

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform

for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.CFI.06 – CFI tuned prototype and final documentation (manual and detailed

architectural design)

ANNEX 1: CFI documentation

Due date of deliverable: 01 December 2008

Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme

(2002-2006)

Dissemination Level

PP Public PP

Keyword List: component, GCM, grid, legacy code wrapping,

Responsible Partner: Denis Caromel, INRIA

GridCOMP FP6-034442 D.CFI.06

Part I. Programming With Components

Table of Contents

Chapter 1. Introduction .. 3

1.1. Overview ... 3

1.2. Programming with components: the Fractal component model ... 3

1.3. Presentation of ProActive/GCM ... 4

1.4. GCM Basics ... 4

Chapter 2. ProActive Grid Component Model Deployment ... 6

2.1. Introduction .. 6

2.2. ProActive Deployment API ... 6

2.2.1. Resources fixed by the application (SPMD) ... 6

2.2.2. Resources fixed by the application deployer ... 6

2.2.3. On demand Scalability ... 6

2.3. GCM Deployment Descriptors ... 6

2.3.1. Host Information ... 6

2.3.2. Bridges .. 7

2.3.3. Groups .. 7

2.4. GCM Application descriptor .. 10

2.4.1. Executable .. 10

2.4.2. ProActive ... 10

2.5. FAQ .. 11

2.6. Tutorial .. 11

2.6.1. For the Grid Administrator : creating a deployment descriptor ... 11

2.6.2. For the Grid Application Developer : creating an application descriptor ... 15

2.6.3. For the Grid Application Developer : deploying your application on the grid .. 16

Chapter 3. User guide ... 18

3.1. Architecture Description Language .. 18

3.1.1. Overview ... 18

3.1.2. Exportation and composition of virtual nodes ... 19

3.1.3. Usage .. 20

3.2. Implementation specific API .. 21

3.2.1. fractal.provider .. 21

3.2.2. Requirements .. 21

3.2.3. Content and controller descriptions ... 21

3.2.4. Collective interfaces ... 21

3.2.5. Priority controller .. 22

3.2.6. Monitor controller ... 23

3.2.7. Stream ports ... 26

3.3. Collective interfaces ... 26

3.3.1. Motivations .. 26

3.3.2. Multicast interfaces .. 26

3.3.3. Gathercast interfaces .. 31

3.4. Deployment .. 35

3.4.1. Overview ... 35

3.4.2. Initiate the deployment ... 35

3.4.3. Distribute components with ADL ... 35

3.4.4. Distribute components with API ... 35

3.4.5. ProActive Deployment ... 36

3.5. Advanced ... 36

3.5.1. Controllers and interceptors ... 36

3.5.2. Exporting components as Web Services ... 39

GridCOMP FP6-034442 D.CFI.06

3.5.3. Lifecycle: encapsulation of functional activity in component lifecycle ... 42

3.5.4. Structuring the membrane with non-functional components ... 42

3.5.5. Short cuts ... 47

Chapter 4. Architecture and design ... 49

4.1. Meta-object protocol ... 49

4.2. Components vs active objects ... 50

4.3. Method invocations on components interfaces ... 50

Chapter 5. Component examples ... 52

5.1. From objects to active objects to distributed components ... 52

5.1.1. Type .. 52

5.1.2. Description of the content ... 53

5.1.3. Description of the controller .. 53

5.1.4. From attributes to client interfaces .. 53

5.2. The HelloWorld example .. 54

5.2.1. Set-up .. 54

5.2.2. Architecture .. 55

5.2.3. Distributed deployment ... 55

5.2.4. Execution ... 56

5.2.5. The HelloWorld ADL files .. 59

Chapter 6. Component perspectives: a support for advanced research ... 62

6.1. Dynamic reconfiguration ... 62

6.2. Model-checking ... 62

6.3. Pattern-based deployment .. 63

6.4. Graphical tools .. 63

Chapter 7. GCM Components Tutorial .. 64

7.1. Introduction .. 64

7.2. Creating and using components in a programatic way ... 64

7.2.1. The first component ... 64

7.2.2. Define an assembly .. 66

7.3. Create and use components using ADL .. 69

7.4. Creating, using and deploying components using ADL ... 70

7.5. Component interface Cardinality ... 71

7.6. Additional examples ... 72

Chapter 8. Annex ... 75

8.1. The GCM Basics example files .. 75

GridCOMP FP6-034442 3 D.CFI.06

Chapter 1. Introduction

1.1. Overview

Computing Grids and Peer-to-Peer networks are inherently heterogeneous and distributed, and for this reason they present new

technological challenges: complexity in the design of applications, complexity of deployment, reusability, and performance issues.

The objective of this work is to provide an answer to these problems through the implementation for ProActive of an extensible,

dynamical and hierarchical component model, Grid Component Model (GCM) based on Fractal [http://fractal.objectweb.org].

The GCM was defined by the CoreGRID NoE project [http://www.coregrid.net/] and is available here [http://www.coregrid.net/

mambo/images/stories/Deliverables/d.pm.04.pdf].

This part documents the ProActive/GCM reference implementation developed by the GridCOMP European project [http://

gridcomp.ercim.org/].

1.2. Programming with components: the Fractal component model

Fractal defines a general conceptual model, along with a programming application interface (API) in Java. According to the official

documentation, the Fractal component model is 'a modular and extensible component model that can be used with various

programming languages to design, implement, deploy and reconfigure various systems and applications, from operating

systems to middleware platforms and to graphical user interfaces'.

Fractal is a component model. A component is a software module offering predefined services, and able to communicate with other

components. The Fractal component model is hierarchical, so components can be either primitives or composites. A composite can

contain one or many inner components (primitive or composite). Each component may define what it needs and provides with its

client and server interfaces. Furthermore, server interfaces may be functional interfaces or a non-functional interfaces (also called

controllers). Controllers are useful to manage the component. For instance, the LifeCycleController allows to control the life cycle

of the component and provides methods to start or stop the component.

Here is a basic example of a system of Fractal components:

Figure 1.1. A system of Fractal components

In addition to that, Fractal defines an Architecture Description Language (ADL). The ADL uses an XML syntax and is a way to

describe a component based system without having to worry about the implementation code.

The Fractal specification defines conformance levels for implementations of the API (section 7.1. of the Fractal 2 specification).

For a complete description of the Fractal component model, please, refer to the Fractal specification, available at http://

fractal.objectweb.org/specification/fractal-specification.pdf

GridCOMP FP6-034442 4 D.CFI.06

1.3. Presentation of ProActive/GCM

The Grid Component Model (GCM) defines a component model suitable to support the development of efficient grid applications.

It implements the "invisible grid" concept: abstract away grid related implementation details (hardware, OS, authorization and

security, load, failure, etc.) that usually require high programming efforts to be dealt with. Our implementation of the GCM is based

on the ProActive library: components in this framework are implemented as active objects, and as a consequence benefit from the

properties of the active object model. We named this implementation ProActive/GCM.

Thus, the previous standard system of Fractal components becomes when distributed with ProActive/GCM:

Figure 1.2. A system of distributed ProActive/GCM

components (blue, yellow and white represent distinct locations)

The GCM is an extension of the Fractal specification, and it introduces the new features using a Fractal compliant terminology. The

main features that have been developed to implements the GCM are:

• The deployment: several components in an assembly can be distributed on different nodes on several computers using

transparent remote communication.

• The collective interfaces: component systems designers are able to specify parallelism, synchronization and data distribution.

Collective communications refer to multipoint interactions between software entities. Collective interfaces have two types of

cardinalities, multicast and gathercast.

ProActive/GCM is conformant up to level 3.2. In other words, it is fully compliant with the API. Generic factories (template

components) are provided as ADL templates. We are currently implementing a set of predefined standard conformance tests for

the Fractal specification.

To sum it up, ProActive/GCM mainly provides:

• Creation/usage of primitive and composite components

• Client, server and non-functional interfaces (single and collection cardinalities)

• ADL support

• A deployment framework

1.4. GCM Basics

For starters, here is a very basic example demonstrating the separation between the code and the deployment of an application and

also showing the simplicity with which the deployment can be modified.

As shown in the diagram below, in the first step, The application is just composed of two primitive components distributed into

a single Java Virtual Machine.

GridCOMP FP6-034442 5 D.CFI.06

Now, in order to use two separate Java Virtual Machine, in the deployment descriptor file, the line:

<host id="localhost" os="unix" hostCapacity="1"
vmCapacity="2">

is changed to:

<host id="localhost" os="unix" hostCapacity="2"
vmCapacity="1">

Before changing the line, the deployment descriptor indicates that there will be 1 Java Virtual Machine with 2 nodes inside the JVM.

Then, once the change made, the deployment descriptor specifies that there will be 2 Java Virtual Machines with 1 node per JVM:

All the source files are available at the end of the part in Chapter 8, Annex.

GridCOMP FP6-034442 6 D.CFI.06

Chapter 2. ProActive Grid Component Model

Deployment

2.1. Introduction

The GCM Deployment is split in two parts, one for grid administrators and the other for grid application developers. On the grid

administration side, the administrator will write a Deployment Descriptor that will describe what resources the grid provides, and

how these resources are acquired. On the application side, the developer will write an Application Descriptor that will describe

how the application is launched, and what resources it needs. The link between the two sides is made through references from the

Application Descriptor to one or several Deployment Descriptors.

2.2. ProActive Deployment API

There are several ways the grid resources can be used by a deployed application. The application may require a fixed set of resources,

or it may be flexible enough to work on any amount of resources, or finally may require a minimum amount of resources and yet

be able to scale as more resources become available.

In all cases, the application must start by creating a GCMApplication object through

PAGCMDeployment.loadApplicationDescriptor(), and call GCMApplication.startDeployment(). The application must quit

through GCMApplication.kill().

2.2.1. Resources fixed by the application (SPMD)

In this case the application knows the amount of resources it requires. The acquisition of these resources by the application is done

as follows :

• get the required virtual nodes through GCMApplication.getVirtualNode(String vnName), or

GCMApplication.getVirtualNodes()

• For each virtual node, use GCMVirtualNode.getNewNodes() as many times as needed, until the virtual node has the expected

numbers of physical nodes to run on. getNewNodes() will return the list of Nodes that have been acquired since the last time

it was called. Calls to it should be separated by calls to Thread.sleep().

2.2.2. Resources fixed by the application deployer

In this case the application has no specific requirement on the resources it uses : the more the better. This is the simplest of the

cases : the application only has to call GCMApplication.waitReady(). This will block until all Virtual Nodes have their configured

number of physical Nodes. Note that this may block forever if a Virtual Node does not to have a limited number of nodes after

which it is in 'ready' state (the Virtual Node is said to be 'greedy', GCMVirtualNode.isGreedy() will return true).

2.2.3. On demand Scalability

In the case the application is able to expand on new resources as they become available. This is a extension of the two other cases,

in that it can work whether the application has fixed minimum requirements or not. Once the initial deployment phase is finished,

the application should call GCMApplication.getVirtualNodes() to obtain the list of configured virtual nodes, and then subscribe to

the node attachment notifications for each of them (GCMVirtualNode.subscribeNodeAttachment()). In the notification handler,

the application should deal with the newly acquired node appropriately.

2.3. GCM Deployment Descriptors

2.3.1. Host Information

The HostInfo data structure describes a single machine and the environment it provides, with the following information:

• userName : (string) the name of the user under which this host can be accessed

• homeDirectory : (absolute path) the home directory of the user

• os : (one of "unix" or "windows") the operating system the host is running

GridCOMP FP6-034442 7 D.CFI.06

• hostCapacity : (positive integer) the number of processes (VM or other executable) that this host can handle (default value is 1)

• vmCapacity : (positive integer) the number of nodes a single VM on this host can handle (default value is 1)

• id : (ID) an ID identifying the host

2.3.2. Bridges

A bridge is meant to represent a frontend to a computing resource. Many grid architectures have such a feature : each physical

machine is not accessible directly, the user must instead go through a single machine called a front-end. In a deployment descriptor,

a bridge is a gateway toward either :

• a host

• a set of groups

• another bridge

A bridge is defined as a base structure meant to be derived. The base structure only defines an id (string).

2.3.2.1. RSH

An RSH bridge element can have the following attributes :

• id (string) : the id of the bridge connector corresponding to this definition

• hostname (string) : the network hostname of the physical machine which acts as the bridge

• username (string, optional) : the user name under which the machine can be accessed

• commandPath (string, optional) : the path of rsh client to use

2.3.2.2. SSH

An SSH bridge element can have the follow child element :

• privateKey (path string) : the file of the private SSH key needed to access the bridge

An SSH bridge element can have the following attributes :

• id (string) : the id of the bridge connector corresponding to this definition

• hostname (string) : the network hostname of the physical machine which acts as the bridge

• username (string, optional) : the user name under which the machine can be accessed

• commandPath (string) : the path of the ssh client to use

• commandOptions (string) : options to pass to the ssh command

2.3.3. Groups

A Group is a data structure defining a set of machines with identical configuration (like a cluster). It is meant as a base structure

which can be derived in an Object-Oriented manner to implement any kind of group. There currently are two kinds of groups :

1. "direct" groups

2. job schedulers

It is therefore possible to define a standard-compliant deployment descriptor even on a grid which has its own job scheduler.

All group protocols have the following child elements :

• environment (environment) : the environment for the command and the following attributes

and the following attributes

• id (ID) : the id of the group this element represents

• commandPath (path string) : path of the command which is used to submit a job to the group protocol

2.3.3.1. CCS

This group handles Microsoft’s Compute Cluster Server. The CCS group definition has the following child elements :

• resources : the resources that will be allowed to the job. This element can have two children :

GridCOMP FP6-034442 8 D.CFI.06

• cpus (positive integer) : the number of CPUs allocated for the job

• runtime (time) : the maximum runtime allowed for the job

• stdout (path string) : path of the file where the standard output of the job will be stored

• stderr (path string) : path of the file where the standard error of the job will be stored

2.3.3.2. LSF

Group definition for the LSF scheduler. The LSF group definition has the following child elements :

• resource (string) : this element has the following attributes :

• (positive integer) : number of processors requested

• walltime (time) : maximum time allowed for the job

• processorsNumber (positive integer) : minimum number of processors requested to run the job

• resourceRequirement (string) : a resource requirement string as defined by the lsf documentation (‘lsfintro’ manpage)

It also has the following attributes

• interactive (boolean) : whether the job is interactive or not

• jobName (string) : name of the job

• queue (string) : name of the queue the job will be submitted in

2.3.3.3. OAR

Group definition for the OAR job scheduler [15]. The OAR group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• cpu (positive integer) : number of CPUs requested

• core (positive integer) : number of cores requested

• walltime (time) : maximum time allowed for the job

It also can have a string content which is passed verbatim–o the ‘--resource’ option of the oarsub command.

• directory (path string) : the working directory of the job script

• stdout (path string) : path of the file where the standard output of the job will be stored

• stderr (path string) : path of the file where the standard error of the job will be stored

It has the following attributes :

• interactive (boolean) : start an interactive job. If true, open a login shell on the first node instead of running a script (default

is false).

• queue (string) : name of the queue to submit the job to.

• type (‘deploy’, ‘besteffort’, ‘cosystem’, ‘checkpoint’, ‘timesharing’) : job type – the default is ‘deploy’.

2.3.3.4. PBS

Group definition for the PBS/Torque job scheduler. The PBS/Torque group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• ppn (positive integer) : number of CPUs requested

• walltime (time) : maximum time allowed for the job

• nodes (positive integer) : number of nodes requested

• processorsPerNode (positive integer) : number of processors per node requested

• mailWhen (combination of Abort, Begin, End separated by ‘|’) : when to send an email (Abort : if the job is aborted, Begin :

when the job is started, End : when the job terminates)

• mailTo (comma-seperated list of email addresses) : where the job status emails should be sent

• joinOutput (boolean) : if true, join the output of stderr to stdout

• stdout (path string) : path of the file where the standard output of the job will be stored

GridCOMP FP6-034442 9 D.CFI.06

• stderr (path string) : path of the file where the standard error of the job will be stored

It has the following attributes :

• queue (string) : destination queue for the job. The argument can be of the following format :

• queue : a queue on the default server

• @server : the default queue on the server

• queue@server : the queue on the given server

• jobName (string 15 chars long, no whitespace, first char must be alphabetic) : the name of the job

• interactive (boolean) : whether the job is interactive or not

2.3.3.5. Prun

Group definition for the PRUN run server. The PRUN group definition has the following child elements :

• resource (string) : this element has the following attributes :

• nodes (positive integer) : number of nodes requested

• ppn (positive integer) : number of CPUs requested

• walltime (time) : maximum time allowed for the job

• stdout (path string) : name of the file in which the results will be printed

It has no attribute.

2.3.3.6. Host List

A host list can be used with SSH and RSH groups as a shorthand to specify several machine names in a compact form. The format of

a host list is a whitespace-separated list of name patterns or hostnames. A name pattern describes a set of hostnames with a common

root. The format is as follows.

<root name><interval>

with root name being an alphanumeric string (only letters and digits, no spaces or punctuation signs), and interval defining a set

of numerical values in the form of an interval or list of values, possibly followed by an exclusion interval or list of values. The

general form of an interval is:

[<value set>]^[<value set>]

or simply

[<value set>]

if no exclusion interval is needed.

A value set is a coma-seperated list of integers or integers pairs separated by a dash, meaning an interval of values. The values of

an interval must be specified in increasing order, and the generated values will be in increasing order. Also, the first integer of an

interval can have leading zeroes to indicate the number of digits (numbers will be padded with zeroes if needed). Some examples:

GridCOMP FP6-034442 10 D.CFI.06

• host[0-5]: host0, host1 … host5;

• host[0-5]^[4]: host0, host1, host2, host3, host5;

• host[0-10]^[4-6]: host0, host1, host2, host3, host7, host8, host9, host10;

• host[00-5]: host00, host01, host02… host05;

• host[1, 004-7, 09]: host1, host004, host005, host006, host007, host09.

2.3.3.7. RSH

The RSH Group has the following child elements :

• (host list) : the list of hosts to connect to

2.3.3.8. SSH

The SSH Group has the following child elements :

• (host list) : the list of hosts to connect to

• privateKey (path string) : the file of the private SSH key needed to access the host

• commandOptions (string) : the list of options which will be passed to the ssh command

2.4. GCM Application descriptor

2.4.1. Executable

This type of application describes the launch of a stand-alone executable on the grid. It can have the following child elements :

• nodeProvider (empty element with a single ‘refId’ attribute) : the id of a node provider (defined in the <resources> part). There

can be any number of such element.

• command : the command which will be run on the portion of the grid defined by the specified node providers. The contents

of this element are described below.

This element can have the following attribute :

• instances (one of “onePerHost”, “onePerVM”, “onePerCapacity”) : the number of instances of the command which will be run

The <command> element can have the following children (in this specified order) :

• path (path string) : the path of the executable

• arg (string) : the arg string which will be passed to the command. There can be any number of such element.

• filetransfer (file transfer) : the files which which should be transferred prior to running the command.

It can have the following attribute :

• name (string) : name of the executable. If a <path> child element is present, the value of this attribute will be appended to the

value of the %lt;path> child element.

2.4.2. ProActive

This element describes a ProActive-based applicatin. It can have the following children :

• configuration : various configuration parameters - this element is described below

• technicalServices (technical services) : the set of technical services global to this instance of ProActive

the configuration element can have the following child elements :

• bootClasspath (simple classpath) : the boot classpath for the JVM

• java (path string) : the path to the Java executable

• jvmarg (string) : arguments passed to the JVM

• applicationClasspath (classpath) : classpath for the application

• proactiveClasspath (classpath) : classpath used to override the standard ProActive classpath computed from its installation

location

GridCOMP FP6-034442 11 D.CFI.06

• securityPolicy (relative path) : path to the Java security policy file

• proactiveSecurity : security policy for application and runtime. This element has two children :

• applicationPolicy (relative path) : path to Java security policy file that will be applied on the application's objects deployed

at runtime, like nodes and active objects

• runtimePolicy (relative path) : path to Java security policy file that will be applied on the ProActive Runtime

• log4jProperties (relative path) : path to the Java log4j configuration file

• userProperties (relative path) : path to the Java properties file

• virtualNode (virtual node) : description of a virtual node. There can be any number of such element

The <proactive> element can have the following attributes :

• relpath (path string) : the location of the ProActive installation

• base (one of ‘HOME’, ‘ROOT’) : base location of the ProActive installation : HOME is the user’s home directory, ROOT is

the root directory of the system.

A <virtualNode> element can have the following children :

• nodeProvider (reference to a node provider) : the node provider which will provide the ProActive nodes for this virtual node

– see below for description.

• technicalServices (technical service) : a technical service specific to this virtual node. There can be any number of such children.

A virtualNode element can also have the following attributes :

• id (string) : a string identifying this virtual node

• capacity (positive integer) : the capacity requested by this virtual node (that is, the total number of nodes it will request from

the node providers which are affected to it). If no capacity is specified, then the Virtual Node will try to get as many nodes

as possible. A such Virtual Node is called greedy.

A <nodeProvider> within a <virtualNode> can only have <technicalServices> child elements. These describe technical services

specific to this node provider. A <nodeProvider> can also have the following attributes :

• refid (string) : the id of the node provider (as defined in the resources element)

• capacity (positive integer or “max”) : the capacity of this ProActive node provider (that is, the number of ProActive nodes

which will be requested from it)

2.5. FAQ

2.6. Tutorial

This tutorial shows how to deploy a grid-enabled application through the GCM standard. It will present the points of view of both

the grid administrator and the application developer.

2.6.1. For the Grid Administrator : creating a deployment descriptor

The task of a grid administrator is to make a model of his grid resources through a GCM Deployment Descriptor. Several examples

are available in the ProActive distribution. The deployment descriptor should represent the resources of the grid. A deployment

descriptor has the following XML structure:

<environment>
 <descriptorVariable …/>
…
</environment>

<resources>
 <bridge …/>
 <group>

GridCOMP FP6-034442 12 D.CFI.06

 <host …/>
 <host …/>
 …
 </group>
 …
</resources>

<acquisition>
 <lookup …/>
 <p2p …/>
 …
</acquisition>

<infrastructure>
 <hosts>
 <host…/>
 </hosts>

 <groups>
 <groupType …/>
 </group>

 <bridges>
 <bridgeType …/>
 </bridges>
 …
</infrastructure>

The elements must be specified in this order. The <environment> and <acquisition> elements can be omitted, while the <resources>

and <infrastructure> ones are mandatory. They are the ones which define the model :

1. Infrastructure: this is a flat list of each individual element of the grid: hosts, groups and bridges listed in no particular order.

2. Resources: this is a tree describing the hierarchical relationships between these infrastructure elements. These relationships

are defined by:

• a host being within which group;

• a group being behind a bridge;

• a host being directly available.

Let's examine a couple of basic examples. Considering a very simple grid, that is two desktop PCs networked together. Such a setup

would be represented as follows (configuration parameters are omitted for the sake of clarity):

<resources>
 <hosts>
 <host refid="host1" -/>
 <host refid="host2" -/>
 </hosts>
</resources>

<infrastructure>
 <hosts>
 <host id="host1" -/>
 <host id="host2" -/>

GridCOMP FP6-034442 13 D.CFI.06

 </hosts>
</infrastructure>

There is no hierarchical relation between the two hosts, so both resources and infrastructure parts are identical (aside of the extra

configuration parameters which are omitted here). A slightly more complex example would be a cluster of 12 mono-processor

machines running LSF. The representation in GCM Deployment would be as follows:

<resources>
 <group refid="LSF_GROUP">
 <host refid="LSF_GROUP_MEMBER" -/>
 </group>
</resources>

<infrastructure>
 <hosts>
 <host id="LSF_GROUP_MEMBER" -/>
 </hosts>

 <groups>
 <lsfGroup id="LSF_GROUP" >
 <resources processorNumber="12" -/>
 </lsfGroup>
 </groups>
</infrastructure>

Within the <infrastructure>, the <hosts> part describes the configuration common to the machines in the group. The <groups> part

describes the LSF group itself. Finally, the <resources> part describes how they fit together, in this case the host model being within

the LSF group.

The next paragraphs go more in depth on the content and usage of each element.

2.6.1.1. Environment element

To allow for a bit of flexibility, it is possible to define variables in a descriptor. The variables can be used in any XML value element.

They cannot be used in an XML element name. The <environment> element is where the variables are defined. It is a simple list

of <descriptorVariable> elements. For example:

<environment>
 <descriptorVariable name="usertype" value="admin" -/>
 <descriptorVariable name="username" value="jsmith" -/>
</environment>

This allows the following usage later on in the descriptor: <sshGroup user="${username}" />

2.6.1.2. Resources element

The <resource> element describes the hierarchical structure of the available grid resources. This can be seen as the topology of the

grid: which hosts are part of a group, which group is behind a bridge, etc… All the grid resources which are listed in it must be

GridCOMP FP6-034442 14 D.CFI.06

fully defined in the <infrastructure> element. However it doesn't have to hold every element listed in <infrastructure>, it is meant

to contain only the subset of resources which are actually used by the deployment.

You can use the following elements to build your grid topology :

1. <host> : this represents a single machine, or more precisely a single configuration. When used within a group, it represents

the common configuration of all machines within this group.

2. <group> : this represents a set of machines all sharing a common configuration. Typically a cluster. The configuration is

represented through a Host element.

3. <bridge> : this represents a machine which acts as a gateway to one or several other machines. Typically, a front-end for a

cluster.

These elements all take a single argument named 'refid'. The value of the argument is the id of the corresponding host/bridge/group

element defined in the <infrastructure> element. The topology must be described according to the following rules:

• A host can be at the top level, or in a group element

• A group can be at the top level, or in a bridge element

• A bridge can only be at the top level

For example, the following constructions are correct: Single host:

<host refid="A_HOST" -/>

Group:

<group refid="CLUSTER">
 <host refid="CLUSTER_NODE" -/>
</group>

Group behind a bridge:

<bridge refid="CLUSTER_FRONT_END" -/>
 <group refid="CLUSTER">
 <host refid="CLUSTER_NODE" -/>
 </group>
</bridge>

2.6.1.3. Acquisition element

An alternative to the <infrastructure> element, the <acquisition> element describes how resources which are already running can

be acquired. It contains two types of elements: <lookup> and <p2p>, in this order. Each element can either have a single occurrence

or be omitted. The <lookup> element has the following three attributes:

1. type: one of "RMI", "HTTP", "IBIS";

2. hostlist: a HostList as defined in 5.1.1;

3. port: a positive integer.

The <p2p> element has a single attribute named "nodesAsked", indicating the number of requested nodes. You can set the value to

'MAX' so that the maximum number of available nodes will be allocated to the task.

GridCOMP FP6-034442 15 D.CFI.06

2.6.1.4. Infrastructure element

The <infrastructure> is where you will list the grid resources on which the deployment can take place, in no particular order. Its

purpose is to describe how these resources are deployed (i.e. through which protocols). It can have a single child element of each

of the following types: <hosts>, <bridges>, <groups>. <bridges> and <groups> may be empty or omitted, but there should be at

least one child element in <hosts>.

2.6.2. For the Grid Application Developer : creating an application descriptor

While the Deployment Descriptor lists the grid resources, the application descriptor lists the resources the application needs.

The overall structure of an Application Descriptor is as follows :

<environment>
 …
</environment>

<application>
…
</application>

<resources>
 <nodeProvider>
 <file …/>
 …
 </nodeProvider>
 …
</resources>

The <environment> element is similar to the one in the Deployment Descriptor. The <application> one is where the application itself

and the resources it requests are described (see GCM Application descriptor section). Finally, the <resources> element is where

you'll make the link between the requested resources and the deployed ones.

The <application> tag can hold either an <executable> or a <proactive> tag. <executable> is for stand-alone applications which you

want to run on a grid. <proactive> is for ProActive-based applications. In both cases the requested resources are specified through

<nodeProvider> elements. These elements only carry a single 'refid' attribute which points to a corresponding <nodeProvider>

element listed in the <resources> element.

2.6.2.1. Example of Executable element

A stand-alone executable is very straightforward to describe. You only need to specify one or several <nodeProvider>s and the

application will be run on all the physical nodes these providers can yield.

 <application>
 <executable>
 <command name="ls">
 <arg>-lh</arg>
 <arg>--sort=time</arg>
 <arg>*</arg>
 </command>
 <nodeProvider refid="COMPANY_LAN" -/>
 </executable>
 </application>

GridCOMP FP6-034442 16 D.CFI.06

 <resources>
 <nodeProvider id="COMPANY_LAN">
 <file path="deployment.xml" -/>
 </nodeProvider>
 </resources>

2.6.2.2. Example of ProActive element

A ProActive application runs on virtual nodes. These virtual nodes aggregate physical nodes that they fetch from the node provider

specified in the virtual node definition. In the following example, a ProActive application defines two virtual nodes ("master" and

"slaves"). The first will fetch a single physical node from the COMPANY_LAN node provider. The second will get as many nodes

as available (its capacity is set to "MAX") from both the COMPANY_LAN and REMOTE_CLUSTER providers.

 <application>
 <proactive relpath="Scratch/ProActive/">

 <configuration>
 <!-- ommitted for clarity --->
 </configuration>

 <virtualNode id="master" capacity="1">
 <nodeProvider refid="COMPANY_LAN" -/>
 </virtualNode>

 <virtualNode id="slaves" capacity="max">
 <nodeProvider refid="COMPANY_LAN" -/>
 <nodeProvider refid="REMOTE_CLUSTER" -/>
 </virtualNode>
 </proactive>
 </application>

 <resources>
 <nodeProvider id="COMPANY_LAN">
 <file path="deployment.xml" -/>
 </nodeProvider>
 <nodeProvider id="REMOTE_CLUSTER">
 <file path="deployment_cluster.xml" -/>
 </nodeProvider>
 </resources>

2.6.3. For the Grid Application Developer : deploying your application on the grid

To deploy your application on the grid, you need to get your application descriptor as a java.io.File . You then pass it to

org.objectweb.proactive.extensions.gcmdeployment.PAGCMDeployment.loadApplicationDescriptor() which will return a

GCMApplication object. To actually start the deployment, simply call the startDeployment() method.

GridCOMP FP6-034442 17 D.CFI.06

GCMApplication app;

File desc = new File(this.getClass().getResource("MyApplicationDescriptor.xml").getPath());

app = PAGCMDeployment.loadApplicationDescriptor(desc);
app.startDeployment();

If needed you may want to also create a VariableContract and set some of its variables, then pass it as 2nd argument to

loadApplicationDescriptor() :

VariableContractImpl vContract = new VariableContractImpl();
vContract.setVariableFromProgram("HOST_CAPACITY", -"4",
 VariableContractType.DescriptorDefaultVariable);
vContract.setVariableFromProgram("VM_CAPACITY", -"1",
 VariableContractType.DescriptorDefaultVariable);

GCMApplication app;

File desc = new File(this.getClass().getResource("MyApplicationDescriptor.xml").getPath());

app = PAGCMDeployment.loadApplicationDescriptor(desc, vContract);
app.startDeployment();

In the case of a stand-alone application, it will simply be deployed on all the available nodes without any special intervention on

your side. In the case of a ProActive-based application, there are two ways for an application to handle the deployment process.

The simplest one is to call the

 public void waitReady();

method on your GCMApplication object. As the name of the method indicates, it amounts to "wait until everything is ready". The

call will block until all virtual nodes are ready, that is that they have acquired the minimum number of nodes they need. This method

should not be used if one of the virtual nodes is "greedy", in which case it will never be in a "ready" state. There's another version

of the method with a timeout parameter :

 public void waitReady(int timeout) throws ProActiveTimeoutException;

However, a more flexible way is for your application to listen to the availability of new nodes on each virtual node, and act

accordingly. The method for this is

public void subscribeNodeAttachment(Object client, String methodName, boolean withHistory)

in GCMVirtualNode . methodName must be the name of a method of client , which prototype is method(GCMVirtualNode
node, String virtualNodeName) . This method will be called by the virtual node for each new available node. To get the list of

virtual nodes for your GCMApplication, use

 public Map<String, GCMVirtualNode> getVirtualNodes();

You can also get a specific virtual node if you know its name :

 public GCMVirtualNode getVirtualNode(String vnName);

GridCOMP FP6-034442 18 D.CFI.06

Chapter 3. User guide
This chapter explains the specific features and functionalities of the GCM Implementation.

3.1. Architecture Description Language

The Architecture Description Languages (ADL) are a way to describe software and/or system architectures. ADLs facilitate

application description without concern for the underlying implementation code and foster code reuse as an effect of decoupling

the implementation from the architecture. Architectures created by using ADLs are composed of predefined entities with various

connectors that communicate through defined connections. To define an architecture through an ADL, we can use a textual syntax

and/or a graphical syntax, possibly associated with a design tool.

This GCM implementation reuses and extends the Fractal ADL Project. For detailed information on Fractal ADL read the Fractal

ADL tutorial [http://fractal.objectweb.org/tutorials/adl/index.html] . This mechanism is used to configure and deploy component

systems through normalized XML files. Thanks to a specific XML DTD, it specifies a definition for each component of the

application. For instance, it usually describes component interfaces, component bindings, component attributes, the subcomponents

in the case of a composite component, the virtual node where the component will be deployed, and so on. As it is an extension of

the standard Fractal ADL, GCM allows reusing and integrating ProActive-specific features such as distributed deployment using

deployment descriptors, active objects, virtual nodes, etc. For example, in the case of virtual nodes the components ADL has to be

associated with a deployment descriptor (this is done at parsing time: both files are given to the parser).

Note that because GCM is based on the Fractal ADL, it requires the following libraries which are included in the /lib directory of

the ProActive distribution : fractal-adl.jar , dtdparser.jar , ow_deployment_scheduling.jar .

3.1.1. Overview

Components are defined in definition files with the .fractal extension. Here is a simple example of an ADL file extract from the

example Helloworld retrievable at Examples/org.objectweb.proactive.examples.components.helloworld.

 1: <?xml version="1.0" encoding="ISO-8859-1" -?>
 2: <!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 3: -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">
 4:
 5: <definition name="org.objectweb.proactive.examples.components.helloworld.HelloWorld">
 6: <interface name="m" role="server" signature=
 7:"org.objectweb.proactive.examples.components.helloworld.Main"/>
 8:
 9: <component name="client" definition=
 10:"org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 11: <component name="server">
 12: <interface name="s" role="server" signature=
 13:"org.objectweb.proactive.examples.components.helloworld.Service"/>
 14: <content class="ServerImpl"/>
 15: <attributes signature=
 16:"org.objectweb.proactive.examples.components.helloworld.ServiceAttributes">
 17: <attribute name="header" value="-> -"/>
 18: <attribute name="count" value="1"/>
 19: </attributes>
 20: <controller desc="primitive"/>
 21: </component>
 22:
 23: <binding client="this.m" server="client.m"/>
 24: <binding client="client.s" server="server.s"/>
 25:
 26: <controller desc="composite"/>
 27:

GridCOMP FP6-034442 19 D.CFI.06

 28: <virtual-node name="helooworld-node" cardinality="single"/>
 29: </definition>
 30:

Now, here is a detailed description of each lines:

• 1: Classical prologue of XML files.

• 2-3: The syntax of the document is validated against a DTD retrieved from the classpath.

• 5: The definition element has a name (which must be the same name that the file's) and inheritance is supported through the

attribute 'extends'.

• 6: The interface element allows to specify interfaces of the current enclosing component.

• 9-21: Nesting is allowed for composite components and is done by adding other component elements. Components can be

specified and created in this definition, and these components can themselves be defined here or in other definition files.

• 14: Primitive components specify the content element, which indicates the implementation class containing the business logic

for this component.

• 15-19: Components can specify a attributes element, which allows to initialize attributes of a component.

•

23-24: The binding element specifies bindings between interfaces of components and specifying 'this' as the name of the

component refers to the current enclosing component.

• 26: The controller elements can have the following 'desc' values: 'composite' or 'primitive'.

• 28: The virtual-node element offers distributed deployment information. It can be exported and composed in the

exportedVirtualNodes element.

The component will be instantiated on the virtual node it specified (or the one that it exported). For a composite component, it

means it will be instantiated on the (first if there are several nodes mapped) node of the virtual node. For a primitive component,

if the virtual node defines several nodes (cardinality='multiple'), there will be as many instances of the primitive component as

there are underlying nodes. Each of these instances will have a suffixed name looking like:

 primiveComponentName-cyclicInstanceNumber-n

where primitiveComponentName is the name defined in the ADL.

The syntax is similar to the standard Fractal ADL, and the parsing engine has been extended. Features specific to ProActive are:

• Virtual nodes have a cardinality property: either 'single' or 'multiple'. When 'single', it means the virtual node in the deployment

descriptor should contain 1 node ; when 'multiple', it means the virtual node in the deployment descriptor should contain more

than 1 node.

• Virtual nodes can be exported and composed .

• Template components are not handled.

• The validating DTD has to be specified as: classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd

3.1.2. Exportation and composition of virtual nodes

Components are deployed on the virtual node that is specified in their definition ; it has to appear in the deployment descriptor

unless this virtual node is exported. In this case, the name of the exported virtual node should appear in the deployment descriptor,

unless this exported virtual node is itself exported.

When exported, a virtual node can take part in the composition of other exported virtual nodes. The idea is to further extend

reusability of existing (and packaged, packaging being a forthcoming feature of Fractal) components.

In the example, the component defined in helloworld-distributed-wrappers.fractal exports the virtual nodes VN1 and VN2:

 exportedVirtualNodes exportedVirtualNode name='VN1'
 composedFrom composingVirtualNode component='client'
 name='client-node' -/composedFrom -/exportedVirtualNode

GridCOMP FP6-034442 20 D.CFI.06

 exportedVirtualNode name='VN2' composedFrom
 composingVirtualNode component='server'
 name='server-node'/ -/composedFrom -/exportedVirtualNode
 /exportedVirtualNodes

VN1 is composed of the exported virtual node 'client-node' from the component named client

In the definition of the client component (ClientImpl.fractal), we can see that client-node is an exportation of a virtual node which

is also name 'client-node':

 exportedVirtualNodes exportedVirtualNode
 name='client-node' composedFrom composingVirtualNode
 component='this' name='client-node'/ -/composedFrom
 /exportedVirtualNode -/exportedVirtualNodes -...
 virtual-node name='client-node' cardinality='single'/

Although this is a simplistic example, one should foresee a situation where ClientImpl would be a prepackaged component, where

its ADL could not be modified ; the exportation and composition of virtual nodes allow to adapt the deployment of the system

depending on the existing infrastructure. Colocation can be specified in the enclosing component definition (helloworld-distributed-

wrappers.fractal):

 exportedVirtualNodes exportedVirtualNode name='VN1'
 composedFrom composingVirtualNode component='client'
 name='client-node' composingVirtualNode
 component='server' name='server-node'/ -/composedFrom
 /exportedVirtualNode -/exportedVirtualNodes

As a result, the client and server component will be colocated / deployed on the same virtual node. This can be profitable if there

is a lot of communications between these two components.

When specifying 'null' as the name of an exported virtual node, the components will be deployed on the current virtual machine.

This can be useful for debugging purposes.

3.1.3. Usage

ADL definitions correspond to component factories. ADL definition can be used directly:

 Factory factory = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map context = new HashMap();
 Component c = (Component) factory.newComponent("myADLDefinition",context);

It is also possible to use the launcher tool, which parses the ADL, creates a corresponding component factory, and instantiates and

assembles the components as defined in the ADL, is started from the org.objectweb.proactive.core.component.adl.Launcher
class:

 Launcher [-java|-fractal] <definition>
 [<itf>] [deployment-descriptor])

where [-java|-fractal] comes from the Fractal ADL Launcher (put -fractal for ProActive components, this will be made optional for

ProActive components in the next release), <definition> is the name of the component to be instantiated and started, <itf> is the

name of its Runnable interface, if it has one, and <deployment-descriptor> the location of the ProActive deployment descriptor to

use. It is also possible to use this class directly from its static main method.

GridCOMP FP6-034442 21 D.CFI.06

3.2. Implementation specific API

3.2.1. fractal.provider

The API is the same for any Fractal implementation, though some classes are implementation-specific:

The fractal provider class, that corresponds to the fractal.provider parameters of the JVM, is

org.objectweb.proactive.core.component.Fractive . The Fractive class acts as:

• a bootstrap component

• a GenericFactory for instantiating new components

• a utility class providing static methods to create collective interfaces

3.2.2. Requirements

As this implementation is based on ProActive, several conditions are required (more informations in the ProActive manual):

• the base class for the implementation of a primitive component has to provide a no-argument and preferably an empty

constructor.

• asynchronous method calls with transparent futures is a core feature of ProActive (more informations in the ProActive manual),

and it allows concurrent processing. Indeed, suppose a caller invokes a method on a callee. This method returns a result on a

component. With synchronous method calls, the flow of execution of the caller is blocked until the result of the method called

is received. In the case of intensive computations, this can be relatively long. With asynchronous method calls, the caller gets

a future object and will continue its tasks until it really uses the result of the method call. The process is then blocked (it is

called wait-by-necessity) until the result has effectively been calculated.

Thus, for asynchronous invocations, return types of the methods provided by the interfaces of the components have to be

reifiable (Non-final and serializable class) and methods must not throw exceptions.

3.2.3. Content and controller descriptions

When a component is instantiated with the public Component newFcInstance(Type type, Object controllerDesc, Object
contentDesc) throws InstantiationException method of the org.objectweb.fractal.api.factory.Factory class, in addition to

the type of the component have to be specified the controller description and the content description of the component.

The controller description (org.objectweb.proactive.core.component.ControllerDescription) is useful to describe the

controllers of components. It allows to define:

• the name of a component.

• the hierarchical type of a component.

• the custom controllers for a component. The configuration of the controllers is described in a properties file whose location can

be given as a parameter. The controllers configuration file is simple: it associates the signature of a controller interface with the

implementation that has to be used. During the construction of the component, the membrane is automatically constructed with

these controllers. The controllers are linked together, and requests targetting a control interface visit the different controllers

until they find the suitable controller, and then the request is executed on this controller.

The role of the content description (org.objectweb.proactive.core.component.ContentDescription) is to define some

informations about a component:

• the classname of the component (the only one information mandatory).

• the constructor parameters of the component (optional).

• the activity as defined in the ProActive model (optional). See the ProActive manual for more informations about activity in

ProActive.

• the meta-object factory for the component (optional).

It is also possible to force that there is only one instance of this component when instantiating the component on a given multiple

virtual node by using the forceSingleInstance method.

3.2.4. Collective interfaces

Collective interactions are an extension to the Fractal model, described in section Section 3.3, “Collective interfaces” , that relies

on collective interfaces.

GridCOMP FP6-034442 22 D.CFI.06

This feature provides collective interactions (1-to-n and n-to-1 interactions between components), namely gathercast and multicast

interfaces

3.2.5. Priority controller

In order to define Non Functional prioritized requests (useful for instance for life cycle management, reconfiguration, ...), a partial

order between each kind of request is available to specify when an incoming request can pass requests already in the queue.

Here are the different priorities availables for the requests:

• F: Functional request. Always goes at the end of the requests queue.

• NF1: Standard Non Functional request. Also always goes at the end of the requests queue.

• NF2: Non Functional prioritized request. Pass the Functional requests into the requests queue but respect the order of the other

Non Functional requests.

• NF3: Non Functional most prioritized request. Pass all the other requests into the requests queue.

Thus, for prioritize non functional requests, a new controller,

org.objectweb.proactive.core.component.controller.PriorityController , has to be used:

public interface PriorityController {

 /**
 * All the possible kind of priority for a request on a component.
 *
 */
 public enum RequestPriority {
 /**
 * Functional priority
 */
 F,
 /**
 * Non-Functional priority
 */
 NF1,
 /**
 * Non-Functional priority higher than Functional priority (F)
 */
 NF2,
 /**
 * Non-Functional priority higher than Functional priority (F) and Non-Functional priority
 * (NF1 and NF2)
 */
 NF3;
 -}

 /**
 * Set priority of all methods named -'methodName' in the interface -'interfaceName' to
 * -'priority'.
 *
 * @param interfaceName
 * Name of the component interface providing the method
 * @param methodName
 * Name of the method on which set the priority
 * @param priority
 * The priority
 * @return true if success, else false
 */
 public void setPriority(String interfaceName, String methodName, RequestPriority priority);

 /**

GridCOMP FP6-034442 23 D.CFI.06

 * Set priority of the method named -'methodName' with the signature defined by -'parametersTypes'
 * in the interface -'interfaceName' to -'priority'.
 *
 * @param interfaceName
 * Name of the component interface providing the method
 * @param methodName
 * Name of the method on which set the priority
 * @param parametersTypes
 * The type of the method's parameters signature
 * @param priority
 * The priority
 * @return true if success, else false
 */
 public void setPriority(String interfaceName, String methodName, Class<?>[] parametersTypes,
 RequestPriority priority);

 /**
 * Get the priority for a given method.
 *
 * @param interfaceName
 * Name of the component interface
 * @param methodName
 * Name of the method
 * @param parametersTypes
 * The type of the method's parameters signature
 * @return
 */
 public RequestPriority getPriority(String interfaceName, String methodName, Class<?>[]
 parametersTypes);
}

3.2.6. Monitor controller

By using the monitor controller, org.objectweb.proactive.core.component.controller.MonitorController, users can retrieve

various statistics on components as the average length of the queue of a given method or the last execution time of another method.

Thus, with these metrics, users can be informed on the QoS and then decide to do some changes in their application to improve

the performance.

After having started the monitoring (Method startMonitoring), for each methods exposed by the server interfaces of a component,

this controller will be able to provide an instance of org.objectweb.proactive.core.component.controller.MethodStatistics,

which itself provides some statistics related to a given method.

The set of statistics that can be retrieved and the corresponding methods to call are described through the MethodStatistics interface:

 /**
 * Get the current length of the requests incoming queue related to the monitored method.
 *
 * @return The current number of pending request in the queue.
 */
 public int getCurrentLengthQueue();

 /**
 * Get the average number of requests incoming queue per second related to the monitored
 * method since the monitoring has been started.
 *
 * @return The average number of requests per second.
 */
 public double getAverageLengthQueue();

GridCOMP FP6-034442 24 D.CFI.06

 /**
 * Get the average number of requests incoming queue per second related to the monitored
 * method in the last past X milliseconds.
 *
 * @param pastXMilliseconds The last past X milliseconds.
 * @return The average number of requests per second.
 */
 public double getAverageLengthQueue(long pastXMilliseconds);

 /**
 * Get the latest service time for the monitored method.
 *
 * @return The latest service time in milliseconds.
 */
 public long getLatestServiceTime();

 /**
 * Get the average service time for the monitored method since the monitoring has been started.
 *
 * @return The average service time in milliseconds.
 */
 public double getAverageServiceTime();

 /**
 * Get the average service time for the monitored method during the last N method calls.
 *
 * @param lastNRequest The last N method calls.
 * @return The average service time in milliseconds.
 */
 public double getAverageServiceTime(int lastNRequest);

 /**
 * Get the average service time for the monitored method in the last past X milliseconds.
 *
 * @param pastXMilliseconds The last past X milliseconds.
 * @return The average service time in milliseconds.
 */
 public double getAverageServiceTime(long pastXMilliseconds);

 /**
 * Get the latest inter-arrival time for the monitored method.
 *
 * @return The latest inter-arrival time in milliseconds.
 */
 public long getLatestInterArrivalTime();

 /**
 * Get the average inter-arrival time for the monitored method since the monitoring has
 * been started.
 *
 * @return The average inter-arrival time in milliseconds.
 */
 public double getAverageInterArrivalTime();

 /**
 * Get the average inter-arrival time for the monitored method during the last
 * N method calls.
 *

GridCOMP FP6-034442 25 D.CFI.06

 * @param lastNRequest The last N method calls.
 * @return The average inter-arrival time in milliseconds.
 */
 public double getAverageInterArrivalTime(int lastNRequest);

 /**
 * Get the average inter-arrival time for the monitored method in the last past X
 * milliseconds.
 *
 * @param pastXMilliseconds The last past X milliseconds.
 * @return The average inter-arrival time in milliseconds.
 */
 public double getAverageInterArrivalTime(long pastXMilliseconds);

 /**
 * Get the average permanence time in the incoming queue for a request of the monitored method
 * since the monitoring has been started.
 *
 * @return The average permanence time in the incoming queue in milliseconds.
 */
 public double getAveragePermanenceTimeInQueue();

 /**
 * Get the average permanence time in the incoming queue for a request of the monitored method
 * during the last N method calls.
 *
 * @param lastNRequest The last N method calls.
 * @return The average permanence time in the incoming queue in milliseconds.
 */
 public double getAveragePermanenceTimeInQueue(int lastNRequest);

 /**
 * Get the average permanence time in the incoming queue for a request of the monitored method
 * in the last past X milliseconds.
 *
 * @param pastXMilliseconds The last past X milliseconds.
 * @return The average permanence time in the incoming queue in milliseconds.
 */
 public double getAveragePermanenceTimeInQueue(long pastXMilliseconds);

 /**
 * Get the list of all the method calls (server interfaces) invoked by a given invocation.
 *
 * @return The list of the used interfaces.
 * TODO which kind of information do you need (Interface reference, name, -...?)
 */
 public List<String> getInvokedMethodList();

In regard to the MethodStatistics instances, they can be recovered by the following MonitorController's methods:

• public Map<String, MethodStatistics> getAllStatistics();

Which returns every MethodStatistics (i.e. statistics of each methods of each server interfaces of the monitored component)

contained into a Map. The key to obtain the MethodStatistics corresponding to a method can be generated thanks to the method

org.objectweb.proactive.core.component.controller.MonitorControllerHelper.generateKey which takes as parameters

the name of the interface, the name of the method and an array of parameter types of the method.

• public MethodStatistics getStatistics(String itfName, String methodName)

Which returns the MethodStatistics object for the method methodName which belongs to the interface itfName.

GridCOMP FP6-034442 26 D.CFI.06

• public MethodStatistics getStatistics(String itfName, String methodName, Class<?>[]
 parametersTypes)

Which returns the MethodStatistics object for the method methodName which takes as parameters the given parameter types

and belongs to the interface itfName.

These methods to retrieve MethodStatistics are in "immediate services", i.e when calling one of these methods, the corresponding

request will not be enqueued in the component queue as any other request but it will be executed immediately and thus avoiding

to spend to much time to obtain the statistics.

3.2.7. Stream ports

Stream ports allow to ensure to have components which only have one way communication methods (client side to server side).

Thus, by using the org.objectweb.proactive.core.component.StreamInterface interface as a tag on the java interface definition

of a component interface, the GCM implementation will check during the instantiation of a Fractal Interface Type created with

createFcItfType(...) method, if all the methods of the given interface, and its parents, return void. If not, an exception is thrown: "

org.objectweb.fractal.api.factory.InstantiationException " accordingly to the Fractal specifications.

3.3. Collective interfaces

In this chapter, we consider multiway communications - communications to or from several interfaces - and notably parallel

communications, which are common in Grid computing.

Our objective is to simplify the design of distributed Grid applications with multiway interactions.

The driving idea is to manage the semantics and behavior of collective communications at the level of the interfaces.

3.3.1. Motivations

Grid computing uses the resources of many separate computers connected by a network (usually the Internet) to solve large-

scale computation problems. Because of the number of available computers, it is fundamental to provide tools for facilitating

communications to and from these computers. Moreover, Grids may contain clusters of computers, where local parallel computations

can be very efficiently performed - this is part of the solution for solving large-scale computation problems - , which means that

programming models for Grid computing should include parallel programming facilities. We address this issue, in the context of a

component model for Grid computing, by introducing collective interfaces .

The component model that we use, Fractal, proposes two kinds of cardinalities for interfaces, singleton or collection , which result

in one-to-one bindings between client and server interfaces. It is possible though to introduce binding components, which act as

brokers and may handle different communication paradigms. Using these intermediate binding components, it is therefore possible

to achieve one-to-n, n-to-one or n-to-n communications between components. It is not possible however for an interface to express

a collective behavior: explicit binding components are needed in this case.

We propose the addition of new cardinalities in the specification of Fractal interfaces, namely multicast and gathercast . Multicast

and gathercast interfaces give the possibility to manage a group of interfaces as a single entity (which is not the case with

a collection interface, where the user can only manipulate individual members of the collection), and they expose the collective

nature of a given interface. Moreover, specific semantics for multiway invocations can be configured, providing users with flexible

communications to or from gathercast and multicast interfaces. Lastly, avoiding the use of explicit intermediate binding components

simplifies the programming model and type compatibility is automatically verified.

The role and use of multicast and gathercast interfaces are complementary. Multicast interfaces are used for parallel invocations,

whereas gathercast interfaces are used for synchronization and gathering purposes.

Note that in our implementation of collective interfaces, new features of the Java language introduced in Java 5 are extensively

used, notably annotations and generics.

3.3.2. Multicast interfaces

3.3.2.1. Definition

A multicast interface transforms a single invocation into a list of invocations

GridCOMP FP6-034442 27 D.CFI.06

A multicast interface is an abstraction for 1-to-n communications. When a single invocation is transformed into a set of invocations,

these invocations are forwarded to a set of connected server interfaces. A multicast interface is unique and it exists at runtime (it

is not lazily created). The semantics of the propagation of the invocation and of the distribution of the invocation parameters are

customizable (through annotations), and the result of an invocation on a multicast interface - if there is a result - is always a list

of results.

Invocations forwarded to the connected server interfaces occur in parallel, which is one of the main reasons for defining this kind

of interface: it enables parallel invocations, with automatic distribution of invocation parameters .

Figure 3.1. Multicast interfaces for primitive and composite component

3.3.2.2. Data distribution

A multicast invocation leads to the invocation services offered by one or several connected server interfaces, with possibly distinct

parameters for each server interface.

If some of the parameters of a given method of a multicast interface are lists of values, these values can be distributed in various ways

through method invocations to the server interfaces connected to the multicast interface. The default behavior - namely broadcast

- is to send the same parameters to each of the connected server interfaces. In the case some parameters are lists of values, copies

GridCOMP FP6-034442 28 D.CFI.06

of the lists are sent to each receiver. However, similar to what SPMD programming offers, it may be adequate to strip some of

the parameters so that the bound components will work on different data. In MPI for instance, this can be explicitly specified by

stripping a data buffer and using the scatter primitive.

The following figure illustrates such distribution mechanisms: broadcast (a.) and scatter (b.)

Figure 3.2. Broadcast and scatter of invocation parameters

Invocations occur in parallel and the distribution of parameters is automatic.

3.3.2.2.1. Invocation parameters distribution modes

4 modes of distribution of parameters are provided by default, and define distribution policies for lists of parameters:

• BROADCAST, which copies a list of parameters and sends a copy to each connected server interface.

 ParamDispatchMode.BROADCAST

• ONE-TO-ONE, which sends the ith parameter to the connected server interface of index i. This implies that the number of

elements in the annotated list is equal to the number of connected server interfaces.

 ParamDispatchMode.ONE_TO_ONE

• ROUND-ROBIN, which distributes each element of the list parameter in a round-robin fashion to the connected server

interfaces.

 ParamDispatchMode.ROUND_ROBIN

• RANDOM, which distributes each element of the list parameter in a random manner to the connected server interfaces.

 ParamDispatchMode.RANDOM

• UNICAST, which sends only one parameter of the list parameters to one of the connected server interfaces. .

 ParamDispatchMode.UNICAST

GridCOMP FP6-034442 29 D.CFI.06

By default, the behavior is not specified: there is no way to predict which parameter will be sent to which server interface.

Therefore, it is strongly recommended to combine the use of the UNICAST parameter distribution mode with the dispatch

annotation, org.objectweb.proactive.core.group.Dispatch , which allows to specify a custom dispatch mode (This custom

dispatch mode has to implement the org.objectweb.proactive.core.group.DispatchBehavior interface):

 @DispatchMode(mode = DispatchMode.CUSTOM, customMode=CustomUnicastDispatch.class)

It is also possible to define a custom partition by specifying the partition algorithm in a class which implements the

org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatch interface.

 @ParamDispatchMetadata(mode
 =ParamDispatchMode.CUSTOM, customMode =
 CustomParametersDispatch.class))

3.3.2.2.2. Configuration through annotations

Note that our implementation of collective interfaces extensively uses new features of the Java language introduced in Java 5, such

as generics and annotations.

The distribution of parameters in our framework is specified in the definition of the multicast interface, using annotations.

Elements of a multicast interface which can be annotated are: interface, methods and parameters. The different distribution modes

are explained in the next section. The examples in this section all specify broadcast as the distribution mode.

Interface annotations

A distribution mode declared at the level of the interface defines the distribution mode for all parameters of all methods of this

interface, but may be overridden by a distribution mode declared at the level of a method or of a parameter.

The annotation for declaring distribution policies at level of an interface is

@org.objectweb.proactive.core.component.type.annotations.multicast.ClassDispatchMetadata

and is used as follows:

 @ClassDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST))
 interface MyMulticastItf {

 public void foo(List<T> parameters);
 }

Method annotations

A distribution mode declared at the level of a method defines the distribution mode for all parameters of this method, but may be

overridden at the level of each individual parameter.

The annotation for declaring distribution policies at level of a method is

@org.objectweb.proactive.core.component.type.annotations.multicast.MethodDispatchMetadata

and is used as follows:

 @MethodDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST))
 public void foo(List<T> parameters);

GridCOMP FP6-034442 30 D.CFI.06

Moreover, an another feature, inherited from the group framework of ProActive, is available: the dynamic dispatch.

The org.objectweb.proactive.core.group.DispatchMode.DYNAMIC mode is applicable when there are more parameter

partitions, resulting from the use of a parameters distribution mode, than binded server interfaces. Dynamic dispatch uses a

knowledge-based policy, i.e. it collects information about request execution by server interfaces, and maintains a ranking among

server interfaces so that partitions are dispatched to the "best" server interface. A buffer can be configured, in which case buffered

partitions are statically allocated to server interfaces, according to the static dispatch policy.

Dynamic dispatch must be used like this:

 @Dispatch(mode=DispatchMode.DYNAMIC, bufferSize=myBufferSize)
 public void foo(List<T> parameters);

Parameter annotations

The annotation for declaring distribution policies at level of a parameter is

@org.objectweb.proactive.core.component.type.annotations.multicast.ParamDispatchMetadata

and is used as follows:

 public void foo(@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST)
 List<T> parameters);

3.3.2.2.3. Results

For each method invoked and returning a result of type T , a multicast invocation returns an aggregation of the results: a List<T> .

There is a type conversion, from return type T in a method of the server interface, to return type List<T> in the corresponding

method of the multicast interface. The framework transparently handles the type conversion between return types, which is just an

aggregation of elements of type T into a structure of type list<T> .

This implies that, for the multicast interface, the signature of the invoked method has to explicitly specify List<T> as a return type.

This also implies that each method of the interface returns either nothing, or a list. Valid return types for methods of multicast

interfaces are illustrated as follows:

 public List<Something> foo();

 public void bar();

Otherwise, there is also a possibility to customize the result values by processing a reduction on them. This mechanism allows to

gather results and/or perform some operations on them.

There is one reduction mechanism provides by default: SELECT_UNIQUE_VALUE. It allows to extract of the list

of results the only one result that the list contains. In order to use it, the multicast interface must use the

org.objectweb.proactive.core.component.type.annotations.multicast.Reduce annotation at the level of the methods which

the results need to be reduced:

 @Reduce(reductionMode =
 ReduceMode.SELECT_UNIQUE_VALUE)

Or else, a custom reduce mode can also be used. For this case, the first step is to defined the reduction algorithm into a class which

implements the org.objectweb.proactive.core.component.type.annotations.multicast.ReduceBehavior interface. Then, the

GridCOMP FP6-034442 31 D.CFI.06

multicast interface can use the Reduce annotation, always at the level of the methods, by specifying the mode (CUSTOM) and the

implementation class of the reduction to use:

 @Reduce(reductionMode = ReduceMode.CUSTOM,
 customReductionMode = MyReduction.class)

3.3.2.3. Binding compatibility

Multicast interfaces manipulate lists of parameters (say, List<ParamType>), and expect lists of results (say, List<ResultType>
). With respect to a multicast interface, connected server interfaces, on the contrary, may work with lists of parameters (

List<ParamType), but also with individual parameters (ParamType) and return individual results (ResultType).

Therefore, the signatures of methods differ from a multicast client interface to its connected server interfaces . This is

illustrated in the following figure: in a. the foo method of the multicast interface returns a list of elements of type T collected from

the invocations to the server interfaces, and in b. the bar method distributes elements of type A to the connected server interfaces.

Figure 3.3. Comparison of signatures of methods

between client multicast interfaces and server interfaces.

For a given multicast interface, the type of server interfaces which may be connected to it can be infered by applying the following

rules: for a given multicast interface,

• the server interface must have the same number of methods

• for a given method method foo of the multicast interface, there must be a matching method in the server interface:

• named foo

• which returns:

• void if the method in the multicast method returns void

• T if the multicast method returns list<T>

• for a given parameter List<T> in the multicast method, there must be a corresponding parameter, either List<T> or T, in the

server interface, which matches the distribution mode for this parameter.

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented

IllegalBindingException if signatures are incompatible.

3.3.3. Gathercast interfaces

3.3.3.1. Definition

A gathercast interface transforms a list of invocations into a single invocation

A gathercast interface is an abstraction for n-to-1 communications. It handles data aggregation for invocation parameters, as well

as process coordination. It gathers incoming data, and can also coordinate incoming invocations before continuing the invocation

flow, by defining synchronization barriers.

GridCOMP FP6-034442 32 D.CFI.06

Gathering operations require knowledge of the participants of the collective communication (i.e. the clients of the gathercast

interface). Therefore, the binding mechanism, when performing a binding to a gathercast interface, provides references on client

interfaces bound to the gathercast interface. This is handled transparently by the framework. As a consequence, bindings to gathercast

interfaces are bidirectional links.

Figure 3.4. Gathercast interfaces for primitive and composite components

3.3.3.2. Data distribution

Gathercast interfaces aggregate parameters from method invocations from client interfaces into lists of invocations parameters, and

they redistribute results to each client interface.

3.3.3.2.1. Gathering of invocation parameters

Invocation parameters are simply gathered into lists of parameters. The indexes of the parameters in the list correspond the index

of the parameters in the list of connected client interfaces, managed internally by the gathercast interface.

GridCOMP FP6-034442 33 D.CFI.06

Figure 3.5. Aggregation of parameters with a gathercast interface

3.3.3.2.2. Redistribution of results

The result of the invocation transformed by the gathercast interface is a list of values. Each result value is therefore indexed and

redistributed to the client interface with the same index in the list of client interfaces managed internally by the gathercast interface.

Similarly to the distribution of invocation parameters in multicast interfaces, a redistribution function could be applied to the results

of a gathercast invocation, however this feature is not implemented yet.

3.3.3.3. Binding compatibility

Gathercast interfaces manipulate lists of parameters (say, List<ParamType>), and return lists of results (say, List<ResultType>
). With respect to a gathercast interface, connected client interface work with parameters which can be contained in the lists of

parameters of the methods of the bound gathercast interface (ParamType), and they return results which can be contained in the lists

of results of the methods of the bound gathercast interface (ResultType).

Therefore, by analogy to the case of multicast interfaces, the signatures of methods differ from a gathercast server interface

to its connected client interfaces . This is illustrated in the following figure: the foo method of interfaces which are client of the

gathercast interface exhibit a parameter of type V , the foo method of the gathercast interface exhibits a parameter of type List<V>
. Similarly, the foo method of client interfaces return a parameter of type T , and the foo method of the gathercast interface returns

a parameter of type List<T> .

The compatibility of interface signatures is verified automatically at binding time, resulting in a documented

IllegalBindingException if signatures are incompatible

GridCOMP FP6-034442 34 D.CFI.06

Figure 3.6. Comparison of signature of methods for bindings to a gathercast interface

3.3.3.4. Process synchronization

An invocation from a client interface to a gathercast interface is asynchronous, provided it matches the usual conditions for

asynchronous invocations in ProActive, however the gathercast interface only creates and executes a new invocation with gathered

parameters when all connected client interfaces have performed an invocation on it.

It is possible to specify a timeout, which corresponds to the maximum amount of time between the moment the first invocation of

a client interface is processed by the gathercast interface, and the moment the invocation of the last client interface is processed.

Indeed, the gathercast interface will not forward a transformed invocation until all invocations of all client interfaces are processed

by this gathercast interface.

Timeouts for gathercast invocations are specified by an annotation on the method subject to the timeout, the value of the timeout

is specified in milliseconds:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(timeout=20)

If a timeout is reached before a gathercast interface could gather and process all incoming requests, a

org.objectweb.proactive.core.component.exceptions.GathercastTimeoutException is returned to each client participating

in the invocation. This exception is a runtime exception.

It is also possible for gathercast interface not to wait for all invocations from connected client interfaces to perform an invocation

by specifying the waitForAll attribute. Therefore, the gathercast interface will create and execute a new invocation on the first

invocation received from any of the connected client interfaces.

Thus, this specific feature can be used by the same annotation as for the timeout but with a different attribute:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(waitForAll=false)

Therefore, the waitForAll attribute accepts boolean values and has for default value "true" (same behavior as if the annotation is

not specified).

Furthermore, it is forbidden to combine timeout and waitForAll set to false (an

org.objectweb.fractal.api.factory.InstantiationException is raised) because il would be incoherent.

GridCOMP FP6-034442 35 D.CFI.06

3.4. Deployment

3.4.1. Overview

To create a distributed component system, a deployment framework is available: the GCM Deployment.

Distribution is achieved in a transparent manner over the Java RMI protocol thanks to the use of a stub/proxy pattern. Components

are manipulated indifferently of their location (local or on a remote JVM). A complete description of the GCM Deployment can be

found at Chapter 2, ProActive Grid Component Model Deployment.

In brief, this framework:

• connects to remote hosts using supported protocols, such as rsh, ssh, lsf, oar, etc...

• creates JVMs on these hosts

• instantiates components on these newly created JVMs

3.4.2. Initiate the deployment

The first step to distribute components is to initiate the deployment by loading the Application Descriptor:

GCMApplication gcma = PAGCMDeployment.loadApplicationDescriptor(filePath);

Then, the deployment must be started (i.e. creation of the remote JVMs):

gcma.startDeployment();

The next step, distribute components, may be done through the ADL or the API.

3.4.3. Distribute components with ADL

Distribute components through the ADL is quite simple:

• Put the GCMApplication into a java.util.Map with as key "deployment-descriptor":

Map<String, Object> context = new HashMap<String, Object>();
context.put("deployment-descriptor", gcma);

• Call the usual method to instantiate component through ADL (method org.objectweb.fractal.adl.Factory.newComponent)

with the Map containing the Application Descriptor as parameter:

Component component = (Component)
 factory.newComponent("my.adl.folder.ComponentDefinition", context);

Thus, the component will be instantiated in a node of the virtual node specified in the ADL component definition (if a virtual node

of the same name has also been defined in the Application Descriptor).

If no virtual node has been specified in the ADL component definition, the component is created in the local JVM.

3.4.4. Distribute components with API

To distribute components through the API, the first thing to do is to get a node from a virtual node defined by the Application

Descriptor:

Map<String, -? extends GCMVirtualNode> vns = gcma.getVirtualNodes();
Node node = vns.get("VN1").getANode();

Then, the component must be instanced thanks to one of the methods provided by

org.objectweb.proactive.core.component.factory.ProActiveGenericFactory, taking as parameter the node obtained previously:

Component component = genericFact.newFcInstance(componentType, controllerDescription,

GridCOMP FP6-034442 36 D.CFI.06

 contentDescription, node);

3.4.5. ProActive Deployment

The distribution of components may also be made by using the ProActive deployment framework. This deployment framework also

uses the concept of virtual nodes but just needs a single configuration file. More informations are available in the ProActive manual.

3.5. Advanced

3.5.1. Controllers and interceptors

This section explains how to customize the membranes of component through the configuration, composition and creation of

controllers and interceptors.

3.5.1.1. Configuration of controllers

It is possible to customize controllers, by specifying a control interface and an implementation.

Controllers are configured in a simple XML configuration file, which has the following structure:

 <componentConfiguration>
 <controllers>
 <controller>
 <interface>
 ControllerInterface
 </interface>
 <implementation>
 ControllerImplementation
 </implementation>
 </controller>
 -...

Unless they some controllers are also interceptors (see later on), the controllers do not have to be ordered.

A default configuration file is provided, it defines the default controllers available for every ProActive component (super, binding,

content, naming, lifecycle and component parameters controllers).

A custom configuration file can be specified (in this example with "thePathToMyConfigFile") for any component in the controller

description parameter of the newFcInstance method from the Fractal API:

 componentInstance = componentFactory.newFcInstance(myComponentType,
 new ControllerDescription("name",myHierarchicalType,thePathToMyControllerConfigFile),
 myContentDescription);

3.5.1.2. Writing a custom controller

The controller interface is a standard interface which defines which methods are available.

When a new implementation is defined for a given controller interface, it has to conform to the following rules:

1. The controller implementation must extend the AbstractProActiveController class, which is the base class for component

controllers in ProActive, and which defines the constructor AbstractProActiveController(Component owner).

2. The controller implementation must override this constructor:

GridCOMP FP6-034442 37 D.CFI.06

 public ControllerImplementation(Component owner) {
 super(owner);
 }

1. The controller implementation must also override the abstract method setControllerItfType(), which sets the type of the

controller interface:

 protected void setControllerItfType() {
 try {
 setItfType(ProActiveTypeFactory.instance().createFcItfType(
 "Name of the controller", TypeFactory.SINGLE));
 }
 catch (InstantiationException e) {
 throw new ProActiveRuntimeException("cannot create controller type: -"
 + this.getClass().getName());
 }
 }

1. The controller interface and its implementation have to be declared in the component configuration file.

3.5.1.3. Configuration of interceptors

Controllers can also act as interceptors: they can intercept incoming invocations and outgoing invocations. For each

invocation, pre and post processings are defined in the methods beforeInputMethodInvocation, afterInputMethodInvocation,

beforeOutputMethodInvocation, and afterOutputMethodInvocation. These methods are defined in the interfaces InputInterceptor

and OutputInterceptor, and take a MethodCall object as an argument. MethodCall objects are reified representations of method

invocations, and they contain Method objects, along with the parameters of the invocation.

Interceptors are configured in the controllers XML configuration file, by simply adding input-interceptor="true" or/and output-

interceptor="true" as attributes of the controller element in the definition of a controller (provided of course the specified interceptor

is an input or/and output interceptor). For example a controller that would be an input interceptor and an output interceptor would

be defined as follows:

 <componentConfiguration>
 <controllers>
 -...
 <controller input-interceptor="true" output-interceptor="true">
 <interface>
 InterceptorControllerInterface
 </interface>
 <implementation>
 ControllerImplementation
 </implementation>
 </controller>
 -...

Interceptors can be composed in a basic manner: sequentially.

For input interceptors, the beforeInputMethodInvocation method is called sequentially for each controller in the order they are

defined in the controllers configuration file. The afterInputMethodInvocation method is called sequentially for each controller in

the reverse order they are defined in the controllers configuration file.

If in the controller configuration file, the list of input interceptors is in this order (the order in the controller configuration file is

from top to bottom):

GridCOMP FP6-034442 38 D.CFI.06

InputInterceptor1 InputInterceptor2

This means that an invocation on a server interface will follow this path:

 --> caller ---> InputInterceptor1.beforeInputMethodInvocation --->
 InputInterceptor2.beforeInputMethodInvocation ---> callee.invocation --->
 InputInterceptor2.afterInputMethodInvocation --->
 InputInterceptor1.afterInputMethodInvocation

For output interceptors, the beforeOutputMethodInvocation method is called sequentially for each controller in the order they are

defined in the controllers configuration file. The afterOutputMethodInvocationmethod is called sequentially for each controller in

the reverse order they are defined in the

controllers configuration file.

If in the controller configuration file, the list of input interceptors is in this order (the order in the controller configuration file is

from top to bottom):

OutputInterceptor1 OutputInterceptor2

This means that an invocation on a server interface will follow this path

 --> currentComponent ---> OutputInterceptor1.beforeOutputMethodInvocation --->
 OutputInterceptor2.beforeOutputMethodInvocation ---> callee.invocation --->
 OutputInterceptor2.afterOutputMethodInvocation --->
 OutputInterceptor1.afterOutputMethodInvocation

3.5.1.4. Writing a custom interceptor

An interceptor being a controller, it must follow the rules explained above for the creation of a custom controller.

Input interceptors and output interceptors must implement respectively the interfaces InputInterceptor and OutputInterceptor, which

declare interception methods (pre/post interception) that have to be implemented.

Here is a simple example of an input interceptor:

 public class MyInputInterceptor extends AbstractProActiveController
 implements InputInterceptor, MyController {
 public MyInputInterceptor(Component owner) {
 super(owner);
 }

 protected void setControllerItfType() {
 try {
 setItfType(ProActiveTypeFactory.instance().createFcItfType("mycontroller",
 MyController.class.getName(),
 TypeFactory.SERVER,
 TypeFactory.MANDATORY,
 TypeFactory.SINGLE));
 }
 catch(InstantiationException e) {
 throw new ProActiveRuntimeException("cannot create controller" + this
.getClass().getName());
 }

GridCOMP FP6-034442 39 D.CFI.06

 }

 // foo is defined in the MyController interface
 public void foo() {
 // foo implementation
 }

 public void afterInputMethodInvocation(MethodCall methodCall) {
 System.out.println("post processing an intercepted an incoming functional invocation");
 // interception code
 }

 public void beforeInputMethodInvocation(MethodCall methodCall) {
 System.out.println("pre processing an intercepted an incoming functional invocation");
 // interception code
 }
 }

The configuration file would state:

 <componentConfiguration>
 <controllers>
 -...
 <controller input-interceptor="true">
 <interface>
 MyController
 </interface>
 <implementation>
 MyInputInterceptor
 </implementation>
 </controller>
 -...

3.5.2. Exporting components as Web Services

As with any active objects, each component can be exposed as a web service.

For a complete description of Web Services in ProActive, please refer to the ProActive manual.

3.5.2.1. Using ProActive Web Services API

The main difference with active objects is that, when exposing a component as web service, all the methods of each

server interfaces are automatically exposed as a web service (with active objects you can expose just one method at once).

Thus, the way to expose a component as web services is quite simple and can be done in a single call method by using

org.objectweb.proactive.extensions.webservices.WebServices API. After having defined the component and having started it as

usually, the following method must be called:

WebService.exposeComponentAsWebService(Component component, String url, String componentName);

where:

• component is the instance of the component whose interfaces will be exposed as web services.

• url is the url of the web server; typically http://localhost:8080

• componentName is the name of the component. Each service available in this way will get a name composed by the component

name followed by the interface name: componentName_interfaceName.

GridCOMP FP6-034442 40 D.CFI.06

Likewise, to undeploy a component, just call the method:

 WebServices.unExposeAsWebService (String componentName -, String url, Component component);

where:

• componentName is the name of the component.

url is the url of the web server; typically http://localhost:8080

component is the instance of the component.

Once the interfaces component are deployed, you can access it via any web service enabled client.

3.5.2.2. A simple example: Hello World with component

Here is a very basic example: just a classic HelloWorld programming with component.

First, below is the only one server interface of the component:

public interface HelloWorldItf {

 public String helloWorld(String name);
}

The implementation class of the component which also contains the main method to create the component, start it and deploy it:

public class HelloWorldComponent implements HelloWorldItf {
 public HelloWorldComponent() {
 -}

 public String helloWorld(String name) {
 return "Hello -" + name + " -!";
 -}

 public static void main(String[] args) {
 String url;
 if (args.length == 0) {
 url = "http://localhost:8080";
 -} else {
 url = args[0];
 -}
 if (!url.startsWith("http://")) {
 url = "http://" + url;
 -}
 Component boot = null;
 Component comp = null;
 try {
 boot = org.objectweb.fractal.api.Fractal.getBootstrapComponent();

 TypeFactory tf = Fractal.getTypeFactory(boot);
 GenericFactory cf = Fractal.getGenericFactory(boot);

 // type of server component
 ComponentType sType = tf.createFcType(new InterfaceType[] { tf.createFcItfType(
"hello-world",
 HelloWorldItf.class.getName(), false, false, false) -});
 // create server component
 comp = cf.newFcInstance(sType, new ControllerDescription("server", Constants.PRIMITIVE),
 new ContentDescription(HelloWorldComponent.class.getName()));

GridCOMP FP6-034442 41 D.CFI.06

 //start the component
 Fractal.getLifeCycleController(comp).startFc();
 -} catch (InstantiationException e1) {
 e1.printStackTrace();
 -} catch (NoSuchInterfaceException e) {
 e.printStackTrace();
 -} catch (IllegalLifeCycleException e) {
 e.printStackTrace();
 -}

 System.out.println("Deploy an hello world service on -: -" + url);

 WebServices.exposeComponentAsWebService(comp, url, "server");
 -}
}

The component comp has been deployed as a web service on the web server located at "http://localhost:8080". The accessible

service method is server_hello-world_helloWorld.

At last, here is a java program calling the deployed web service:

public class WSClientComponent {
 public static void main(String[] args) {
 String address;
 if (args.length == 0) {
 address = "http://localhost:8080";
 -} else {
 address = args[0];
 -}
 if (!address.startsWith("http://")) {
 address = "http://" + address;
 -}

 address += WSConstants.SERV_RPC_ROUTER;
 System.err.println("address -" + address);

 String namespaceURI = "server_hello-world";
 String serviceName = "server_hello-world";
 String portName = "helloWorld";

 ServiceFactory factory;
 try {
 factory = ServiceFactory.newInstance();

 Service service = factory.createService(new QName(serviceName));

 Call call = service.createCall(new QName(portName));

 call.setTargetEndpointAddress(address);

 call.setOperationName(new QName(namespaceURI, portName));

 call.addParameter("name", new QName("string"), String.class, ParameterMode.IN);

 call.setReturnType(new QName("string"));

 Object[] inParams = new Object[1];
 inParams[0] = "World";

GridCOMP FP6-034442 42 D.CFI.06

 String result = ((String) call.invoke(inParams));
 System.out.println(result);
 -} catch (ServiceException e) {
 e.printStackTrace();
 -} catch (RemoteException e) {
 e.printStackTrace();
 -}
 -}
}

3.5.3. Lifecycle: encapsulation of functional activity in component lifecycle

In this implementation of the Fractal component model, Fractal components are active objects. Therefore it is possible to redefine

their activity. In this context of component based programming, we call an activity redefined by a user a functional activity.

When a component is instantiated, its lifecycle is in the STOPPED state, and the functional activity that a user may have redefined

is not started yet. Internally, there is a default activity which handles controller requests in a FIFO order.

When the component is started, its lifecycle goes to the STARTED state, and then the functional activity is started: this activity is

initialized (as defined in InitActive), and run (as defined in RunActive).

2 conditions are required for a smooth integration between custom management of functional activities and lifecycle of the

component:

1. the control of the request queue must use the org.objectweb.proactive.Service class

2. the functional activity must loop on the body.isActive() condition (this is not compulsory, but it allows to automatically end

the functional activity when the lifecycle of the component is stopped. It may also be managed with a custom filter).

Control invocations to stop the component will automatically set the isActive() return value to false, which implies that when the

functional activity loops on the body.isActive() condition, it will end when the lifecycle of the component is set to STOPPED.

3.5.4. Structuring the membrane with non-functional components

Components running in dynamically changing execution environments need to adapt to these environments. In Fractal and GCM

(Grid Component Model) component models, adaptation mechanisms are triggered by the non- functional (NF) part of the

components. Interactions with execution environments may require complex relationships between controllers. In this section we

focus on the adaptability of the membrane.Examples include changing communication protocols, updating security policies, or

taking into account new runtime environments in case of mobile components. Adaptability implies that evolutions of the execution

environments have to be detected and acted upon, and may also imply interactions with the environment and with other components

for realizing the adaptation.

We provide tools for adapting controllers. These tools manage (re)configuration of controllers inside the membrane.For this, we

provide a model and an implementation, using a standard component- oriented approach for both the application (functional) level

and the control (NF) level. Having a component-oriented approach for the non-functional aspects also allows them to benefit from

the structure, hierarchy and encapsulation provided by a component-oriented approach.

In this section, we propose to design NF concerns as compositions of components as suggested in the GCM proposal.Our general

objective is to allow controllers implemented as components to be directly plugged in a component membrane. These controllers

take advantage of the properties of component systems like reconfigurability, i.e. changing of the contained components and their

bindings.This allows components to be dynamically adapted in order to suit changing environmental conditions. Indeed, among

others, we aim at a component platform appropriate for autonomic Grid applications; those appli- cations aim to ensure some

quality of services and other NF features without being geared by an external entity.

Components in the membrane introduce two major changes : first, refinements of the Fractal/GCM model concerning the structure

of a membrane; second, a definition and an implementation of an API that allows GCM membranes to be themselves composed of

components, possibly distributed. Both for efficiency and for flexibility reasons, we provide an implementation where controllers

can either be classical objects or full components that could even be distributed. We believe that this high level of flexibility is a great

GridCOMP FP6-034442 43 D.CFI.06

advantage of this approach over the existing ones [8, 7]. Our model refinements also provide a better structure for the membrane

and a better decoupling between the membrane and its externals. Finally, our approach gives the necessary tools for membrane

reconfiguration, providing flexibility and evolution abilities. The API we present can be split in two parts:

• Methods dedicated to component instantiation: they allow the specification of a NF type of a component, and the instantiation

of NF components;

• Methods for the management of the membrane: they consist in managing the content, introspecting , and managing the life-cycle

of the membrane. Those methods are proposed as an extension of the Fractal component model, and consequently of the GCM;

3.5.4.1. Motivating example

Here we present a simple example that shows the advantages of componen tizing controllers of GCM components. In our example,

we are considering a naive solution for securing communications of a composite component. As described in Figure Figure 3.7,

“ Example: architecture of a naive solution for secure communications ”, secure communications are implemented by three

components inside the membrane: Interceptor, Decrypt, and Alert. The scenario of the example is the following: the composite

component receives encrypted messages on its server functional interface. The goal is to decrypt those messages. First, the incoming

messages are intercepted by the Interceptor component. It forwards all the intercepted communications to Decrypt, which can

be an off-the-shelf component (written by cryptography specialists) implementing a specific decryption algorithm. The Decrypt

component receives a key for decryption through the non-functional server interface of the composite (interface number 1 on the

figure). If it successfully decrypts the message, the Decrypt component sends it to the internal functional components, using the

functional internal client interface (2). If a problem during decryption occurs, the Decrypt component sends a message to the Alert

component. The Alert component is charge to decide on how to react when a decryption fails. For example, it can contact the

sender (using the non-functional client interface – 3) and ask it to send the message again. Another security policy would be to

contact a “trust and reputation” authority to signal a suspicious behaviour of the sender. The Alert component is implemented by

a developer who knows the security policy of the system. In this example, we have three well-identified components, with clear

functionalities and connected through well-defined interfaces. Thus, we can dynamically replace the Decrypt component by another

one, implementing a different decryption algorithm. Also, for changing the security policy of the system, we can dynamically

replace the Alert component and change its connexions. Compared to a classical implementation of secure communications

(for example with objects), using components brings to the membrane a better structure and reconfiguration possibilities. To

summarize, componentizing the membrane in this example provides dynamic adaptability and reconfiguration; but also re-usability

and composition from off-the-shelf components.

Figure 3.7. Example: architecture of a naive solution for secure communications

GridCOMP FP6-034442 44 D.CFI.06

3.5.4.2. A structure for Componentized Membranes

Figure 3.8. Structure for the membrane of Fractal/GCM components

Figure Figure 3.8, “ Structure for the membrane of Fractal/GCM components ” shows the structure we suggest for the component

membrane. The membrane (in gray) consists of one object controller and two component controllers, the component controllers

are connected together and with the outside of the membrane by different bindings. For the moment, we do not specify whether

components are localized with the membrane, or distributed.

Before defining an API for managing components inside the membrane, the definition of the membrane given by the GCM

specification needs some refinements. Those refinements, discussed in this section, provide more details about the structure a

membrane can adopt. Figure Figure 3.8, “ Structure for the membrane of Fractal/GCM components ” represents the structure of a

membrane and gives a summary of the different kinds of interface roles and bindings a GCM component can provide. As stated

in the GCM specification, NF interfaces are not only those specified in the Fractal specification, which are only external server

ones. Indeed, in order to be able to compose NF aspects, the GCM requires the NF interfaces to share the same specification as

the functional ones: role, cardinality, and contingency. For example, in GCM, client NF interfaces allow for the composition of NF

aspects and reconfigurations at the NF level. Our model is also flexible, as all server NF interfaces can be implemented by both

objects or components controllers.

All the interfaces showed in Figure Figure 3.8, “ Structure for the membrane of Fractal/GCM components ” give the membrane a

better structure and enforce decoupling between the membrane and its externals. For example, to connect nfc with fns, our model

adds an additional stage: we have first to perform binding b3, and then binding b9. This avoids nfc to be strongly coupled with fns:

to connect nfc to another fns, only binding b9 has to be changed. In Figure Figure 3.8, “ Structure for the membrane of Fractal/

GCM components ”, some of the links are represented with dashed arrows. Those links are not real bindings but “alias” bindings

(e.g. b3); the source interface is the alias and it is “merged” with the destination interface. These bindings are similar to the export/

import bindings existing in Fractal (b6, b10) except that no interception of the communications on these bindings is allowed.

3.5.4.2.1. Performance issues

While componentizing the membrane clearly improves its programmability and its capacity to evolve, one can wonder what happens

to performance. First, as our design choice allows object controllers, one can always keep the efficiency of crucial controllers by

keeping them as objects. Second, the overhead for using components instead of objects is very low if the controllers components

are local, and are negligible compared to the communication time, for example. Finally, if controllers components are distributed,

then there can be a significant overhead induced by the remote communications, but if communications are asynchronous, and

the component can run in parallel with the membrane, this method can also induce a significant speedup, and a better availability

of the membrane. To summarize, controllers invoked frequently and performing very short treatments, would be more efficiently

implemented by local objects or local components. For controllers called less frequently or which involve long computations, making

them distributed would improve performances and availability of the membrane.

GridCOMP FP6-034442 45 D.CFI.06

3.5.4.3. An API for (Re)configuring Non-functional Aspects

3.5.4.3.1. Non-functional Type and Non-functional Components

To typecheck bindings between membranes, we have to extend the GCM model with a new concept: the non-functional type of

a component. This type is defined as the union of the types of NF interfaces the membrane exposes. To specify the NF type of a

component, we propose to overload the Fractal newFcInstance method (the one to create functional components) as follows:

 public Component newFcInstance(Type fType,Type nfType, any contentDesc, any
 controllerDesc);

In this method, nfType represents the NF type of the component; it can be specified by hand. Of course the standard Fractal type

factory has to be extended in order to support all possible roles of NF interfaces. Soon, it should be possible to specify the NF

type within a configuration file: the controller descriptor argument (controllerDesc) can be a file written in Architecture Description

Language (ADL) containing the whole description of the NF system.

Components inside the membrane are non-functional components. They are similar to functional ones. However, their purpose is

different because they deal with NF aspects of the host component. Thus, in order to enforce separation of concerns, we restrict

the interactions between functional and NF components. For example, a NF component cannot be included inside the functional

content of a composite. Inversely, a functional component cannot be added inside a membrane. As a consequence, direct bindings

between functional interfaces of NF and functional components are forbidden. To create NF components, we extend the common

Fractal factories (generic factory and ADL factory). For generic factory, we add a method named newNFcInstance that creates this

new kind of components:

 public Component newNFcInstance(Type fType,Type nfType, any contentDesc, any
 controllerDesc);

Parameters of this method are identical to its functional equivalent and NF components are created the same way as functional ones.

3.5.4.3.2. API for the management of the membrane

 public void addNFSubComponent(Component component) throws IllegalContentException;
 public void removeNFSubComponent(Component component) throws IllegalContentException,
 IllegalLifeCycleException, NoSuchComponentException;
 public Component[] getNFcSubComponents();
 public Component getNFcSubComponent(string name) throws NoSuchComponentException;
 public void setControllerObject(string itf, any controllerclass) throws
 NoSuchInterfaceException;
 public void startMembrane() throws IllegalLifeCycleException;
 public void stopMembrane() throws IllegalLifeCycleException;

Figure 3.9. The primitives for managing the membrane.

To manipulate components inside membranes, we introduce primitives to perform basic operations like adding, removing or getting

a reference on a NF component. We also need to perform calls on well-known Fractal controllers (life-cycle controller, binding

controller, . . .) of these components. So, we extend Fractal/GCM specification by adding a new controller called membrane

controller. As we want it to manage all the controllers, it is the only mandatory controller that has to belong to any membrane. It

allows the manual composition of membranes by adding the desired controllers. The methods presented in Figure Figure 3.9, “ The

primitives for managing the membrane. ” are included in the MembraneController interface; they are the core of the API and are

sufficient to perform all the basic manipulations inside the membrane. They add, remove, or get a reference on a NF component.

They also allow the management of ob- ject controllers and membrane’s life-cycle. Referring to Fractal, this core API implements

GridCOMP FP6-034442 46 D.CFI.06

a subset of the behavior of the life-cycle and content controllers specific to the membrane. This core API can be included in any

Fractal/GCM implementation. Reconfigurations of NF components inside the membrane are performed by calling standard Fractal

controllers. The general purpose API defines the following methods:

• addNFSubComponent(Component component): adds the NF component given as argument to the membrane;

• removeNFSubComponent(Component component): removes the specified component from the membrane;

• getNFcSubComponents(): returns an array containing all the NF components;

• getNFcSubComponent(string name): returns the specified NF component, the string argument is the name of the component;

• setControllerObject(string itf, any controllerclass): sets or replaces an existing controller object inside the membrane. Itf

specifies the name of the control interface which has to be implemented by the controller class, given as second parameter.

Replacing a controller object at runtime provides a very basic adaptivity of the membrane;

• startMembrane(): starts the membrane, i.e. allows NF calls on the host component to be served. This method can adopt a

recursive behavior, by starting the life-cycle of each NF component inside the membrane;

• stopMembrane(): Stops the membrane, i.e. prevents NF calls on the host component from being served except the ones on the

membrane controller. This method can adopt a recursive behavior, by stopping the life-cycle of each NF component.

3.5.4.3.3. Higher level API

 public void bindNFc(String clientItf, String serverItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException,IllegalBindingException, NoSuchComponentException;
 public void bindNFc(String clientItf, Object serverItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException,IllegalBindingException, NoSuchComponentException;
 public void unbindNFc(String clientItf) throws NoSuchInterfaceException,
 IllegalLifeCycleException, llegalBindingException, NoSuchComponentException;
 public String[] listNFc(String component) throws NoSuchComponentException;
 public Object lookupNFc(String itfname) throws
 NoSuchInterfaceException,NoSuchComponentException;
 public void startNFc(String component) throws IllegalLifeCycleException,
 NoSuchComponentException;
 public void stopNFc(String component) throws IllegalLifeCycleException,
 NoSuchComponentException;
 public String getNFcState(String component) throws NoSuchComponentException;

Figure 3.10. Higher level API

In Figure Figure 3.10, “ Higher level API ”, we present an alternative API, that addresses NF components by their names instead

of their references. These methods allow to make calls on the binding controller and on the life-cycle controller of NF components

that are hosted by the component membrane. Currently, they don’t take into account the hierarchical aspect of NF components.

The method calls address the NF components and call their controllers at once. For example, here is the Java code that binds two

components inside the membrane using the general purpose API. It binds the interface “i1” of the component “nfComp1” inside

the membrane to the interface “i2” of the component “nfComp2”. Suppose mc is a reference to the MembraneController of the

host component.

 Component nfComp1=mc.getNFcSubComponent("nfComp1");
 Component nfComp2=mc.getNFcSubComponent("nfComp2");
 Fractal.getBindingController(nfComp1).bindFc("i1",nfComp2.getFcInterface("i2"));

Using the API of Figure Figure 3.10, “ Higher level API ”, this binding can be realized by the following code, that binds the

component “nfComp1” correctly.

 mc.bindNFc("nfComp1.i1","nfComp2.i2");

GridCOMP FP6-034442 47 D.CFI.06

Similarly to the example above, all the methods of Figure Figure 3.10, “ Higher level API ” result in calls on well-known Fractal

controllers. Interfaces are represented as strings of the form component.interface, where component is the name of the inner

component and interface is the name of its client or server interface. We use the name “mem- brane” to represent the membrane of

the host component, e.g. membrane.i1 is the NF interface i1 of the host component; in this case interface is the name of an interface

from the NF type. For example, bindNFc(string, string) allows to perform the bindings: b1, b2, b4, b3, b9, b7 and b5 of Figure

Figure 3.8, “ Structure for the membrane of Fractal/GCM components ”.

The API presented in Figure Figure 3.10, “ Higher level API ” introduced higher level mechanisms for reconfiguring the membrane.

It also solves the problem of local components inside the membrane. As usual in distributed programming paradigms, GCM objects/

components can be accessed locally or remotely. Remote references are accessible everywhere, while local refer- ences are accessible

only in a restricted address space. When returning a local object/component outside its address space, there are two alternatives:

create a remote reference on this entity; or make a copy of it. When considering a copy of a NF local component, the NF calls are not

consistent. If an invocation on getNFcSubComponent(string name) returns a copy of the specified NF component, calls performed

on this copy will not be performed on the “real” NF component inside the membrane. Methods introduced in Figure Figure 3.10,

“ Higher level API ” solve this problem.

3.5.5. Short cuts

3.5.5.1. Principles

Communications between components in a hierarchical model may involve the crossing of several membranes, and therefore

paying the cost of several indirections. If the invocations are not intercepted in the membranes, then it is possible to optimize

the communication path by shortcutting: communicating directly from a caller component to a callee component by avoiding

indirections in the membranes.

In the Julia implementation, a shortcut mechanism is provided for components in the same JVM, and the implementation of this

mechanism relies on code generation techniques.

We provide a shortcut mechanism for distributed components, and the implementation of this mechanism relies on a "tensioning"

technique: the first invocation determines the shortcut path, then the following invocations will use this shortcut path.

For example, in the following figure, a simple component system, which consists of a composite containing two wrapped primitive

components, is represented with different distributions of the components. In a, all components are located in the same JVM,

therefore all communications are local communications. If the wrapping composites are distributed on different remote JVMs, all

communications are remote because they have to cross composite enclosing components. The short cut optimization is a simple

bypassing of the wrapper components, which results in 2 local communications for the sole functional interface.

GridCOMP FP6-034442 48 D.CFI.06

Figure 3.11. Using shortcuts for minimizing remote communications.

3.5.5.2. Configuration

Shortcuts are available when composite components are synchronous components (this does not break the ProActive model, as

composite components are structural components). Components can be specified as synchronous in the ControllerDescription object

that is passed to the component factory:

 ControllerDescription controllerDescription = new ControllerDescription("name",
 Constants.COMPOSITE,
 Constants.SYNCHRONOUS);

When the system property proactive.components.use_shortcuts is set to true, the component system will automatically establish

short cuts between components whenever possible.

GridCOMP FP6-034442 49 D.CFI.06

Chapter 4. Architecture and design
The implementation of the Fractal model is achieved by reusing the extensible architecture of ProActive, notably the meta-object

protocol and the management of the queue of requests. As a consequence, components are fully compatible with standard active

objects and as such, inherit from the features active objects exhibit: mobility, security, deployment etc.

A fundamental idea is to manage the non-functional properties at the meta-level: each component is actually an active object

with dedicated meta-objects in charge of the component aspects.

4.1. Meta-object protocol

ProActive is based on a meta-object protocol (MOP), that allows the addition of many aspects on top of standard Java objects,

such as asynchronism and mobility. Active objects are referenced indirectly through stubs: this allows transparent communications,

would the active objects be local or remote.

The following diagram explains this mechanism:

Java objects 'b' and 'a' can be in different virtual machines (the network being represented here between the proxy and the body,

though the invocation might be local). Object 'b' has a reference on active object 'a' (of type A) through a stub (of type A because

it is generated as a subclass of A) and a proxy. When 'b' invokes a method on ' stub_A ', the invocation is forwarded through the

communication layer (possibly through a network) to the body of the active object. At this point, the call can be intercepted by meta-

objects, possibly resulting in induced actions, and then the call is forwarded to the base object 'a'.

Figure 4.1. ProActive's Meta-Objects Protocol.

The same idea is used to manage components: we just add a set of meta-objects in charge of the component aspects.

The following diagram shows what is changed:

A new set of meta-objects, managing the component aspect (constituting the controller of the component, in the Fractal terminology),

is added to the active object 'a'. The standard ProActive stub (that gives a representation of type A on the figure) is not used here,

as we manipulate components. In Fractal, a reference on a component is of type Component , and references to interfaces are of

type Interface . 'b' can now manipulate the component based on 'a' through a specific stub, called a component representative

GridCOMP FP6-034442 50 D.CFI.06

. This component representative is of type Component , and also offers references to control and functional interfaces, of type

Interface . Note that classes representing functional interfaces of components are generated on the fly: they are specific to each

component and can be unknown at compile-time.

Method invocations on Fractal interfaces are reified and transmitted (possibly through a network) to the body of the active object

corresponding to the component involved. All standard operations of the Fractal API are now accessible.

Figure 4.2. The ProActive MOP with component meta-objects and component representative

4.2. Components vs active objects

In our implementation, because we make use of the MOP's facilities, all components are constituted of one active object (at least),

are they composite or primitive components. If the component is a composite, and if it contains other components, then we can say

it is constituted of several active objects. Also, if the component is primitive, but the programmer of this component has put some

code within it for creating new active objects, the component is again constituted of several active objects.

As a result, a composite component is an active object built on top of the CompositeComponent class, and a parallel component

is built on top of the ParallelComponent class. These classes are empty classes, because for composite and parallel components,

all the action takes place in the meta-level. But they are used as a base to build active objects, and their names help to identify them

with the IC2D visual monitoring tool.

4.3. Method invocations on components interfaces

Invoking a method on an active object means invoking a method on the stub of this active object. What usually happens then is

that the method call is reified as a Request object and transferred (possibly through a network) to the body of the active object.

It is then redirected towards the queue of requests, and delegated to the base object according to a customizable serving policy

(standard is FIFO).

GridCOMP FP6-034442 51 D.CFI.06

Component requests, on the other hand, are tagged so as to distinguish between functional requests and controller requests. A

functional request targets a functional interface of the component, while a controller request targets a controller of the component.

Like in the standard case (without components), requests are served from the request queue. The serving policy has to be FIFO to

ensure coherency. This is where the life cycle of the components is controlled : the dispatching of the request is dependent upon

the nature of the request, and corresponds to the following algorithm:

 loop if componentLifeCycle.isStarted() get next request -//
 all requests are served else if
 componentLifeCycle.isStopped() get next controller request
 // only controller requests are served -; if gotten request
 is a component life cycle request if request is start --->
 set component state to started -; if request is stop --->
 set component state to stopped -; -; -;

GridCOMP FP6-034442 52 D.CFI.06

Chapter 5. Component examples
Three examples are presented: code snippets for visualizing the transition between active objects and components, the 'hello world',

from the Fractal tutorial, and C3D component version. The programming model is Fractal, and one should refer to the Fractal

documentation for other detailed examples.

5.1. From objects to active objects to distributed components

In Java, objects are created by instantiation of classes. With ProActive, one can create active objects from Java classes, while

components are created from component definitions. Let us first consider the 'A' interface:

public interface A {
 public String foo(); // dummy method
}

'AImpl' is the class implementing this interface:

public class AImpl implements A {
public AImpl() {}
public String foo() {
// do something
 -}
}

The class is then instantiated in a standard way:

 A object = new AImpl();

Active objects are instantiated using factory methods from the ProActive class (see the ProActive manual). It is also possible to

specify the activity of the active object, the location (node or virtual node), or a factory for meta-objects, using the appropriate

factory method.

A active_object = (A)PAActiveObject.newActive(
 AImpl, // signature of the base class
new Object[] {}, // Object[]
 aNode, // location, could also be a virtual node
);

As components are also active objects in this implementation, they benefit from the same features, and are configurable in a similar

way. Constructor parameters, nodes, activity, or factories, that can be specified for active objects, are also specifiable for components.

The definition of a component requires 3 sub-definitions: the type, the description of the content, and the description of the controller.

5.1.1. Type

The type of the component (i.e. the functional interfaces provided and required) is specified in a standard way: (as taken from the

Fractal tutorial)

We begin by creating objects that represent the types of the components of the application. In order to do this, we must first get a

bootstrap component. The standard way to do this is the following one (this method creates an instance of the class specified in the

fractal.provider system property, and uses this instance to get the bootstrap component):

 Component boot = Fractal.getBootstrapComponent();

We then get the TypeFactory interface provided by this bootstrap component:

 TypeFactory tf = (TypeFactory)boot.getFcInterface('type-factory');

We can then create the type of the first component, which only provides a A server interface named 'a':

GridCOMP FP6-034442 53 D.CFI.06

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
 tf.createFcItfType('a', -'A', false, false, false)
});

5.1.2. Description of the content

The second step in the definition of a component is the definition of its content. In this implementation, this is done through the

ContentDescription class:

ContentDescription contentDesc = new ContentDescription(
 AImpl, // signature of the base class
new Object[] {}, // Object[]
 aNode // location, could also be a virtual node
);

5.1.3. Description of the controller

Properties relative to the controller can be specified in the ControllerDescription:

ControllerDescription controllerDesc = new ControllerDescription(
 -'myName', // name of the component
 Constants.PRIMITIVE // the hierarchical type of the component
// it could be PRIMITIVE, COMPOSITE, or PARALLEL

);

Eventually, the component definition is instantiated using the standard Fractal API. This component can then be manipulated as

any other Fractal component.

Component component = componentFactory.newFcInstance(
 componentType, // type of the component (defining the client and server interfaces)
 controllerDesc, // implementation-specific description for the controller
 contentDesc // implementation-specific description for the content
);

5.1.4. From attributes to client interfaces

There are 2 kinds of interfaces for a component: those that offer services, and those that require services. They are named respectively

server and client interfaces.

From a Java class, it is fairly natural to identify server interfaces: they (can) correspond to the Java interfaces implemented by the

class. In the above example, 'a' is the name of an interface provided by the component, corresponding to the 'A' Java interface.

On the other hand, client interfaces usually correspond to attributes of the class, in the case of a primitive component. If the

component defined above requires a service from another component, say the one corresponding to the 'Service' Java interface,

the AImpl class should be modified. As we use the inversion of control pattern, a BindingController is provided, and a binding

operation on the 'requiredService' interface will actually set the value of the 'service' attribute, of type 'Service'.

First, the type of the component is changed:

// type of the a component
ComponentType aType = tf.createFcType(new InterfaceType[] {
 tf.createFcItfType('a', -'A', false, false, false),
 tf.createFcItfType('requiredService', -'A', true, false, false)
});

The Service interface is the following:

package org.objectweb.proactive.examples.components.helloworld;

GridCOMP FP6-034442 54 D.CFI.06

public interface Service {
 void print(String msg);
}

And the AImpl class is:

// The modified AImpl class
public class AImpl implements A, BindingController {
 Service service; // attribute corresponding to a client interface
public AImpl() {}
// implementation of the A interface
public String foo() {
 return service.bar(); // for example
 -}
// implementation of BindingController
public Object lookupFc (final String cItf) {

 if (cItf.equals('requiredService')) {
 return service;
 -}
 return null;
 -}
// implementation of BindingController
public void bindFc (final String cItf, final Object sItf) {
 if (cItf.equals('requiredService')) {
 service = (Service)sItf;
 -}
 -}
// implementation of BindingController
public void unbindFc (final String cItf) {
 if (cItf.equals('requiredService')) {
 service = null;
 -}
 -}
}

5.2. The HelloWorld example

The mandatory helloworld example (from the Fractal tutorial) shows the different ways of creating a component system

(programmatically and using the ADL), and it can easily be implemented using ProActive.

5.2.1. Set-up

You can find the code for this example in the package org.objectweb.proactive.examples.components.helloworld of the ProActive

distribution.

The code is almost identical to the Fractal tutorial's example [http://fractal.objectweb.org/tutorials/fractal/index.html].

The differences are the following:

• The reference example is provided for level 3.3. implementation, whereas this current implementation is compliant up to level

3.2: templates are not provided. Thus you will have to skip the specific code for templates.

• The newFcInstance method of the GenericFactory interface, used for directly creating components, takes 2

implementation-specific parameters. So you should use the org.objectweb.proactive.component.ControllerDescription
and org.objectweb.proactive.component.ContentDescription classes to define ProActive components. (It is possible to

use the same parameters than in Julia, but that hinders you from using some functionalities specific to ProActive, such as

distributed deployment or definition of the activity).

GridCOMP FP6-034442 55 D.CFI.06

• Collective interfaces could be implemented the same way than suggested, but using the

Fractive.createCollectiveClientInterface method will prove useful with this implementation: you are then able to use the

functionalities provided by the typed groups API.

• Components can be distributed

• the ClientImpl provides an empty no-args constructor.

5.2.2. Architecture

The helloworld example is a simple client-server application, where the client (c) and the server (s) are components, and they are

both contained in the same root component (root).

Another configuration is also possible, where client and server are wrapped around composite components (C and S). The goal was

initially to show the interception shortcut mechanism in Julia. In the current ProActive implementation, there are no such shortcuts,

as the different components can be distributed, and all invocations are intercepted. The exercise is still of interest, as it involves

composite components.

Figure 5.1. Client and Server wrapped in composite components (C and S)

5.2.3. Distributed deployment

This section is specific to the ProActive implementation, as it uses the deployment framework of this library.

If the application is started with (only) the parameter 'distributed', the ADL used is 'helloworld-distributed-no-wrappers.fractal',

where virtualNode of the client and server components are exported as VN1 and VN2. Exported virtual node names from the ADL

match those defined in the deployment descriptor 'deployment.xml'.

One can of course customize the deployment descriptor and deploy components onto virtually any computer, provided it is

connectable by supported protocols. Supported protocols include LAN, clusters and Grid protocols (see the ProActive manual).

Have a look at the ADL files 'helloworld-distributed-no-wrappers.fractal' and 'helloworld-distributed-wrappers.fractal'. In a nutshell,

they say: 'the primitive components of the application (client and server) will run on given exported virtual nodes, whereas the other

components (wrappers, root component) will run on the current JVM.

Therefore, we have the two following configurations:

GridCOMP FP6-034442 56 D.CFI.06

Figure 5.2. Without wrappers, the primitive components are distributed.

Figure 5.3. With wrappers, where again, only the primitive components are distributed.

Currently, bindings are not optimized. For example, in the configuration with wrappers, there is an indirection that can be costly,

between the client and the server. We are currently working on optimizations that would allow to shortcut communications, while

still allowing coherent dynamic reconfiguration. It is the same idea than in Julia, but we are dealing here with distributed components.

It could imply compromises between dynamicity and performance issues.

5.2.4. Execution

You can either compile and run the code yourself, or follow the instructions for preparing the examples and use the script

helloworld_fractal.sh (or .bat). If you choose the first solution, do not forget to set the fractal.provider system property.

If you run the program with no arguments (i.e. not using the parser, no wrapper composite components, and local deployment) ,

you should get something like this:

 1: ---- Fractal Helloworld example --
 2: ----
 3: ---- The expected result is an exception
 4: ----
 5:
 6: [INFO communication.rmi] Created a new registry on port 6646
 7: [INFO proactive.mop] Generating class -:
 8: pa.stub.org.objectweb.proactive.core.component.type._StubComposite
 9: [INFO proactive.mop] Generating class -:
 10: pa.stub.org.objectweb.proactive.core.jmx.util._StubJMXNotificationListener

GridCOMP FP6-034442 57 D.CFI.06

 11: [INFO proactive.mop] Generating class -:
 12: pa.stub.org.objectweb.proactive.examples.components.helloworld._StubClientImpl
 13: [INFO proactive.mop] Generating class -:
 14: pa.stub.org.objectweb.proactive.examples.components.helloworld._StubServerImpl
 15:

You can see:

• line 6: the creation of a rmi registry

• line 7 to 14: the on-the-fly generation of ProActive stubs (the generation of component functional interfaces is silent)

Then you have (the exception that pops out is actually the expected result, and is intended to show the execution path):

 1:Server: print method called
 2:at org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:45)
 3:at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 4:at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 5:at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 6:at java.lang.reflect.Method.invoke(Method.java:597)
 7:at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:390)
 8:at
 9: org.objectweb.proactive.core.component.request.ComponentRequestImpl.
 10: serveInternal(ComponentRequestImpl.java:176)
 11:at org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:170)
 12:at
 13: org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.
 14: serveInternal(BodyImpl.java:539)
 15:at org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:510)
 16:at org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:909)
 17:at org.objectweb.proactive.Service.blockingServeOldest(Service.java:175)
 18:at org.objectweb.proactive.Service.blockingServeOldest(Service.java:150)
 19:at org.objectweb.proactive.Service.fifoServing(Service.java:126)
 20:at
 21: org.objectweb.proactive.core.component.body.ComponentActivity$ComponentFIFORunActive.
 22: runActivity(ComponentActivity.java:226)
 23:at
 24: org.objectweb.proactive.core.component.body.ComponentActivity.
 25: runActivity(ComponentActivity.java:183)
 26:at
 27: org.objectweb.proactive.core.component.body.ComponentActivity.
 28: runActivity(ComponentActivity.java:183)
 29:at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:192)
 30:at java.lang.Thread.run(Thread.java:619)
 31:Server: begin printing...
 32:--------> hello world
 33:Server: print done.c
 34:

What can be seen is very different from the output you would get with the Julia implementation. Here is what happens (from bottom

to top of the stack):

• line 30: The active object runs its activity in its own Thread

• line 20-21-22: The default activity is to serve incoming request in a FIFO order

• line 8-9-10: Requests (reified method calls) are encapsulated in ComponentRequestImpl objects

• line 6: A request is served using reflection

• line 2: The method invoked is the print method of an instance of ServerImpl

Now let us have a look at the distributed deployment: execute the program with the parameters 'distributed parser'. You should get

something similar to the following:

GridCOMP FP6-034442 58 D.CFI.06

 1: ---- Fractal Helloworld example --
 2: ----
 3: ---- The expected result is an exception
 4: ----
 5:
 6: [INFO communication.rmi] Created a new registry on port 6646
 7: [INFO proactive] ************* Reading deployment descriptor:
 8: file:/home/ProActive/classes/Examples/org/objectweb/proactive/examples/components/
 9: helloworld/deployment.xml ********************
 10: [INFO proactive.deployment] created VirtualNode name=VN1
 11: [INFO proactive.deployment] created VirtualNode name=VN2
 12: [INFO proactive.deployment] created VirtualNode name=VN3
 13: [INFO proactive.mop] Generating class -:
 14: pa.stub.org.objectweb.proactive.core.jmx.util._StubJMXNotificationListener
 15: [INFO deployment.log]
 16: [INFO deployment.log] 311@saturn.inria.fr --
 17: [INFO proactive.runtime] **** Starting jvm on 138.96.218.113
 18: [INFO proactive.events] **** Mapping VirtualNode VN1 with Node:
 19: rmi://138.96.218.113:6646/VN11559562212 done
 20: [INFO proactive.mop] Generating class -:
 21: pa.stub.org.objectweb.proactive.examples.components.helloworld._StubClientImpl
 22: [INFO deployment.log] 311@saturn.inria.fr --
 23: [INFO communication.rmi] Detected an existing RMI Registry on port 6646
 24: [INFO deployment.log]
 25: [INFO deployment.log] 97714@saturn.inria.fr --
 26: [INFO proactive.runtime] **** Starting jvm on 138.96.218.113
 27: [INFO proactive.events] **** Mapping VirtualNode VN2 with Node:
 28: rmi://138.96.218.113:6646/VN2914088183 done
 29: [INFO proactive.mop] Generating class -:
 30: pa.stub.org.objectweb.proactive.examples.components.helloworld._StubServerImpl
 31: [INFO deployment.log] 97714@saturn.inria.fr -- [INFO communication.rmi] Detected an existing RMI
 32: Registry on port 6646
 33: [INFO proactive.mop] Generating class -:
 34: pa.stub.org.objectweb.proactive.core.component.type._StubComposite
 35:

What is new is:

• line 7-8-9 the parsing of the deployment descriptor

• line 16-17 and 25-26: the creation of 2 virtual machines on the host 'crusoe.inria.fr'

• line 10-11-12: the creation of virtual nodes VN1, VN2 and VN3

• line 18-19 and 27-28: the mapping of virtual nodes VN1 and VN2 to the nodes specified in the deployment descriptor

Then we get the same output than for a local deployment, the activity of active objects is independent from its location.

 1: [INFO deployment.log] Server: print method called
 2: [INFO deployment.log] at
 3: org.objectweb.proactive.examples.components.helloworld.ServerImpl.print(ServerImpl.java:45)
 4: [INFO deployment.log] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 5: [INFO deployment.log] at
 6: sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 7: [INFO deployment.log] at
 8: sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 9: [INFO deployment.log] at java.lang.reflect.Method.invoke(Method.java:597)
 10: [INFO deployment.log] at org.objectweb.proactive.core.mop.MethodCall.execute(MethodCall.java:390)
 11: [INFO deployment.log] at
 12: org.objectweb.proactive.core.component.request.ComponentRequestImpl.
 13: serveInternal(ComponentRequestImpl.java:176)
 14: [INFO deployment.log] at

GridCOMP FP6-034442 59 D.CFI.06

 15: org.objectweb.proactive.core.body.request.RequestImpl.serve(RequestImpl.java:170)
 16: [INFO deployment.log] at
 17: org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.
 18: serveInternal(BodyImpl.java:539)
 19: [INFO deployment.log] at
 20: org.objectweb.proactive.core.body.BodyImpl$ActiveLocalBodyStrategy.serve(BodyImpl.java:510)
 21: [INFO deployment.log] at
 22: org.objectweb.proactive.core.body.AbstractBody.serve(AbstractBody.java:909)
 23: [INFO deployment.log] at org.objectweb.proactive.Service.blockingServeOldest(Service.java:175)
 24: [INFO deployment.log] at org.objectweb.proactive.Service.blockingServeOldest(Service.java:150)
 25: [INFO deployment.log] at org.objectweb.proactive.Service.fifoServing(Service.java:126)
 26: [INFO deployment.log] at
 27: org.objectweb.proactive.core.component.body.ComponentActivity$ComponentFIFORunActive.
 28: runActivity(ComponentActivity.java:226)
 29: [INFO deployment.log] at
 30: org.objectweb.proactive.core.component.body.ComponentActivity.
 31: runActivity(ComponentActivity.java:183)
 32: [INFO deployment.log] at
 33: org.objectweb.proactive.core.component.body.ComponentActivity.
 34: runActivity(ComponentActivity.java:183)
 35: [INFO deployment.log] at org.objectweb.proactive.core.body.ActiveBody.run(ActiveBody.java:192)
 36: [INFO deployment.log] at java.lang.Thread.run(Thread.java:619)
 37: [INFO deployment.log] Server: begin printing...
 38: [INFO deployment.log] -->hello world
 39: [INFO deployment.log] Server: print done.
 40:---
 41:

5.2.5. The HelloWorld ADL files

org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name=
"org.objectweb.proactive.examples.components.helloworld.helloworld-distributed-wrappers">
 <interface name="r" role="server" signature="java.lang.Runnable"/>
 <exportedVirtualNodes>
 <exportedVirtualNode name="VN1">
 <composedFrom>
 <composingVirtualNode component="client" name="client-node"/>
 </composedFrom>
 </exportedVirtualNode>
 <exportedVirtualNode name="VN2">
 <composedFrom>
 <composingVirtualNode component="server" name="server-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <component name="client-wrapper" definition=
"org.objectweb.proactive.examples.components.helloworld.ClientType">
 <component name="client" definition=
"org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 <binding client="this.r" server="client.r"/>
 <binding client="client.s" server="this.s"/>

GridCOMP FP6-034442 60 D.CFI.06

 <controller desc="composite"/>
 </component>
 <component name="server-wrapper" definition=
"org.objectweb.proactive.examples.components.helloworld.ServerType">
 <component name="server" definition=
"org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
 <binding client="this.s" server="server.s"/>
 <controller desc="composite"/>
 </component>
 <binding client="this.r" server="client-wrapper.r"/>
 <binding client="client-wrapper.s" server="server-wrapper.s"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ClientType.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientType" extends=
"org.objectweb.proactive.examples.components.helloworld.RootType">
 <interface name="r" role="server" signature="java.lang.Runnable"/>
 <interface name="s" role="client" signature=
"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ClientImpl.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ClientImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ClientType">
 <exportedVirtualNodes>
 <exportedVirtualNode name="client-node">
 <composedFrom>
 <composingVirtualNode component="this" name="client-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <content class="org.objectweb.proactive.examples.components.helloworld.ClientImpl"/>
 <virtual-node name="client-node" cardinality="single"/>
</definition>

org.objectweb.proactive.examples.components.ServerType

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerType">
 <interface name="s" role="server" signature=
"org.objectweb.proactive.examples.components.helloworld.Service"/>
</definition>

org.objectweb.proactive.examples.components.helloworld.ServerImpl

<?xml version="1.0" encoding="ISO-8859-1" -?>

GridCOMP FP6-034442 61 D.CFI.06

<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.helloworld.ServerImpl" extends=
"org.objectweb.proactive.examples.components.helloworld.ServerType">
 <exportedVirtualNodes>
 <exportedVirtualNode name="server-node">
 <composedFrom>
 <composingVirtualNode component="this" name="server-node"/>
 </composedFrom>
 </exportedVirtualNode>
 </exportedVirtualNodes>
 <content class="org.objectweb.proactive.examples.components.helloworld.ServerImpl"/>
 <attributes signature=
"org.objectweb.proactive.examples.components.helloworld.ServiceAttributes">
 <attribute name="header" value="->"/>
 <attribute name="count" value="1"/>
 </attributes>
 <controller desc="primitive"/>
 <virtual-node name="server-node" cardinality="single"/>
</definition>

GridCOMP FP6-034442 62 D.CFI.06

Chapter 6. Component perspectives: a

support for advanced research
The ProActive/Fractal framework is a functional and flexible implementation of the Fractal API and model. One can configure and

deploy a system of distributed components, including Grids. The framework also proposes extensions for collective interactions

(gathercast and multicast interfaces), allocation configuration through virtual nodes extensions, and some optimizations.

It is now a mature framework for developing Grid applications, and as such it is a basis for experimenting new research paths.

6.1. Dynamic reconfiguration

One of the challenges of Grid computing is to handle changes in the execution environments, which are not predictable in systems

composed of large number of distributed components on heterogeneous environments. For this reason, the system needs to be

dynamically reconfigurable, and must exhibit autonomic properties.

Simple and deterministic dynamic reconfiguration is a real challenge in systems that contain hierarchical components that feature

their own activities and that communicate asynchronously.

A part of the solutions envisioned consist in designing a set of high-level reconfiguration primitives allowing to achieve complex

operations, but also to trigger such operations on specific events. This aspects consists in designing a set of such primitives (e.g.,

replace, add and bind, unbind and remove, duplicate, recursively add, ...) for reconfiguration ensuring more correctness properties

than the Fractal ones, and more autonomicity. By providing higher level of primitives, the principal aim is to help the programmer

to design safe scenarii. For example a replacement primitive seems safer and easier to verify than the equivalent sequence (stop

+unbind+remove+add+bind+start) that would implement it in Fractal. One of the difficulties is that most useful reconfigurations

involve changing or augmenting the available behaviors of the system components. During replacement, one can introduce new

interfaces, new dependencies between components.

Another issue related to reconfigurations and component life-cycle is the coherency in the component states along reconfigurations.

Indeed, suppose for example that two consecutive requests (on the same binding) should necessarily be addressed to the same

destination component (for example, the one requests sends additional informations necessary to fulfill the other one). Then, between

those two request, no reconfiguration can occur if it involves the binding used for the requests.

As a consequence, it is important designing a way of specifying synchronization between reconfiguration steps and the application,

this should be the main interaction between functional and non-functional aspects, and should be studied carefully in order to

maintain the "good separation of aspects" that exists in Fractal.

The autonomic computing paradigm is related to this challenge because is consists of building applications out of self-managed

components. Components which are self-managed are able to monitor their environment and adapt to it by automatically optimizing

and reconfiguring themselves. The resulting systems are autonomous and automatically fulfill the needs of the users, but the

complexity of adaptation is hidden to them. Autonomicity of components represents a key asset for large scale distributed computing.

6.2. Model-checking

Encapsulation properties, components with configurable activities, and system description in ADL files provide safe basis for model

checking of component systems.

For instance:

1. Behavioral information on components can be specified in extended ADL files.

2. Automatas can be generated from behavioral information and structural description.

3. Model checking tools are used to verify the automatas.

The Vercors [http://www-sop.inria.fr/oasis/Vercors/] platform investigates such kinds of scenarii.

Component-based software development (CBSD) has emerged as a response from both industries and academics for dealing with

software complexity and reusability. The main idea is to clearly define interfaces between components so that they can be assembled

and composed in several contexts. Unfortunately, software engineers often face non-trivial runtime incompatibilities when

GridCOMP FP6-034442 63 D.CFI.06

assembling off-the-shelf components. These arise due to an inadequate (or nonexistent) dynamic specification of the component

behaviour. In fact, state-of-the-art implementations of component models such as SOFA , Fractal and CORBA Component Model

only consider interface type-compatibility (through Interface Description Languages or IDLs) for binding interfaces. Nonetheless, a

sound static compatibility check of bound interfaces can be achieved if behavioural information is added to the components. There

are several related works, that either introduce Behavioural IDLs or that describe behaviour of components.

We are building a tool platform for the analysis and verification of safety and security properties of distributed applications.

The central component of the platform is a method for generating finite models for distributed applications, from static analysis

of source code. We base this generation procedure on the strong semantic features provided by the ProActive library, and we

generate compositional models using synchronised labelled transition systems. Various tools for static analysis, model checking,

and equivalence checking can then operate on these models. One long term goal of this work is to integrate the various techniques

and tools involved in this software platform, so that the platform can be integrated in a development environment, and used by

non-specialists. At the same time, the platform must be flexible and open enough to serve as a basis for easy prototyping of new

techniques and tools on real Java/ProActive code.

Even if there are many specification languages in the literature, none fits well in the context of distributed components. In the GCM,

most difficulties come when specifying the synchronisations. Instead of proving that legacy code is safe, we take a constructive

approach. The idea is to specify the system, prove that the specification is correct, and then generate (Java) code skeletons guaranteed

to conform to the specification. pNets is left as the underlying formalism that interfaces with model-checkers, and the programmer

uses a high-level specification on top of pNets. The language is called Java Distributed Components (JDC for short).

6.3. Pattern-based deployment

Distributed computational applications are designed by defining a functional or do- main decomposition, and these decompositions

often present structural similarities (master-slave, 2D-Grid, pipeline etc.).

In order to facilitate the design of complex systems with large number of entities and recurring similar configurations, we plan

to propose a mechanism for defining parameterizable assembly patterns in the Fractal ADL, particularly for systems that contain

parameterized numbers of identical components.

6.4. Graphical tools

We are developing the VCE (Vercors Component Environnement), that includes graphical editors for the architecture and the

behavior of GCM components.

The architecture diagrams traditionally feature hierarchical components, provided and required interfaces (with Java signatures

attached), and bindings. But they also distinguish GCM specific concepts, namely functional and non-functional interfaces, content

and membrane parts for composite components, multicast and gathercast interfaces. Diagrams are validated against a set of static

semantic rules. GCM-ADL files can be produced and read by the editor. The behavior diagrams express external behavior of

components. They are based on classical state-machines constructions, with specific constructs for GCM/Proactive, in particular for

expressing request queue selection, and multicast/gathercast policies.

GridCOMP FP6-034442 64 D.CFI.06

Chapter 7. GCM Components Tutorial
7.1. Introduction

This chapter presents a short user guide which explains how to use the ProActive/GCM implementation. The chapter will not explain

how to program with components but instead focus on the particularities of the GCM implementation for ProActive.

7.2. Creating and using components in a programatic way

Along this short user guide, we will show: how to create primitive and composite components, how to assemble them using Fractal/

GCM API and Fractal API files, how to interoperate with components, and then how to describe the deployment of components

using deployment descriptor file.

The first step of this user guide explains how to create a single primitive component. Next, we will use an assembly of two primitive

components in a composite one.

7.2.1. The first component

We want to create a primitive component, called PrimitiveComputer. It exposes one server interface called computer-itf which

provides the two following methods: compute and doNothing. To do that, we need to write the two following classes.

package org.objectweb.proactive.examples.components.userguide.primitive;

public interface ComputeItf {
 int compute(int a);

 void doNothing();
}

package org.objectweb.proactive.examples.components.userguide.primitive;

import java.io.Serializable;

public class PrimitiveComputer implements ComputeItf, Serializable {
 public PrimitiveComputer() {
 -}

 public int compute(int a) {
 int result = a * 2;
 System.err.println(" PrimitiveComputer-->compute(" + a + "): -" + result);
 return result;
 -}

 public void doNothing() {
 System.err.println(" PrimitiveComputer-->doNothing()");
 -}
}

Now, we will discuss on the different ways to use this component. First, we must create the component with the ProActive/GCM

framework. Two kinds of component instantiation are shown. In the first case, we can do all these steps in the application. However,

in the second case, we will show how we can use the ADL files to simplify the application and create it in a simpler way.

In order to illustrate these different ways, a new class, Main, containing the possible main method of our application (see the source

code below), is written. In this main method, four different methods are called and will be described in the following parts of this

document, launchFirstPrimitive, launchWithoutADL, launchWithADL, and finally the last launchAndDeployWithADL. To launch

this class, you must put in your classpath all the libraries contained in the lib directory and subdirectories and the ProActive jar. And

finally, you must set the three Java properties (fractal.provider, java.security.policy, log4j.configuration) as shown in the command

line:

GridCOMP FP6-034442 65 D.CFI.06

java
 --Dfractal.provider=org.objectweb.proactive.core.component.Fractive
 --Djava.security.policy=file:<change_this_part>/
 ProActive/dist/proactive.java.policy
 --Dlog4j.configuration=file:<change_this_part>/
 ProActive/dist/proactive-log4j
 org.objectweb.proactive.examples.components.userguide.Main

package org.objectweb.proactive.examples.components.userguide;

import java.util.HashMap;
import java.util.Map;

import org.objectweb.fractal.adl.Factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.control.LifeCycleController;
import org.objectweb.fractal.api.factory.GenericFactory;
import org.objectweb.fractal.api.type.ComponentType;
import org.objectweb.fractal.api.type.InterfaceType;
import org.objectweb.fractal.api.type.TypeFactory;
import org.objectweb.fractal.util.Fractal;
import org.objectweb.proactive.api.PADeployment;
import org.objectweb.proactive.core.component.Constants;
import org.objectweb.proactive.core.component.ContentDescription;
import org.objectweb.proactive.core.component.ControllerDescription;
import org.objectweb.proactive.core.component.factory.ProActiveGenericFactory;
import org.objectweb.proactive.core.descriptor.data.ProActiveDescriptor;
import org.objectweb.proactive.core.descriptor.data.VirtualNode;
import org.objectweb.proactive.core.node.Node;
import org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf;
import org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveComputer;
import org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveMaster;

public class Main {
 public static void main(String[] args) {
 // System.out.println("Launch primitive component example");
 // Main.launchFirstPrimitive();
 System.out.println("Launch component assembly example");
 Main.launchWithoutADL();

 // System.out.println("Launch and deploy component assembly example");
 // Main.launchAndDeployWithoutADL();

 // System.out.println("Launch component assembly example with ADL");
 // Main.launchOneWithADL();
 //
 // System.out.println("Launch and deploy component assembly example with ADL");
 // Main.launchAndDeployWithADL();

 //System.err.println("The END...");
 //System.exit(0);
 -}

If we want to create and call components in a standard Java application, we need to use the GCM API [1]. The method

launchFirstPrimitive shows all the steps to create and use our first primitive component. Firstly, define the type of the component.

Secondly, create component using a factory. Thirdly, start the component. And finally, retrieve the component’s interface and use

it as a standard Java object to access our component.

GridCOMP FP6-034442 66 D.CFI.06

 private static void launchFirstPrimitive() {
 try {
 Component boot = Fractal.getBootstrapComponent();
 TypeFactory typeFact = Fractal.getTypeFactory(boot);
 GenericFactory genericFact = Fractal.getGenericFactory(boot);
 Component primitiveComputer = null;

 // type of PrimitiveComputer component
 ComponentType computerType = typeFact.createFcType(new InterfaceType[] { typeFact
 -.createFcItfType("compute-itf", ComputeItf.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});

 // component creation
 primitiveComputer = genericFact.newFcInstance(computerType, new ControllerDescription(
"root",
 Constants.PRIMITIVE), new ContentDescription(PrimitiveComputer.class.getName()));

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(primitiveComputer).startFc();
 ((LifeCycleController) primitiveComputer.getFcInterface("lifecycle-controller"
)).startFc();

 // get the compute-itf interface
 ComputeItf itf = ((ComputeItf) primitiveComputer.getFcInterface("compute-itf"));
 -;
 // call component
 itf.doNothing();
 int result = itf.compute(5);

 System.out.println("Result of computation whith 5 is: -" + result); //display 10
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

Uncomment the line calling the launchFirstPrimitive method in the main method, launch it and see below the expected output. The

first lines are ProActive log, and at the end, information printed in the component and in the Main class is visible.

7.2.2. Define an assembly

Now that we succeeded to create and use a primitive component, we will learn how to use it in a component assembly. First of all,

we want use the previous shown primitive component with another primitive component to explain how to define, implement and

use client interfaces. Moreover, in order to use composite component, we put the two primitive components in a composite. The

Figure 7.1, “Component assembly ” shows this assembly.

GridCOMP FP6-034442 67 D.CFI.06

Figure 7.1. Component assembly

To implement this assembly we need one more class, PrimitiveMaster. This class implements the following Java interfaces:

java.lang.Runnable and moreover the BindindController to allow binding on the compute-itf client interface. In the run method we

put the call to the PrimitiveComputer component, we don’t need to retrieve the compute-itf interface since the assembling it’s done

in the launchWithoutADL method or in the following part using ADL.

package org.objectweb.proactive.examples.components.userguide.primitive;

import java.io.Serializable;

import org.objectweb.fractal.api.NoSuchInterfaceException;
import org.objectweb.fractal.api.control.BindingController;
import org.objectweb.fractal.api.control.IllegalBindingException;
import org.objectweb.fractal.api.control.IllegalLifeCycleException;

public class PrimitiveMaster implements Runnable, Serializable, BindingController {
 private static final String COMPUTER_CLIENT_ITF = "compute-itf";
 private ComputeItf computer;

 public PrimitiveMaster() {
 -}

 public void run() {
 computer.doNothing();
 int result = computer.compute(5);
 System.out.println(" PrimitiveMaster-->run(): -" + "Result of computation whith 5 is: -" +
 result); //display 10
 -}

 //BINDING CONTROLLER implementation
 public void bindFc(String myClientItf, Object serverItf) throws NoSuchInterfaceException,
 IllegalBindingException, IllegalLifeCycleException {
 if (myClientItf.equals(COMPUTER_CLIENT_ITF)) {
 computer = (ComputeItf) serverItf;

GridCOMP FP6-034442 68 D.CFI.06

 -}
 -}

 public String[] listFc() {
 return new String[] { COMPUTER_CLIENT_ITF -};
 -}

 public Object lookupFc(String itf) throws NoSuchInterfaceException {
 if (itf.equals(COMPUTER_CLIENT_ITF)) {
 return computer;
 -}
 return null;
 -}

 public void unbindFc(String itf) throws NoSuchInterfaceException, IllegalBindingException,
 IllegalLifeCycleException {
 if (itf.equals(COMPUTER_CLIENT_ITF)) {
 computer = null;
 -}
 -}
}

In the launchWithoutADL method, we extend component type definition and component creation parts. And we add one more part,

the component assembling. In this part, at first we put the two primitives, PrimitiveComputer and PrimitiveMaster in the composite

component. Next, we make the binding between each component interfaces.

 private static void launchWithoutADL() {
 try {
 Component boot = Fractal.getBootstrapComponent();
 TypeFactory typeFact = Fractal.getTypeFactory(boot);
 GenericFactory genericFact = Fractal.getGenericFactory(boot);

 // component types: PrimitiveComputer, PrimitiveMaster, CompositeWrapper
 ComponentType computerType = typeFact.createFcType(new InterfaceType[] { typeFact
 -.createFcItfType("compute-itf", ComputeItf.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});
 ComponentType masterType = typeFact.createFcType(new InterfaceType[] {
 typeFact.createFcItfType("run", Runnable.class.getName(), TypeFactory.SERVER,
 TypeFactory.MANDATORY, TypeFactory.SINGLE),
 typeFact.createFcItfType("compute-itf", ComputeItf.class.getName(),
 TypeFactory.CLIENT,
 TypeFactory.MANDATORY, TypeFactory.SINGLE) -});
 ComponentType wrapperType = typeFact.createFcType(new InterfaceType[] {
 typeFact.createFcItfType(
 "run", Runnable.class.getName(), TypeFactory.SERVER, TypeFactory.MANDATORY,
 TypeFactory.SINGLE) -});

 // components creation
 Component primitiveComputer = genericFact.newFcInstance(computerType, new
 ControllerDescription(
 "PrimitiveComputer", Constants.PRIMITIVE), new ContentDescription(PrimitiveComputer.
class
 -.getName()));
 Component primitiveMaster = genericFact.newFcInstance(masterType, new
 ControllerDescription(
 "PrimitiveMaster", Constants.PRIMITIVE), new ContentDescription(PrimitiveMaster.
class
 -.getName()));

GridCOMP FP6-034442 69 D.CFI.06

 Component compositeWrapper = genericFact.newFcInstance(wrapperType, new
 ControllerDescription(
 "CompositeWrapper", Constants.COMPOSITE), null);

 // component assembling
 Fractal.getContentController(compositeWrapper).addFcSubComponent(primitiveComputer);
 Fractal.getContentController(compositeWrapper).addFcSubComponent(primitiveMaster);
 Fractal.getBindingController(compositeWrapper).bindFc("run",
 primitiveMaster.getFcInterface("run"));
 Fractal.getBindingController(primitiveMaster).bindFc("compute-itf",
 primitiveComputer.getFcInterface("compute-itf"));

 // start CompositeWrapper component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the run interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

This way isn’t the simplest one to create and use component. There is a lot of code to write, that could introduce mistakes or errors

in an assembly. We will show an easier one next.

7.3. Create and use components using ADL

We want create the same component directly using ADL capabilities. The source code of the method launchWithADL shows how to

use it. Another factory is used, and we can create directly the component without defining at first its type. Utilization of the created

component is still the same. You can see that we don’t need to define and assemble parts any more. Moreover, we need to create

only one component, the other ones are automatically created.

 private static void launchWithADL() {
 try {
 Factory f = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map<String, Object> context = new HashMap<String, Object>();

 // component creation
 Component compositeWrapper = (Component) f.newComponent(
 "org.objectweb.proactive.examples.components.userguide.adl.CompositeWrapper",
 context);

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the run interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

GridCOMP FP6-034442 70 D.CFI.06

ADL allows describing a component assembly through a text file. In our case, we have defined fives files. These files need to be in the

classpath of the application, for instance the PrimitiveComputer.fractal file needs to be in the org/objectweb/proactive/examples/
components/userguide/adl directory in the classpath. The first one, PrimitiveComputerType.fractal, describes the component

type, in particular the interface and the membrane with the tags interface and controller. The second one, PrimitiveComputer.fractal,

adds two necessary information: the implementation class with the content tag and a virtual node with the virtual-node tag. These

tags are explained in the following section.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveComputerType">
 <interface
 signature="org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf"
 role="server" name="compute-itf" -/>
 <controller desc="primitive" -/>
</definition>

It is quite the same for the PrimitiveMaster component; just the name and definition class change, and there is one more interface,

a client one.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMasterType">
 <interface
 signature="org.objectweb.proactive.examples.components.userguide.primitive.ComputeItf"
 role="client" name="compute-itf" -/>
 <interface signature="java.lang.Runnable" role="server" name="run" -/>
 <controller desc="primitive" -/>
</definition>

And finally, there is the composite one. It defines one interface, and include the two primitive described previously. The binding

tag is new; it describes the binding between the interface from composite and inner components.

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition
 extends="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMasterType"
 name="org.objectweb.proactive.examples.components.userguide.adl.PrimitiveMaster">
 <content
 class="org.objectweb.proactive.examples.components.userguide.primitive.PrimitiveMaster" -/>
 <virtual-node name="primitive-node" cardinality="single" -/>
</definition>

Now, we can run the example; uncomment the line calling the launchWithADL method in the main and then you can see the same

output as in the previous section.

7.4. Creating, using and deploying components using ADL

To deploy components on a specific virtual node, we need to use ADL files. Just before we saw that the tag virtual-node allows to

specify which virtual node to use for a component. The virtual node is defined in a separate file: a deployment descriptor. You can

find more information on how to write a deployment descriptor file in the ProActive documentation, chapter 21, XML Deployment

Descriptors. The deployment descriptor file used in this example is in the Appendix: deploymentDescriptor.xml.

GridCOMP FP6-034442 71 D.CFI.06

Furthermore, we need to inform the factory how to use this deployment descriptor; we do this in the

launchPrimitiveADLAndDeployment method :

• We create a ProActiveDescriptor object

• We put this object in the context HashMap

• We give this HashMap to the factory

Thus, the factory can retrieve the virtual node defined, and use it as described in the ADL files.

There is another specific point in the end of this method with the deploymentDescriptor.killall(false); call. This method kills all

the JVM deployed using the original deployment descriptor file. Before this call, we need to suspend the program since the method

calls in GCM are asynchronous, in order to not kill JVM before the end of the component execution.

 private static void launchAndDeployWithADL() {
 try {
 // get the component Factory allowing component creation from ADL
 Factory f = org.objectweb.proactive.core.component.adl.FactoryFactory.getFactory();
 Map<String, Object> context = new HashMap<String, Object>();

 // retrieve the deployment descriptor
 ProActiveDescriptor deploymentDescriptor = PADeployment.getProactiveDescriptor(Main.
class
 -.getResource("deploymentDescriptor.xml").getPath());
 context.put("deployment-descriptor", deploymentDescriptor);
 deploymentDescriptor.activateMappings();

 // component creation
 Component compositeWrapper = (Component) f.newComponent(
 "org.objectweb.proactive.examples.components.userguide.adl.CompositeWrapper",
 context);

 // start PrimitiveComputer component
 Fractal.getLifeCycleController(compositeWrapper).startFc();

 // get the compute-itf interface
 Runnable itf = ((Runnable) compositeWrapper.getFcInterface("run"));

 // call component
 itf.run();

 Thread.sleep(1000);
 // wait for the end of execution
 // and kill JVM created with the deployment descriptor
 deploymentDescriptor.killall(false);
 -} catch (Exception e) {
 e.printStackTrace();
 -}
 -}

Now we can run this example; uncomment the line calling the launchPrimitiveADLAndDeployment method, launch it and see the

output. The first lines are ProActive log; it’s more verbose than during previous execution because we deploy the two JVMs defined

in the deployment descriptor file. After that, you can see information printed from the component and the Main class . And finally,

the ProActive log again when the created JVMs are killed.

7.5. Component interface Cardinality

Client and server also support multicast and gathercast interface cardinality. The GCM [1] explains which constraints the server

and client interfaces must respect.

GridCOMP FP6-034442 72 D.CFI.06

For multicast interfaces you can specify the parameter dispatching mode thanks to Java annotations available in the

org.objectweb.proactive.core.component.type.annotations.multicast package.

7.6. Additional examples

Two component applications are included in ProActive the HelloWorld and C3D example.

A Hello World example is provided. It shows the different ways of creating a component system programmatically and using ADL.

You can find the code for this example in the package org.objectweb.proactive.examples.components.helloworld of the CFI

prototype distribution.

The example code can either be compiled and run manually or using scripts (hello-world_fractal.sh (or .bat) in the scripts/unix/

components directory) can be used to launch it. If you choose the first solution, do not forget to set the fractal.provider system

property.

The other example, C3D application — a parallel, distributed and collaborative 3D renderer, is in the

org.objectweb.proactive.examples.components.c3d package.

<?xml version="1.0" encoding="UTF-8"?>
<ProActiveDescriptor xmlns="urn:proactive:deployment:3.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:proactive:deployment:3.3
 http://www-sop.inria.fr/oasis/ProActive/schemas/deployment/3.3/deployment.xsd">
 <variables>
 <descriptorVariable name="PROACTIVE_HOME"
 value="/user/cdalmass/home/workspace/ProActiveLatest" -/>
 <!--CHANGE ME!!!! --->
 <descriptorVariable name="JAVA_HOME"
 value="/user/vcave/home/bin/jdk1.6.0_03" -/>
 <!-- -/user/cdalmass/home/pub/local/jdk1.5.0_09 Path of the remote JVM -, CHANGE ME!!!! --->
 </variables>
 <componentDefinition>
 <virtualNodesDefinition>
 <virtualNode name="primitive-node" -/>
 <virtualNode name="composite-node" -/>
 </virtualNodesDefinition>
 </componentDefinition>
 <deployment>
 <mapping>
 <map virtualNode="primitive-node">
 <jvmSet>
 <!-- <currentJVM -/>-->
 <vmName value="jvm1" -/>
 </jvmSet>
 </map>
 <map virtualNode="composite-node">
 <jvmSet>
 <!-- <currentJVM -/>-->
 <vmName value="jvm2" -/>
 </jvmSet>
 </map>
 </mapping>
 <jvms>
 <jvm name="jvm1">
 <creation>
 <processReference refid="rshProcess" -/>
 </creation>
 </jvm>
 <jvm name="jvm2">

GridCOMP FP6-034442 73 D.CFI.06

 <creation>
 <processReference refid="rshProcess" -/>
 </creation>
 </jvm>
 </jvms>
 </deployment>
 <infrastructure>
 <processes>
 <processDefinition id="jvmProcess">
 <jvmProcess
 class="org.objectweb.proactive.core.process.JVMNodeProcess">
 <classpath>
 <!-- <absolutePath value="${PROACTIVE_HOME}/bin" -/>-->
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Core" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Examples" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Extensions" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Extra" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classesGCMTests" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Tests" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/classes/Utils" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/javassist.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/bouncycastle.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/fractal.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/log4j.jar" -/>
 <absolutePath
 value="${PROACTIVE_HOME}/lib/xercesImpl.jar" -/>
 </classpath>
 <javaPath>
 <absolutePath value="${JAVA_HOME}/bin/java" -/>
 </javaPath>
 <policyFile>
 <absolutePath
 value="${PROACTIVE_HOME}/dist/proactive.java.policy" -/>
 </policyFile>
 <log4jpropertiesFile>
 <absolutePath
 value="${PROACTIVE_HOME}/dist/proactive-log4j" -/>
 </log4jpropertiesFile>
 </jvmProcess>
 </processDefinition>
 <processDefinition id='rshProcess'>
 <sshProcess
 class='org.objectweb.proactive.core.process.ssh.SSHProcess'
 hostname='nyx.inria.fr'>
 <processReference refid='jvmProcess' -/>
 </sshProcess>
 </processDefinition>

GridCOMP FP6-034442 74 D.CFI.06

 </processes>
 </infrastructure>
</ProActiveDescriptor>

GridCOMP FP6-034442 75 D.CFI.06

Chapter 8. Annex

8.1. The GCM Basics example files

org.objectweb.proactive.examples.components.userguide.starter.Service

package org.objectweb.proactive.examples.components.userguide.starter;

public interface Service {
 public void print(String msg);
}

org.objectweb.proactive.examples.components.userguide.starter.ServerImpl

package org.objectweb.proactive.examples.components.userguide.starter;

public class ServerImpl implements Service {
 public void print(String msg) {
 System.err.println("=> Server: -" + msg);
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.Server.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.userguide.starter.Server">
 <interface name="s" role="server" signature=
"org.objectweb.proactive.examples.components.userguide.starter.Service"/>

 <content class="org.objectweb.proactive.examples.components.userguide.starter.ServerImpl"/>

 <controller desc="primitive"/>

 <virtual-node name="VN" cardinality="single"/>
</definition>

org.objectweb.proactive.examples.components.userguide.starter.ClientImpl.java

package org.objectweb.proactive.examples.components.userguide.starter;

import org.objectweb.fractal.api.control.BindingController;

public class ClientImpl implements Runnable, BindingController {
 private Service service;

 public ClientImpl() {
 // the following instruction was removed, because ProActive requires empty no-args
 constructors
 // otherwise this instruction is executed also at the construction of the stub
 //System.err.println("CLIENT created");
 -}

 public void run() {
 System.err.println("---- Calling service method -----");

GridCOMP FP6-034442 76 D.CFI.06

 service.print("hello world");
 -}

 public String[] listFc() {
 return new String[] { "s" -};
 -}

 public Object lookupFc(final String cItf) {
 if (cItf.equals("s")) {
 return service;
 -}
 return null;
 -}

 public void bindFc(final String cItf, final Object sItf) {
 if (cItf.equals("s")) {
 service = (Service) sItf;
 -}
 -}

 public void unbindFc(final String cItf) {
 if (cItf.equals("s")) {
 service = null;
 -}
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.Client.fractal

<?xml version="1.0" encoding="ISO-8859-1" -?>
<!DOCTYPE definition PUBLIC -"-//objectweb.org//DTD Fractal ADL 2.0//EN"
 -"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="org.objectweb.proactive.examples.components.userguide.starter.Client">
 <interface name="m" role="server" signature="java.lang.Runnable"/>
 <interface name="s" role="client" signature=
"org.objectweb.proactive.examples.components.userguide.starter.Service"/>

 <content class="org.objectweb.proactive.examples.components.userguide.starter.ClientImpl"/>

 <controller desc="primitive"/>

 <virtual-node name="VN" cardinality="single"/>
</definition>

org.objectweb.proactive.examples.components.userguide.starter.Main.java

package org.objectweb.proactive.examples.components.userguide.starter;

import java.util.HashMap;

import org.objectweb.fractal.adl.Factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.control.BindingController;
import org.objectweb.fractal.util.Fractal;
import org.objectweb.proactive.core.component.adl.FactoryFactory;
import org.objectweb.proactive.core.component.adl.Registry;
import org.objectweb.proactive.core.config.PAProperties;
import org.objectweb.proactive.extensions.gcmdeployment.PAGCMDeployment;

GridCOMP FP6-034442 77 D.CFI.06

import org.objectweb.proactive.gcmdeployment.GCMApplication;

public class Main {
 public static void main(String[] args) throws Exception {
 PAProperties.FRACTAL_PROVIDER.setValue("org.objectweb.proactive.core.component.Fractive");
 GCMApplication gcma = PAGCMDeployment
 -.loadApplicationDescriptor(Main.class
 -.getResource(
"/org/objectweb/proactive/examples/components/userguide/starter/applicationDescriptor.xml"));
 gcma.startDeployment();

 Factory factory = FactoryFactory.getFactory();
 HashMap<String, GCMApplication> context = new HashMap<String, GCMApplication>(1);
 context.put("deployment-descriptor", gcma);

 // creates server component
 Component server = (Component) factory.newComponent(
 "org.objectweb.proactive.examples.components.userguide.starter.Server", context);

 // creates client component
 Component client = (Component) factory.newComponent(
 "org.objectweb.proactive.examples.components.userguide.starter.Client", context);

 // bind components
 BindingController bc = ((BindingController) client.getFcInterface("binding-controller"));
 bc.bindFc("s", server.getFcInterface("s"));

 // start components
 Fractal.getLifeCycleController(server).startFc();
 Fractal.getLifeCycleController(client).startFc();

 // launch the application
 ((Runnable) client.getFcInterface("m")).run();

 // stop components
 Fractal.getLifeCycleController(client).stopFc();
 Fractal.getLifeCycleController(server).stopFc();

 Registry.instance().clear();
 gcma.kill();
 -}
}

org.objectweb.proactive.examples.components.userguide.starter.deploymentDescriptor.xml

<?xml version="1.0" encoding="UTF-8"?>
<GCMDeployment xmlns="urn:gcm:deployment:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:gcm:deployment:1.0
 http://proactive.inria.fr/schemas/gcm/1.0/ExtensionSchemas.xsd -">

 <environment>
 <javaPropertyVariable name="user.home"/>
 </environment>

 <resources>
 <host refid="localhost"/>

GridCOMP FP6-034442 78 D.CFI.06

 </resources>

 <infrastructure>
 <hosts>
 <host id="localhost" os="unix" hostCapacity="1" vmCapacity="2">
 <homeDirectory base="root" relpath="${user.home}" -/>
 </host>
 </hosts>
 </infrastructure>

</GCMDeployment>

org.objectweb.proactive.examples.components.userguide.starter.applicationDescriptor.xml

<?xml version="1.0" encoding="UTF-8"?>
<GCMApplication xmlns="urn:gcm:application:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:gcm:application:1.0
 http://proactive.inria.fr/schemas/gcm/1.0/ApplicationDescriptorSchema.xsd">

 <environment>
 <javaPropertyVariable name="proactive.home" -/>
 <javaPropertyVariable name="java.home" -/>
 <javaPropertyVariable name="user.dir" -/>
 </environment>

 <application>
 <proactive base="root" relpath="${proactive.home}">
 <configuration>
 <java base="root" relpath="${java.home}/bin/java"/>
 <proactiveClasspath type="append">
 <pathElement base="proactive" relpath="classes/Examples"/>
 <pathElement base="proactive" relpath="dist/lib/clover.jar"/>
 </proactiveClasspath>
 </configuration>
 <virtualNode id="VN">
 <nodeProvider refid="main-VN" -/>
 </virtualNode>
 </proactive>
 </application>

 <resources>
 <nodeProvider id="main-VN">
 <file path="deploymentDescriptor.xml" -/>
 </nodeProvider>
 </resources>
</GCMApplication>

