleware. A more general objective is to proveheSCA implementation with dynamicity

GridCOMP FP6-034442 page 42 of 45 D.CFI.06

AT

s
f g JPS e >6/ M\}\\H

at runtime thanks to the GCM features. Therefol@MXomponents are the building blocks
for integrated SOA towards SLA and QoS.

In addition, projects such as SOA4ALL (EU) [SOANRIA ADT Galaxy [GAL], Pole de
Compétitivité AGOS (with HP, Oracle) [AGO], and @issGrid (EU) [QOS] use ProActive
the GCM reference implementation.

5 Bibliography

[AGO] Pole de Compétitivité AGOittp://ralyx.inria.fr/2007/Raweb/oasis/uid91.html

[CAR 93] DENIS CAROMEL. Toward a method of objecstemted concurrent programming.
Communications of the ACGN6(9):90-102, 1993.

[COR] CoreGRID Network of Excellence, European fedgbrojecthttp://www.coregrid.net/

[DIS] D.DIS.02 - Standardization Strated@yridCOMP deliverable

[DRE] Dream project http://dream.objectweb.org

[FRAQ] Fractal Component Model specification,
http://fractal.objectweb.org/specification/indexht

[FRADb] Fractal ADL,http://fractal.objectweb.org/fractaladl/index.html

[GAL] INRIA ADT Galaxy, http://galaxy.gforge.inria.fr/Main/HomePage

[GCM] D.CFI.01 - Component model presentation apelcgfication (XML schema or DTD),
GridCOMP deliverable

[GID] D.GIDE.O4 - Grid IDE tuned prototype and fildocumentation (manual and detailed
architectural designisridCOMP deliverable

[NFC] D.NFCF.05 - NFCF tuned prototype and finakcdmentation (manual and detailed
architectural design{zridCOMP deliverable

[PRO] “ProActive web site”http://proactive.objectweb.org

[QOS] QosCosGrid, European projédettp://www.goscosgrid.eu

[SOA] SOA4ALL, European projechttp://www.soa4dall.eu

[UC] D.UC.05 - Use cases: tuned prototypes and file@umentation (manual and detailed
architectural design}zridCOMP deliverable

6 Appendix A

This is the default configuration file for the cositers and interceptors of a component in the
ProActive/GCM implementation.

I <?xml version="1.0" encoding="UTF-8"?>

GridCOMP FP6-034442 page 43 of 45 D.CFI.06

<componentConfiguration xmlns:xsi="http://www.w3.or
instance" xsi:noNamespaceSchemalocation="component-
name="defaultConfiguration">
<I-- This is the default configuration file for t
interceptors of a component in the proactive implem
<controllers>
<controller>

<interface>org.objectweb.proactive.core.component.c
indingController</interface>

<implementation>org.objectweb.proactive.core.compon
tiveBindingControllerimpl</implementation>
</controller>
<controller>

<interface>org.objectweb.proactive.core.component.c
ontentController</interface>

<implementation>org.objectweb.proactive.core.compon
tiveContentControllerimpl</implementation>
</controller>
<controller>

<interface>org.objectweb.proactive.core.component.c
ifeCycleController</interface>

<implementation>org.objectweb.proactive.core.compon
tiveLifeCycleControllerimpl</implementation>
</controller>
<controller>

<interface>org.objectweb.proactive.core.component.c
uperController</interface>

<implementation>org.objectweb.proactive.core.compon
tiveSuperControllerimpl</implementation>

</controller>

<controller>

<interface>org.objectweb.fractal.api.control. NameCo

<implementation>org.objectweb.proactive.core.compon
tiveNameController</implementation>

</controller>

<controller>

<interface>org.objectweb.proactive.core.component.c
ontroller</interface>

<implementation>org.objectweb.proactive.core.compon
castControllerimpl</implementation>

</controller>

<controller>

<interface>org.objectweb.proactive.core.component.c
Controller</interface>

<implementation>org.objectweb.proactive.core.compon
rcastControllerimpl</implementation>
</controller>

FTaIN
GridCamE

0/2001/XMLSchema-
config.xsd"

he controllers and
entation.-->

ontroller.ProActiveB

ent.controller.ProAc

ontroller.ProActiveC

ent.controller.ProAc

ontroller.ProActiveL

ent.controller.ProAc

ontroller.ProActiveS

ent.controller.ProAc

ntroller</interface>

ent.controller.ProAc

ontroller.MulticastC

ent.controller.Multi

ontroller.Gathercast

ent.controller.Gathe

GridCOMP FP6-034442 page 44 of 45

D.CFI.06

X egersy
GridCOMP @ Ogst
<controller>

<interface>org.objectweb.proactive.core.component.c ontroller.MigrationC
ontroller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Migra
tionControllerimpl</implementation>

</controller>

<controller>

<interface>org.objectweb.proactive.core.component.c ontroller.MonitorCon
troller</interface>

<implementation>org.objectweb.proactive.core.compon ent.controller.Monit
orControllerimpl</implementation>
</controller>
</controllers>

</componentConfiguration>

GridCOMP FP6-034442 page 45 of 45 D.CFI.06

