o)
CEWdCXJNﬂD'QJﬁH BB

Effactive Componsnts for the Grids : _,_,/‘ Tnfor'll'lauorl Societ}.’

lechnologies

n_a—

Project no. FP6-034442

GridCOMP

Grid programming with COM Ponents : an advanced component platform
for an effectiveinvisiblegrid

STREP Project

Advanced Grid Technologies, Systems and Services

D.GIDE.O03 - Grid IDE Prototype and Early Documeiatat

Due date of deliverable: 31 May 2008
Actual submission date: 16 June 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this dehble: UoW

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination L evel

PU Public PU

Keyword List: Component-based development, Gridiegpons, integrated environments
Responsible Partner: Vladimir Getov, UoW

MODIFICATION CONTROL
Version Date Status Modifications made by

0 DD-MM-YYYY Template | Patricia HO-HUNE

1 04-06-2008 Draft Vladimir Getov

2 05-06-2008 Draft Stavros Isaiadis

3 16-06-2008 Draft Vladimir Getov

4 27-06-2008 Draft Artie Basukoski

5 28-06-2008 Draft Stavros Isaiadis

6 30-06-2008 Final Vladimir Getov

Deliver able manager

Vladimir Getov, UoW

List of Contributors

Stavros Isaiadis, UoW
Artie Basukoski, UoW
Jeyan Thiyagalingam, UoW

List of Evaluators

Eric Madelaine, INRIA
Thomas Weigold, IBM

Summary

Component-oriented development is a software desiginod which enables users to
build large scale Grid systems by integrating iredefent and possibly distributed
software modules (components), via well definederiiaices, into higher level
components. The main benefit from such an appraacimproved productivity.
Firstly, due to abstracting away network level fiimgalities, thus reducing the
technical demands on the developer. Secondly, lmbatng components into higher
level components, component libraries can be built incrementally and made
available for reuse. In this report, we share oitial experiences in designing and
developing an integrated development environmentGiads to support component-
oriented development, deployment, monitoring, ateering of large-scale Grid
applications. The development platform, which ightly integrated with Eclipse
software framework, was designed to empower theeldper with all the tools
necessary to compose, deploy, monitor, and steier @plications. We also discuss
the overall functionality, design aspects, andahitnplementation issues. After that,
we illustrate the methodology using as an examipée development of a complex
distributed business process application for a bioim identification system. Finally,
we report our initial findings and experiences pplging the methodology and the
integrated environment, to best exploit the GCMnfeavork.

GridCOMP FP6-034442 page 2 of 26 D.GIDE.O3

Table of Content

R 1 1 oo 18X ' o RSSO 5
2 AnOverview of REQUITEMENTSccoiiiiiiic ettt 5
2.1 APPHCAiON DEVEIOPEN S....cueie ettt e 6
A N o o [Tor= 1 o g W U S = SRR 6
2.3 Data Centre OPEr AlONS.....ciuriiiiiie ettt e s s e e e s e b e e e e e e s snrrrereaes 6
24 KEY REQUIFEMENTS... ..ottt ettt et st e e ae e et e e et e e s aate e snteeeneeesnneeenes 6
3 New Development Methodologyccocuviiciiieiiie et 7
4 Grid Integrated Development ENVIronment..........ccoioiiiiiieenienie e 8
4.1 COMPOSItiON PEISPECTIVE.......oiuiiiiieieeie ettt et sae e 9
4.2 Deployment PerSPECTIVE.cocuiiiieiieiee ettt 10
4.3 MONItOring PerSPECTIVE.ei ittt 11
44 SHEEriNg PerSPECLIVE.....ccuiiiie ettt 11
5 Case Study of DevelopmeNt ProCESS.........ccouieiiiee et stee e ernee s 11
5.1 Component Programming and COmMPOSItiONcccueeiiueeeiieeiiieeiiieesiieesiee e 11
5.2 Deployment and MONITOriNGcooeeiiieeiiie ettt ereeens 13
5.3 INItial EXPErIENCES ..ottt e et e s e e s nnre e enae e e enneeans 14
6 ConclusionsS and FULUr @ WOIKcooiiiiriieiiiesiee et 16
S L= 1= [0TSR 16
Appendix A: GIDE: DOCUMENTALIONcccvieiiiiieiiie et e e e nnee s 18
(RS U1 0o 116 o FO TSRO UR S PR TPRPTUPRRPRRPRO 18
1.1 DeEPENUENCY SELUD ...ueiiiieiiiieieieeie ettt ettt ettt e sbe bt e sne e sar e e s e e sae e s e e eneens 18
02 1 = = U4) o PR 20
1.3 Directory and File SITUCTUN €ccueiiiiiiiieeie et 21
A U 1 T TS PP PPRPPR 21

GridCOMP FP6-034442 page 3 of 26 D.GIDE.O3

25 R -1 {0 1 o SOOI 21

2.2 Using GIDE Tools and PerSpECLIVES.......c.uocoiuiieiiii e etee et enaee e 21
20 T ©o 411 0T 1S 1 { o] o O SPRRRTR 22
2.3.1 IMPOrting ADL filES....coiiiiiiie e eeme e 22
pZC T B R €T T | RS TRS 22
2312 WIZArd OpPiONS. ...ccueeiuiieteeeite ettt e et s r e be e se e saneenneenneas 22
2.3.2 EXPOorting t0 ADL fill€S.....uu i 23
R A R €= T o | SRS 23
2322 WIZArd OPiONS. ...ccueeiuiieteeeiie ettt e et s n e e ne e sae e enneenneas 23

GridCOMP FP6-034442 page 4 of 26 D.GIDE.O3

1 Introduction

Arguably the most serious obstacle to the acceptahemodern distributed and Grid systems
is the so-calledoftware crisis. Software, in general, is considered the most d¢exnartefact

in distributed computing; since the lifespan of dsmfrastructures has been so brief, their
software environments rarely reach maturity makihg software crisis especially acute.
Hence, shorter development cycle, portability angpert for dynamic properties, in
particular, are critical issues in enabling larggd@omputing systems. This, however, makes
the search for both the most appropriate programrabstractions [6] and efficient problem
solving environments [12] even more important thafore.

Therefore, it is generally accepted that compohased software development is becoming
the most cost-effective approach to applicationstmuction for complex distributed and Grid
systems. The wide adoption of component-based adétdevelopment and in particular the
use of suitable programming models for compatipiind interoperability are key issues
towards building effective future Grids. Exampldscomponent models applicable to this
field include the Common Component Architecture £§d2], the CORBA Component
Model (CCM) [10], and the emerging Grid Componerdddl (GCM) [7].

The Fractal specification [5] proposes a generyged component model in which
components are runtime entities that communicatéusively through interfaces. One of the
crucial features of this model is its support feerarchical composition. Another key feature
is its support for extensible reflective faciliieeach component is associated with an
extensible set of controllers that enable inspgcand modifying internal features of the
component. Controllers provide a means for capgugrtra-functional behaviours such as
varying the sub-components of a composite compotgmamically or intercepting incoming
and outgoing operation invocations. The GCM propasaan extension of the Fractal
component model that specifically targets Grid eswinents.

In CCA, components interact using ports, which améerfaces pointing to method
invocations. Components in this model defpmevides-ports to provide interfaces anakes-
ports to make use of non-local interfaces. The encloBiagework provides support services
such as connection pooling, reference allocatiod ather relevant services. Dynamic
construction and destruction of component instangedso supported along with local and
non-local binding. Though CCA enables seamless imantinteroperability between
components, one of the main weaknesses of the GGHReilack of support for hierarchical
component composition and for control mechanisrassibr.

The CCM [10] is a language-independent, server-sidmponent model which defines
features and services to enable application deeedogo build, deploy and manage
components to integrate with other CORBA servidée CCM specification introduces the
concept of components and the definition of a c@hensive set of interfaces and techniques
for specifying implementation, packaging, and dgplent of components. The CCM
provides the capabilities for composing componefttsough receptacles) and permits
configuration through attributes. However, in castrto the Fractal component model, the
CCM does not permit hierarchical composition; tisatecursively composing components to
form more complex, composite components.

2 An Overview of Requirements

The Grid integrated development environment (GIRE@imed at supporting a number of
different user groups. We can classify the usenpgas follows:

GridCOMP FP6-034442 page 5 of 26 D.GIDE.O3

2.1 Application Developers

Application developers require support for devebgpGrid applications through graphical
composition as well as having to support sourceecbdsed development. This approach
aligns with industrial efforts in building applitas through graphical composition [9].
However, providing support for developing Grid dpations poses additional requirements,
including support for Grid component models and posite components, and the
complexities of deploying these components ovetridiged systems. Additional tools are
necessary to enable deployment, monitoring of hmtimponent status and resource, and
steering of components to maximise resource uiitisa

2.2 Application Users

The GIDE should facilitate the deployment of apgtions and subsequently, the monitoring
of deployed applications. The monitoring processvigles a set of opportunities for

concerned users to monitor their running applicatio real-time. This functionality is also

shared with the application developers who neeti $acilities to test the application during

development.

2.3 DataCentre Operators

Data centres have high turnover rates. Hence thexeneed for a design that would facilitate
fast handovers and enable other operators to assigtomers in coming to terms with the
applications quickly. In order to achieve this weend to deliver a standalone application as a
Rich Client Platform (RCP) application, which prdes the key functionalities that would be
required by a data centre. These features aregadanithin the deployment, monitoring, and
steering perspectives. Also, personalisation ovsishould be limited as far as possible, so
that a uniform design is visible to all operators @rder to enhance handover and
communication.

24 Key Requirements

The following is an overview of the key requirenmgenbnsidered for each user group during
the design of the GIDE.

1. Provide a Grid IDE for programmers and composéh® main goal is to produce an
integrated programming and composing GUI. It shqarfavide the developer with graphical
tools to develop both normal code and legacy cottegrimitive components, as well as tools
for assembling existing Grid components into largemposite components. Additional
support tools should also be provided, such asttmkearch for suitable components, and
tools to finalise the configuration of the applicatbefore execution.

2. Provide tools for the deployment of a given Gramponent configuration or application.
The main goal is to develop a component launchartt@t enables the developer to simply
point to a component and execute. Of course theclaar will need to associate a deployment
descriptor with each launched component. In additlos tool must provide monitoring at
execution. This can be achieved via a componen&ution monitor tool, capable of
monitoring the runtime dynamics of set of compogsgstich as location, memory, status, etc.
3. Provide a Grid IDE for data-centre operatordss Himplified toolset provides an easy-to-
use support for installing, monitoring and mappimegessary component code to available
resources. The tool must support steering, forallaisg, removing, and re-installing new
versions of component code. It must also providésttor the monitoring of resources. These

GridCOMP FP6-034442 page 6 of 26 D.GIDE.O3

include usage level of resources required for et@cwf component-based code, as well as
external services the components might need tousec

3 New Development M ethodology

The main idea behind component-based developmetiteigprovision of general reusable
software units (components) that perform a paricthsk. Such components can then be
distributed and reused in the context of a differepplication. Component-based
development is based around three concepts:
. The encapsulation and hiding of implementation ifetand configuration of a
component. A component provider can make functignalailable in the form of a black
box component that consumers can use in varioudicappns. This high level of
abstraction makes component-based development easidess error-prone.
. Support for component composition enables the desigd deployment of very
complex systems that consist of smaller hierardlyicaganized sub-systems. This provides
the foundations for reconfiguration of a particutab-system without compromising the
whole application.
. Description of the architecture of a system, usthg Architecture Description
Language (ADL), as well as the deployment detaflsvbere each component will be
deployed and how it will interact with other (pati@fy remote) components.
There are generally two types of components: prmiitcomponents, which perform a simple
task (typically as simple as possible so that they be reused easily), and composite
components, which consist of a number of interndd-somponents. Typically composite
components do not require a concrete implementdtidrserve mainly as the context for the
coordinated usage of their internal components.

Grid Integrated Development Environment

Appliqation Program / Compose Deploy Monitor &
(Algorithm) GCM Steer

l

Obtain

LT

Metadata Description incl. ADL, etc.

Figure 1. Component-Based Program Development Pipeline

Our vision for the GIDE design is to provide theveleper with a single environment for the
development pipeline. As can be seen from Figuthid includes graphical composition,
deployment, monitoring and steering of Grid-baspgliaations. Our methodology can be
summarised by the interaction and flow of the elet®iedepicted in Figure 1. The
development process builds on the component framewescribed in the GCM and is
dependent on the tools provided by the GIDE, whiobvides a set of generic components
that can be dragged and dropped on a compositindomi. These components can be edited
and composed in a hierarchical fashion to expréms functionality of the required
application. Facilities are also provided for editiprimitive components via the direct

GridCOMP FP6-034442 page 7 of 26 D.GIDE.O3

implementation of the required algorithms using flava language, or legacy component
wrapping.

At any point during the composition, the user Hes aption to save the current composition
or any of its constituent primitive components aseasable component and store it in the
repository. All saved components are easily acbisgi the composition perspective through
a component repository view. Composition then pedsein a hierarchical manner, allowing
the composer to develop top-down or bottom up. iSa@mt support for automatic source
code generation is also available through a sefiesntext sensitive options.

When the developer has finished the application pmmition, or simply wishes to test the
current composition, the GIDE provides facilitiesexport the composition into an ADL and
then deploy it according to the deployment desorgpthe developer has provided. After
deployment the developer can monitor the deployashponents through the monitoring
perspective of the GIDE. Monitoring properties udg the performance of the component,
the resource utilization, and the state of the aomepts. Through the monitoring and steering
perspective, the user has the option to fine twmeesproperties and dynamically reconfigure
the application (taking into consideration the mamng data that the GIDE provides), such
as add or remove worker components, start, staprelocate components from one virtual
node (VN) to another. In addition, autonomic comgrunmanagement is being implemented
through the use of behavioural skeletons [1]. Behaal skeletons add reconfiguration
actions to components which can be triggered byetimndronment. Additionally, dynamic
reconfiguration of component properties or relaglups is enacted through rules for typical
reconfiguration strategies. The component frameviodementation (CFI) we use is based
on ProActive [11] and ensures that the program Webaremains consistent during any such
relocation.

The methodology we propose shortens the developiiientycle through the sharing and
reuse of components from the repository. ADL’'s rbayexported and imported, and can be
deployed on any platform implementing the GCM, timeking ADL’s the main functional
unit for any application, and hence making appiiwce under this methodology highly
portable within the framework.

4 Grid Integrated Development Environment

Developing distributed applications on a grid isfracture poses significant challenges. In
addition to mastering a suitable programming lagguahe developer must also have a
working knowledge of the middleware and occasignédiwer level platform dependent
features. Such a broad range of expertise addsisagnly to the cost of a project in terms of
development time, hence time to delivery. The afrthe GIDE (Figure 2) is to abstract the
middleware and platform dependent features as rasgbossible. In doing so we reduce the
learning curve as well as the development and dgbggeffort, which can often be
prohibitive when developing in distributed and gedvironments. The GIDE was designed
with two different user groups in mind: applicatidavelopers and data centre operators. For
the application developers we provide support frafoping through graphical composition,
but ensure that the developer always has accehe tmiddleware functionalities and source-
code based development if required. We recognasesittess to lower level functionalities is
sometimes necessary for debugging and improvingraro efficiency. It also helps to avoid
the cases where applications become bulky andicresit if development is forced to adhere
to using only pre-built components. Additional ®ahre also necessary to enable easy
deployment and monitoring of both component statnd resource usage to facilitate the
development process.

GridCOMP FP6-034442 page 8 of 26 D.GIDE.O3

0-APPLICATIONS (USE CASES) WP5

EOS EOS
USES| | (Requirements) HAPI
Eclipse
Framework 1-Development IDE 2-Data Centre IDE
1.2-Composition 1.3-Deployment 2.1-Monitoring 2.2-Steering

GIDE
Toolset |
133

1.2.1-ADL 123 132- L n 21.1- 2.1.2-Node
parser/ | | 1-22ADL 1.3.1-Test Finalization Component || Resource 221.1- Start/ 22.1.2-nstall/

Code/ADL Debug
Verfer Renderer el Tool Tool Dep_lrooyorlnem Monitor Monitor Stop Remove

Figure 2: GIDE Block Diagram

Such monitoring functionalities are also applicalble a data centre environment. By
repackaging the GIDE functionality, a simplifiecbtdor installing, monitoring and mapping
necessary component code to available resourcesbeaprovided for a Data Centre
environment. However, the framework must providditwhal support for steering to enable
the data centre operators to install, remove, guggade to new versions of component code if
required. Data centres have high turnover rateacéléhere is a need for a simple design that
would facilitate fast handovers, and enable opesét assist newcomers in coming to terms
with the application quickly.

The GIDE is built on the Eclipse [9] framework leaging the facilities provided by the
Eclipse Modelling Framework (EMF) and the Graphidabdelling Framework (GMF).
Using Eclipse guards from obsolescence and enakl@sless customisation and extension
through its plug-in architecture. It is a leadirayvd development environment, and allows
easy integration with many libraries, including fPActive [11] middleware libraries being
used for the CFI. In addition, it provides accassduntless other plug-ins available online
from other developers. The development environnhaist been distributed as a set of plug-
ins. The GIDE provides its main functionalities fmmposition, deployment, and monitoring
as different so-called perspectives — an Eclipseciip method for grouping a set of
functionalities as a graphical view. For the datamtee operators, we intend to deliver a
standalone application as a Rich Client PlatfornCR application. Further details of the
GIDE and its design may be found in [3].

4.1 Composition Per spective

The composition process is enabled via a fullyradtéve environment. The underpinning
feature which enables such interactivity is thenéwiFiven approach. Eclipse acts as the host
platform to our environment. The Graphical Editligmework, GMF-Runtime, and Eclipse
facilitate handling of different events within tleavironment. These events are captured by
the host platfornthrough a message loop processed by the Eclipsehwe then routed to
the dedicated event handlers or providers of th@r@mment. These event handlers or
providers are linked to the underlying model sd tha changes are reflected upon editing.

GridCOMP FP6-034442 page 9 of 26 D.GIDE.O3

BTt et e SO ouke

L IrkerFaces 3

= F Standard Server
e Interface
- Standad Cortroler
Intariace
4 Starclard Clert
e irteriae
RN LN § Muticass Inberfsce

=il Sather Mulbcast
1 Inkerface
I | Gathercast interface

(= Comections 1| Bl Task st £
= InberfaceCornections, , g E -

R O T L e g L TR AL T

S

1] _ L |

2 Prablems | @) Javador || Declarstion | T Fropertes 11 5 3 s,
O Component Type CallMSgl

o e e

AppoE e :J i

Enpl Cess arg.grideomp. sample. CalPtSgl
Last Mockfied 3

Hame CaFisgl

Wirtual Bode

Figure 3: GIDE Composition Per spective

As an example, let us consider the composition ggecusing Atos’ use case from the
GridCOMP project. The central area of the compaosiperspective (see Figure 3) focuses the
user on the graphical composition view which pregidhe developer with a palette of
available components that can be dragged and didompe the composition canvas.
Components can also be imported from existing Aeciiire Description Language (ADL)
files and stored in the component palette. ADLsfitmnform to the GCM-specification for
describing compositions such as in [7]. Componeatsthen be resized and moved, modified
and stored. Connections between the interfaces @mndrawn directly between the
components using the connection tool. Composit®radhieved by drawing a membrane
around a group of components and defining inteadée developer is able to switch
between the graphical view and a view of the flad¢scription of the component as an ADL
file. The ADL file can then be exported and useddeployment.

4.2 Deployment Per spective

This perspective consists of views needed for agptn deployment. Currently deployment
is provided via the IC2D plug-in. Planned enhanc@sieare to provide a view of a
deployment descriptor editor to map virtual nodephysical hosts, and then to associate
components with virtual nodes. Virtual nodes amduded in ADL files to specify the number
of virtual nodes that the component will need. Aveleper may have a set of these
deployment descriptors to be used for deploymerdifferent hardware configurations. To
complement this view, a view of the hosts and thesource statuses is also provided, giving
a developer the ability to associate sets of heits each deployment descriptor. Within the
deployment perspective the operator is able todawomponents simply via drag-and-drop
operations before moving on to steering.

GridCOMP FP6-034442 page 10 of 26 D.GIDE.O3

4.3 Monitoring Per spective

The monitoring perspective provides the views tiiatia centre operators need in order to
properly monitor the runtime environment (see Fegb). The monitoring perspective consists
of component and resource monitor views. Threesygfanonitoring are necessary in order
to enable proper management of applications. fjratlonitoring of resources provides the

hardware status of hosts. This includes CPU utima hard disk space, and other platform
specific status information. Secondly, monitorinff tbhe GCM components themselves
provides status and location information along vatlzoom-in feature for monitoring sub-

components. Finally, we allow monitoring of actibjects, which is necessary for

developers/composers to debug and monitor apmitatiuring the development phase.

4.4 Steering Perspective

More useful for data centre operators, the aimhefsteering perspective is to provide views
to enable the operator to start, stop, and relamatgponents. Building on the monitoring and
host views, it has as its main focus a componemitmaing view. This view graphically
shows the components location and their statusadthitional view shows the geography and
resource availability of the hosts, virtual nodeswell as the components that are running on
them. Based on these views, the operator has tiléyfdo start, stop or move components
from one virtual node to another while monitorihgit status to ensure correct execution.

5 Case Study of Development Process

In recent years biometric methods for verificateomd identification of people have become
very popular. Applications span from governmentaljgxts like border control or criminal
identification to civil purposes such as e-commgnegwork access, or transport. Frequently,
biometric verification is used to authenticate geapeaning that a 1:1 match operation of a
claimed identity to the one stored in a referengsiesn is carried out. In an identification
system, however, the complexity is much higher.efarperson’s identity is to be determined
solely on biometric information, which requires otahg the live scan of biometrics against
all enrolled (known) identities. Such a 1:N matqgbetion can be quite time-consuming
making it unsuitable for real-time applications.

In order to tackle this challenge, one of the usges developed to evaluate the GridCOMP
framework [8] and the GIDE [3] is a biometric idiication system (BIS). Its goal is to build
a real-time biometric identification system, basedfingerprint biometrics, which can work
on a large user population of up to millions ofiumduals. To achieve real-time identification
within a few seconds period our BIS applicationemkadvantage of the Grid via GCM
components.

5.1 Component Programming and Composition

The BIS application can be considered a businesseps or workflow-driven code. This
means it is built around a workflow execution ergacting as the central control unit of the
system. The workflow engine used is the embeddedegs virtual machine (ePVM) [14],
which executes workflows defined as JavaScriptpsriThese scripts define processes for
identity enrolment, identification, and system mgeraent. The workflows can communicate
with entities outside of the ePVM engine via sdezhlworkflow adapters. Among them is the
GCM adapter, which allows the workflow engine teess the Grid infrastructure via GCM
components.

GridCOMP FP6-034442 page 11 of 26 D.GIDE.O3

In this sub-section we describe the developmenthefGrid component architecture that
enables the GCM adapter to provide distributed bimie matching functionality via the Grid
[13]. The basic approach is to have one componecapsulating the biometric matching
functionality, which is then deployed on all Griddes in a SPMD-style setting. Then the
database of enrolled (known) identities is distiglsiacross the nodes and this way the 1:N
matching operation is executed in parallel.

Virtual Node BIS-Grid

]

1

ComplDMatcher (1) E1 BISNode 1 I

Default Node :
= CompAlg- 1
Control |14 CompAlg :—_... I

— — !

= I5 1

1

I : '

H . '
ComplD : '
T1 . ComplDMatcher (N) EN :
| BISNode N 1

O I CompAlg- !

1 Control T4f CompAlg !

1 - |

| 15 +| = !

| 1

| 1

Enrolled Identities
Figure 4: Overall BIS Grid component design

Figure 4 shows the overall component design, thelibgs between components, and their
deployment to the physical grid infrastructure. Ta@mplD component runs on the default
node, has access to the database of enrolled tidentand is connected to all distributed
components via its multicast interfat2 [4]. The multicast interface is used to broadcast
identification requests within the Grid. Th@omplDMatcher composite component is
deployed to all nodes and represents the biometaiiching unit that works on a part of the
database depicted #3\. It encapsulates th€EompAlg component representing the actual
fingerprint matching algorithm and ti@mmpAlgControl component managing the state of the
local matching process.

<definition name="com.ibm.bis.CompIDMatcher">

<interface name="server" role="server" signature= "com.ibm.bis.13"/>

<interface name="client" role="client" signature= "com.ibm.bis.13"/>

<component name="CompAlgControl"
definition="com.ibm.bis.CompAlgControl"/>

<component name="CompAlg" definition="com.ibm.bis .CompAlg"/>

<binding client="this.client" server="CompAlgCont rol.idServer"/>

<binding client="CompAlgControl.client" server="C ompAlg.server"/>

<binding client="CompAlg.client"

server="CompAlgControl.controlServer"/>
<controller desc="composite"/>
<virtual-node name="BIS-Grid" cardinality="single ">
</definition>

Listing 1: ComplDMatcher ADL example

To turn this overall high-level design into realitye use the graphical composition
perspective of the GIDE to define the componehtsy hames, and their interface names. We
start with the primitive componentSomplD, CompAlg, and CompAlgControl. Then we
define the composite componebwmpl DMatcher from the two primitives (see Figure 6) and
we wire their interfaced %-15) to designate component bindings as outlined guifé 4. All
this is done solely graphically via simple drag agh@p operations. Lastly, the GIDE

GridCOMP FP6-034442 page 12 of 26 D.GIDE.O3

generates the corresponding GCM ADL descriptiossfldutomatically. Listing 1 exemplifies
the resulting ADL for theComplDMatcher component. The GIDE also supports manual
editing of ADL files as well as the import of ADlilds possibly created by other means. As
the current version of the ADL does not supportdbig an arbitrary number of
ComplDMatcher components to the interfad8, the component allocation and binding has
been done programmatically.

In a next development step the Java interfdéd$ need to be defined and the functional
code of the primitive components must be implenentde GIDE automatically generates
Java skeleton code that the user can easily filRimd since the GIDE is an Eclipse plug-in
we can simply switch to the standard Java perspetd edit and compile the required Java
classes. The composite component does not needmgdgmentation besides its interface
definition. It is automatically generated by the I@@amework at the time the ADL files are
deployed. With the help of the GIDE all these depeient artefacts can be generated and
developed, graphically or manually, in one consisenvironment by switching between the
different Eclipse perspectives.

5.2 Deployment and M onitoring

In this sub-section we describe the tasks requwedeploy the BIS component system to a
particular physical Grid infrastructure and to #ethe deployment. As outlined in Figure 4, it
is assumed that a virtual node [11] nani#& Grid comprised of an arbitrary number of
nodes name@&I|SNode 1-N exists. The virtual-node tag as shown in Listindefines that the
GCM framework should allocated one instance of @oeplDMatcher component on each
node within theBIS-Grid virtual node. To define the mapping from the desigrastructure

to the physical infrastructure an appropriate GCépldyment descriptor must be created.
The GCM adapter passes this descriptor to the G@akMdwork together with the ADL files
defining the components to be allocated. The depéy perspective of the GIDE includes a
deployment descriptor editor to support this depelent step. It also allows working with a
set of deployment descriptors for different hardsveonfigurations. Listing 2 shows a snippet
of a BIS deployment descriptor designated for lotedting. This means a number of
BISNodes, here only two, are defined within the virtual eogind both are simply mapped to
different JVMs allocated on the local machine.

The current GridCOMP ADL is rather static such thatrameterized architectures, for
instance, binding an interface to unknown in adeamember of nodes, can not be expressed
in the ADL. However, such scenarios can still beplemented via the APl by creating
components and bindings programmatically. Thislieen done in the presented case study.
Alternatively, results from WP3, namely, behavidigkeletons can be used. With skeletons,
the problem is solved via specific dynamic companeontrollers (so-called autonomic
behaviour controllers) which can be optionally aopanied with autonomic managers
triggering autonomic operations. This approachuisently implemented in a second version
of the BIS case study.

<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="BIS-Grid" property="multiple ">
</virtualNodesDefinition>
</componentDefinition>

<deployment>
<mapping>
<map virtualNode="BIS-Grid" />
<jvmSet>
<vmName value="BISNodel" />

GridCOMP FP6-034442 page 13 of 26 D.GIDE.O3

<vmName value="BISNode2" />
</jvmSet>
</map>
</mapping>

<jvms>
<jvm name="BISNodel1">
<creation><processReference refld="localJVM" /></[creation>
</jvm>
<jvm name="BISNode2">
<creation><processReference refld="localJVM" /><[creation>
</jvm>
</jvms>
</deployment>

<infrastructure>
<processes>
<processDefinition id="localJVM">
<jvmProcess
class="org.objectweb.proactive.core.process.JVMNod eProcess">
</jvmProcess>
</processDefinition>
</processes>
<finfrastructure>

Listing 2: BIS-Grid deployment descriptor snippet

Once a deployment descriptor is available all dgwalent artefacts required to instantiate the
component system are complete. Here we do noteiudbnsider the non GCM component
related part of the BIS, which connects to the con@mt system via interface 11 (c.f. Figure
2). However, since it is purely Java based thig pan be conveniently developed within
Eclipse, too.

Finally, we can run the application and verify t@mponent architecture by switching to the
monitoring perspective of the GIDE using the Pravemonitoring tool, named 1C2D, which
has already been integrated into the GIDE. IC2Dsdu# visualize GCM components but the
underlying Active Objects [6] of the ProActive middiare. Due to the fact that in our
component system each component is mapped to gx@wt Active Object, IC2D clearly
reflects our component architecture as can be iseleigure 5. In this run fiv&l SNodes have
been allocated, each hosting two primitive and oomposite component. Th@omplD
component is allocated on the default node namedi&\Node”.

9.4.21.99: 1099 'Windows XP
P& _IWM-318219279_9.... PA_TWM-931193516_9.... Pé_IWMI5515939_9.4.... PA_WM-1976993971_9... PA_WMIDZ7542570_9....
HMode BIS-Gridee70. .. HMode BIS-Grid-159. .. MNode BIS-Grid-149.... MNode BIS-Grid-467... Mode BIS-Grid1Z222. .,

PA_I¥MBZZ500194_2.4..,
Composites# 14 CaompalgCaontral#2 CompAlg#S CompalgControl#3 CompAlg#11

flode Hode1307 366665
CompAlg#15 Composite#3 ComplD#1 ComplgControl#6 Composite#a CompalgControl#12

CompalgControl#16 Compalg#d Composite#7 Compalg#10 Composite# 13

Figure5: Active Objectsrendered by the | C2D monitoring tool

5.3 Initial Experiences

The GCM framework offers a very high level of abstion hiding the complexities of Grid
programming. In combination with the comprehensoa box of the GIDE supporting these
abstraction mechanisms it enables non-Grid experteverage the potential of distributed
resources. Also, the development methodology ptedefits well into the trend towards
model driven development strategies involving viss@ftware composition and automatic
code generation.

Current case studies where the GIDE is being usednhance the development process
include IBM’s BIS system (see Figure 6) as repottede, as well as Atos’ use case (see

GridCOMP FP6-034442 page 14 of 26 D.GIDE.O3

Figure 3). Reports on the initial findings are emaging with partners reporting a significant
speedup in the generation of ADL’s.

A further distinct strength of the GCM frameworktige strict separation of concerns. The
BIS case study revealed that quite a number offade definitions, ADL files, deployment
files, and other Java files including the actualctional code were required considering that
the component system is not extensive. The GIDmifsigntly simplifies creating and
maintaining these artefacts and thus speeds ugetrelopment cycle. Yet, the initial GIDE
prototype does not support advanced code refagtorithis would further enhance
convenience, for instance, when renaming an interfaecause interface names appear in
Java files as well as in ADL files.

[) dso_ranvas.gidecomposition_diagram & deployment.xml | 4] *CompIbMateher gidecomposition_diagram 23 = 5[32 outine 12N =
A o - ~
~—Palette —_* i

>

=2 Note o - C
[Componert # D £ D
O New Component
EompIDMatcher
i ompAIgC.rJntmI i ompAlg
.I
[Ej |-[

(] raskiisr 52 =

dTAaE- e~
Find: Poal Y
d

5 U

gorize:

< |_'ll‘

{2 Problems | @ Javadoc |, Dedlaration | I Praperties 52~ & Console | &1 Eror Lag| @ Repostory view | @ Monitoring iew | & Resource Monkor | @ GIDE Log visw | [& % U=l

O Companent Type CompAlgCantrol
1

Property [valie a|
=l Core Praperties

gl Class = com b b, CompAIgCantral

Logger =

Hame = CompAlgCantrol

@ BIS-Grid

= |_>_|;I

Figure 6: Bl S Example composed within GIDE

The fact that the GIDE has been developed as agphig module for Eclipse results in an
increased feature set and consistent look-andideelevelopers. Also, the GIDE varies from
existing frameworks by providing explicit supporbrfall Grid specific needs and
functionalities of the underlying component framekvo Consequently, the complete
development cycle can be carried out within onesitent environment. For instance, the
integrated monitoring perspective has been vergfaktluring the case study to easily verify
correct component distribution or co-allocationspectively. Unfortunately, the final
component monitoring perspective was not available the integrated IC2D perspective was
used as a workaround. Nevertheless, even thelipit@otypes of the GCM framework
implementation and the GIDE already show the paenof the new development
methodology for next generation component-based &plications.

GridCOMP FP6-034442 page 15 of 26 D.GIDE.O3

6 Conclusionsand Future Work

We have presented a methodology for component batmelopment within Grid
environments. Our approach builds on the suppooistdeing developed within the
framework of the GCM, and was demonstrated thratinghimplementation of a Biometric
Identification System case study. The benefits eingli such an approach have been
highlighted. These are:

» shorter development cycle,

» higher portability, and

» support for dynamic properties.

These benefits have been realised through the futhee @levelopment tools provided within
the GIDE for graphical and hierarchical componeaddual development, as well as support for
deployment, monitoring and steering. Having the Bliyhtly integrated to the CFI, ensures
that the correctness properties are inherited by ovironment.

While the GIDE is under further development, iaisilable as a prototype. As of this release,
there are still a few features that need to be empeinted. Component monitoring is still in
progress, with basic monitoring at the Active Objivel provided via the 1C2D plugin.
Deployment is also provided via the IC2D launchat i3 planned to be extended when
component monitoring is available. Once these fanetities are enabled, we can focus on
implementing the steering features. Future workl Wiocus on extending the dynamic
monitoring of components in a graphical window wiitle ability to zoom into/out of server
farms and geographic regions. The other main dréacaos will be on the use of the tools and
methodology presented for the implementation othier case studies for the use cases
undertaken as part of the GridCOMP project.

References

1. M. Aldinucci et al. Behavioural skeletons in GCMitanomic management of Grid components.
Proc. of PDP Conference, 2008.

2. R. Armstrong et al. Toward a Common Component Aeclire for High-Performance Scientific
Computing. Proc. of HPDC Conference, 1999.

3. A. Basukoski, V. Getov, J. Thiyagalingam, and Siddis. Component-oriented Development
Environment for Grid: Design and Implementation,Niaking Grids Work, Springer, 2008 (to
appear).

4. F. Baude, D. Caromel, L. Henrio, M. Morel. Colleetiinterfaces for Distributed Components.
Proc. of CCGrid Conference, 2007.

5. E. Bruneton, T. Coupaye, J. B. Stefani. The Fra€@amponent Model. Technical report,
ObjectWeb Consortium, February 2004, http://fraotgkectweb.org/.specification/index.html.

6. D. Caromel, L. Henrio. A Theory of Distributed Objg. Springer, 2005.

7. CoreGrid NoE — Institute on Programming Model, Basgatures of the Grid Component Model,
Deliverable Report D.PM.04, 2007.

8. GridCOMP - Effective Components for the Grid, 200p://gridcomp.ercim.org/

9. Eclipse — An Open Development Platformttp://www.eclipse.org/

10. Object Management Group (OMG). The CORBA Compohuodel. Revision V4.0, 2006.

11. The ObjectWeb consortium. ProActive — Programmi@gmposing, Deploying on the Grid.
http://www-sop.inria.fr/

12. O.F. Rana, M. Li, M.S. Shields, D.W. Walker, and Golby. Implementing Problem Solving
Environments for Computational Science. Proc. EardPonference, pp. 1345-1349, 2000.

13. T. Weigold, P. Buhler, J. Thiyagalingam, A. Basuip¥. Getov. Advanced Grid Programming
with Components: A Biometric Identification Caseu®t, Proc. IEEE COMPSAC, IEEE CS
Press, 2008 (to appear).

GridCOMP FP6-034442 page 16 of 26 D.GIDE.O3

14.T. Weigold, T. Kramp, P. Buhler. ePVM — An Embed@aProcess Virtual Machine. Proc. of
IEEE COMPSAC, IEEE CS Press, 2007.

GridCOMP FP6-034442 page 17 of 26 D.GIDE.O3

Appendix A: GIDE: Documentation

Latest version can be found in:
http://perun.hscs.wmin.ac.uk/dis/qgide/wiki/indexpp@BIDE:Documentation

This version release date: 30/05/2008

1 Setting Up

1.1 Dependency Setup

Tested with JDK 6. Some features of the GIDE wigard fact require Java 6. So:
download and install Java 6!

Download Eclipse fronmttp://www.eclipse.org/downloadsWWe have tested with Eclipse for
Java Developers
(http://www.eclipse.org/downloads/download.php?fitechnology/epp/downloads/rel
ease/europal/winter/eclipse-java-europa-winter-wrgp which is also part of the Europa
Edition (http://www.eclipse.org/europg/The instructions that follow apply to this vensi
but should be very similar with all recent versions

Unzip Eclipse to a folder of your choice (e.g. Cliygse)

1. Update Eclipse with the Update Manager using tHeviing instructions:
. SelectHelp -> Softwar e Updates -> Find and Install...
. Select 'Search for new featuresto install" and press next

- Select "New Remote site" and enter name: GMF and:UR
http://download.eclipse.org/modeling/gmf/update/séleases/site.xml
(alternative URL in case you run into problems:
http://download.eclipse.org/modeling/gmf/updat&/sitiropa/site.xml

- Select "New Remote Site" and enter name: Batikl3Rd:
http://download.eclipse.org/modeling/gmf/update/atik/site. xml

- if not already in the list add "New Remote Sitef' fiame: Eclipse Modeling
Framework (EMF) Updates and URL:
http://download.eclipse.org/modeling/emf/updates/

- if not already in the list add "New Remote Sitef' fiame: Model Development Tools
(MDT) Updates and URLhttp://download.eclipse.org/modeling/mdt/updates/

- if not already in the list add "New Remote Sitet' fi@me: The Eclipse Project Updates
and URL:http://update.eclipse.org/updates/3.3

» Check the boxes for the GMF and Batik sites as agefor Eclipse Modeling Framework
(EMF) Updates, Model Development Tools (MDT) Updated The Eclipse Project
Updates.

* Press Finish. In the resulting dialog uncheSkdw the latest ver sion of a feature only"

» Click on the GMF node to expand and check the lamsion of GMF (should be the last
one at the bottom)

GridCOMP FP6-034442 page 18 of 26 D.GIDE.O3

* Press Select Required” a few times until all dependencies have beenlvedoFor this to
work you need to expand each node and then pressct$Required"”, e.g. expand the
Eclipse Modeling Framework (EMF) Updates node amd$ 'Select Required”. Repeat
for all other 3-4 root nodes. If this still doest mmrk you can manually select the
following nodes for updating: see Figure

Note: if you are having problems getting a refeeeticBatik (i.e. if the Batik node is empty)
then start at step 1 again and enter and checkxiree"New Remote Site" for Name:
"Europa Discovery Site" and URb#tp://download.eclipse.org/releases/eurdffas seems to
be some sort of a bug because we will not use tinega Discovery Site for the Update
process at alll However it seems to "activate"dbenload site for Batik somehow. This
might be completely coincidental but it is how ibrked in both Windows and Linux in our
installations!

» Select Next

* Accept the license agreement and press Next

* In the next page select Finish to install the piagb the selected folder (e.g. C:\eclipse)

Emia B
Update sites to visit] |.
Select update sikes ko visit while looking For new features, N |
&, =

Sites to include in search:

& Batik Mew Remote Site. . |
vﬂ Evlip=e Mudeling Framework (EMF) Upidale Sile

O f:l Eclipse Modeling Framework Technologies (EMFT) Updates New Local Site. . |
O ‘fr:l EMF Model Transaction Updates Meve Archived Site, . I
O “levF Update site

\'E Europa Discovery Sike
[0] cMF Europa Builds Edit... |
] @k Sike

O \F[-] Graphical Editing Framework (GEF) Update Site
'J":I Maodel Developmen: Tools Updates

Remave

O <lrylyn Impart sites... |
Ol tlyn Extras
4| The Eclipse Prajact Updates Export sites, ., |

[] web Tools PlatForm (WTFI Lpdates

W Igrore features not applicable o this environment

v adtomatically select mirrors

(7 = Back Mk Finish Carcel

GridCOMP FP6-034442 page 19 of 26 D.GIDE.O3

=.i_|'.'.'¢EMF Model Query OCL Inteqgration 1.1.0.+200706071712-10-7w3118171823825
if,_EI.-"-Er'LﬂF Model Quory 1,1,10+200711281714 1007w 31 1822302828
iai'-j} Eclipse Modeling Framework (EMF) - org.eclipse .emf.codegen.ecore,ui 2.3, 2 w200502051530

«tEclipse Modeling Framewark (EMF) - arg.eclipse.emf .codeqen.ecore 2,32, 4200302051330

{=Eclipse Modeling Framework (EMF) - org.edipse.emf.codegen 2,3, 1. +200802051530

ij'.':;-EcIipse Maodeling Framework, (EMF) - org.eclipse.emf.ecore. editor 2,3, 1. v200802051830

f-fjfiEcIipse Modeling Framework (EMFY Runtime + End-User Tools 2,3,2 v200302051830

'-‘:;i"}Eclipsc Modcling Framewaorls (EMF) Examples 2.3,1 200202051230

;-'.‘i':'LEMF Model Transaction 1.1.2.v200710151610-208a85733G4A3FSHEE

i:.'j,"i-EMF Model Transaction Workbench Integration 1,1.2,v2007112581719-20828:7 33544 3FSHES

x,l: EMF Yalidation Framework 1,1.1.4200705161445-318290A55PS060ETC_

i.;',[,"hGrapHcaI Modeling Framewaork DK 1,03, v20070202-1 200-wTCADBPCFUMOHSY

g Graphical Modeling Framework Examples 1,0.3,v20070202-1200-BawyZhageb-igyY

'-L;E.;ifGrapHcal Maodcling Frarmcwads Runtime 1,0,101,»20030114 2222 7d EVOEWiMWaZ1¥Wou2dCyplm?l
“karaphical Modeling Framewor: Runtime Developer Resources 1,0,101.¥20030114-2222-7d-EVOEY MW aZ 4y
~.,1 Graphical Modeling Framework, Tests 2,0.0,v200801 | 4-2222-7I-EGaEDx2WYbWunaeG1110

&k araphical Modeling Framework Examples PDE 1,1.0,+20070809-0000-2-8Y 87 33G313K 13333

ri.- Third-2arty Components for GMF Runtime Developer Resources 1.0.0,v20070809-0000-7D85-EB7sCR. xR jeel
ﬁf-GrapI'icaI Modeling Framewor Documentation 1,1.0 v20070309-0000-10-7431 19122503333
:-{.Jzi-GrapHcal Madcling Framowods (Experimental) Tesks 1.0,0,+20028011-1 2222 3 S5733I355A17777
'-ﬂ:iGraph'caI Modeling Framewor SDK Developer Resolrces 2.0, 1,v20070921-0000

u‘_,_i' GMF Expetimental 30K 1,1.0420080225-0200-615ZBcMA L ArFhSCCCC

LTk Graphical Modeling Framework SDE 2.0, 1,%2007092 : -0000-7F79CSEMnY Dy ri-40M 7w 1 pliw

={F Third-2arty Components For GMF Runtime 1.0.0,%20070309-0000-7G380-E0-20LMWCY xojla0L

a.,,~ Ohjec: Constraint Language (OCL) 2,0 Compatibility 1.1, 1,4200709121956-1007w31181 _232_A7
*;-J"‘,i-Objcc: Constraink Language tOCL) 2.0°1,1,2,+2007 0 1262212 321 00A55ME-HSI0HDE

iair'.i-EcIipse Project SDK 3.3.3.r3%_r20080129-7M7I7LB-u3aphEWEao3 MmivfGxnwo

ﬁ.‘.:t'E:rEcIipse Flug-in Development Environment 3,3.3,r33x_ 200801 29-FHN7MSDOWIA_GoJsEFKEL

1.2 Installation

Downloadthe GIDE package

Unzip it in a folder of your choice (e.g. C:\gide)

Edit eclipse.ini from the eclipse root folder anddaafter -vmargs in a separate line:
DGIDE_HOME=C:\GIDE or whatever your GIDE root folds

-showsplash

org.eclipse.platform

--launcher. XXMaxPermSize 256M
-vmargs

- DA DE_HOME=C: \ gi de
-Dosgi.requiredJavaVersion=1.5
-Xms40m

-Xmx256m

Remove all previous GIDE plugins from the eclipsegms directory.
Copy the GIDE plugins in the eclipse/plugins dicegteclipse.
Start Eclipse

GridCOMP FP6-034442 page 20 of 26 D.GIDE.O3

1.3 Directory and File Structure

Inside both versions there are the following fodder

- doc: documentation files

- dtd: the default ProActive DTD file

- examples. example ADL and sample projects

- libs: libraries that are needed for GIDE to functioogarly

- log: folder that contains the log files for each sassi

- plugins: the folder that contains the GIDE Eclipse plugins

- repository: the root folder for the GIDE component repository
- temp: a temp folder used for various purposes for tHeEs

2 Usage

21 Starting Up

With the latest plugin version there are no expktartup procedures as all GIDE tools and
perspectives are readily available through Ecligsest follow the instructions under "Using
GIDE Tools and Perspectives".

2.2 Using GIDE Tools and Per spectives

There are a number of available tools specific BDE; ranging from Composition diagrams,
import and export facilities, resource monitorimglanore. This is only a quick start guide for
the most common functionality. For a detailed digstep guide have a look at thetorials
pages.

» To create a new composition, you must already lagweject in your workspace and then
go toFile -> New -> Example -> Gidecomposition Diagram.

» To change the appearance of the composition diggrght click anywhere on the empty
canvas (not inside any components) and s&eatv Properties View -> Rulersand
Grid to set the Grid and Rulers appearance or s&lemt Properties View ->
Appearance to set the font and colors.

» To show the properties of the composition itemsngonents, interfaces, bindings) select
the component you want and its attributes willdeded in the Properties View Panel. If
the latter is not currently visible or in focugyht click on the composition item of interest
and selecshow Properties View

» To import an existing ADL into a new composition tgd=ile -> Import -> Other ->
Import ADL and follow the Wizard instructions

» To export a composition diagram into one or mord_Ailes go toFile -> Export ->
Other -> Export to ADL and follow the Wizard instructions

* To view the GIDE log for the current session gdAindow -> Show View -> Other ->
GIDE -> GIDE Log View

* To view the GIDE Component Repository gowindow -> Show View -> Other ->
GIDE -> Repository View

* To import a component from the repository you malstady have a composition diagram
open and in focus. Then, select the component yant Wwom the repository view, right
click and select 'Import’. Manual refresh mightrbguired on the composition canvas in
order to see the bindings correctly.

GridCOMP FP6-034442 page 21 of 26 D.GIDE.O3

» To generate source files for primitive componesgsyer interfaces, or attribute
interfaces, go to the relevant composition iteghtriclick and go to the GIDE context
menu to see all available options

2.3 Composition

2.3.1 Importing ADL files

2311 Genera

Current requirements for importing: if the top ledefinition name is package-qualified then
the file must be located in a directory structunattreflects the specified package. Any
referenced files must be either in the same dirgctiy in their respective directory hierarchy
(if on their own they are package qualified) inheit the same root directory or in another
directory that is accessible through the classpath.

Any referenced DTDs must be available through bttfile URLs, as absolute filenames, or
as relative filenames that are available through dlasspath. It is the responsibility of the
developer and not the GIDE, to provide a DTD in ABL files that is accessible. However,
the GIDE will resort to a default location in thestallation directory where it looks for the
default DTD (for the GIDE purposes this is the Petive DTD).

When adding to the repository only the imported ponent is added -not its internal
components independently. This is on purpose irrotd avoid cluttering and keep things
simple. If the user wants to add some of the irlecomponents separately he can do so by
importing those separately.

When importing a component and an identical nameady exists in the repository the user
will have the option to provide an alternative namnesuch case, and after any potential name
conflicts have been identified and alerted the uberrepository and the imported component
have the new name. However, the locally copied Ails (if the user opted to copy locally)
will be the *original* ADL files!

The option to add to the toolbox an imported congmbmas not been implemented yet.

2.3.1.2 Wizard Options

Select File -> Import -> Other -> Import an ADL.

In the first page, use the "Browse" button or typéhe location of the top level ADL file you

wish to import. All dependencies will be resolvadamatically.

In page 2 (see Figure) there are a number of aptielating to the import:

» Copy ADL file(s) to target folder: check this toveathe ADL files copied to the target
import folder in a hierarchical directory structdolowing the ADL names, e.g. a
component with name "org.gridcomp.examples.Some©omt” will be copied to a
folder \org\gridcomp\examples inside the imporg&rfolder selected.

* Add component to repository: check this to have the top level (and only thelavel!)
component of the supplied ADL file added in the GIEpository for future usage. There
will be only one component added to the reposittirg,top level one with all its potential
subcomponents, but there will be no recursive auditf the internal subcomponents as
separate repository entries. You can leave thisopinchecked if you are testing some
ADLs or you are currently exploring the GIDE.

* Add component to thetoolbox: obsolete now, will be removed in future versions.

» Descriptions: you can optionally provide a human readable digison as well as other

GridCOMP FP6-034442 page 22 of 26 D.GIDE.O3

notes for the imported component. This option iy @vailable if the component is to be
added to the repository.

& ADL Import Wizard i 1o =i

Import ADL Step 2: Repository and Storage Settings

Select repository and toolbox options For the imported component

I Copy DL File(s) to target folder?
I Add component o repositary?
[™ ladd comiponentba thetonlboe ot yet avalsbie iy
Provide a human readable description of this component {optional)

Enter any other notes significant For this component (optional)

(7} = Back Mexk = | Firish I Zancel

2.3.2 Exporting to ADL files

2.3.2.1 Genera

General Naming Requirements: top level canvas MU&Je a name. All components and
interfaces must also have names.

Component/definition names may be package qualiftedhe composition. The package
dictates the directory hierarchy where the resgliDL will be placed. If a

sub component is not package qualified, it is agglta inherit the package from its parent. If
it is package qualified, it will be placed in thpotentially different directory hierarchy,
nevertheless in the same export root that theagdects

When exporting to an ADL, the potentially differgrdckages of a component will only be
significant when splitting the files. Otherwiseniight not even be possible to determine the
difference.

2.3.2.2 Wizard Options

Select File -> Export -> Other -> Export to ADL€f(k).

Use the "Browse" button or type in the locatiortle# source GIDE composition diagram file
you wish to export.

Use the "Browse" button or type in the target lmoator the exported ADL file(s).

. Export to multiplefiles. check this option to export the composition tdtiple ADL
files, one for each (sub) component. The files balorganized in a hierarchy based on their
names: package qualified names will go into thevedent directory hierarchy inside the
target folder, e.g. a component named org.gridcergmples.SomeComponent will go inside
a folder org/gridcomp/examples/ inside the targétdr selected. Components with simple
(i.e. non package qualified) names, inherit thaiepts packages. Note: if this option is
unchecked, only the top level package (if one sxisill be used to determine the directory

GridCOMP FP6-034442 page 23 of 26 D.GIDE.O3

structure.

. Include GIDE diagram: select this option to export the GIDE diagrare &k well.

This will preserve the drawing, shapes, sizesngements etc. so that if the exported ADL(S)
are imported again (in the same or another GID&)xihgram will be preserved. This is
highly recommended.

Embed diagram in top level ADL.: if the GIDE diagrasrto be included, it can be
done in two ways: through a reference from theléopl ADL to an external diagram file
(which will have to be moved along the ADL(s)) braugh embedding the whole GIDE
diagram in the top level ADL in the form of a spga@omment recognizable from the GIDE
parsers. The latter option has the benefit of equiring a separate file to be maintained but it
"litters" the top level ADL. This option is only aWable if the "Include GIDE diagram”
option has been selected.

e oportwizard i

Export to ADL Step 1: Source and Target options

Sclock cxport options For tre sclecked composition

Select azarget Folder: | Cioemp Browse. ..

Seleck the source File: | D\ Developmentigide)examplesisample gide projectkstsampleldefault, gide: Browse... |

[T Expertio rultiples Filas?
v Include GIDE Diagram fwil preserve drawing coordinates, shapes, and sizes -recommended)?

I Embed diagram in top DL (F nott will ol be referenced From the ADL and will be saved in the same “older)?

(2) < Back: I Mexk = I Siraish Cancel

. Gener ate Java Skeleton Code: the user has the option to generate Java skdi@ten
for the specified implementation and interface s#ss(if any were specified in the
composition). All subsequent options are only aldé when this option has been selected.
. Target folder: optionally create the Java files in a differesitier than the ADL target
folder specified in the previous step.

. Java Codebase: the GIDE will make an attempt to discover exigtolasses in the
current classpath in order to generate skeletohadstfor classes implementing already
existing interfaces. However, the user can alsaigpan extra implementation codebase
folder where existing classes not available indineent classpath can be found and loaded. If
none of the specified classes can be found thegavarator will merely create the directory
and file hierarchy and provide the class headeslie.g.

package org.gide.composition.somePackage;

/**

* Header JavaDoc

*/

public class SomeClass implements org.gide.composit ion.Somelnterface {

}

GridCOMP FP6-034442 page 24 of 26 D.GIDE.O3

E rie bportwizard BLTEY

Export to ADL Step 2: Java Generation Options

Select Java Generation opbons

¥ Gererate Java Skeleton source codes?

Select the target Folder for the Java files (leave empty to place themrin the same Foldsr as the ADL)

Target Flder;s | Bt

Select the codebase For 2xisting classes to be loaded {_Ieave empty o use only existing classpath)

Java Codebase: | Erowse, .. I

v Emit TODO: commments in the source Files?

Zlass Marne I Camposition Tkem I Twpe | Exisks? I
org.gridcomp. sampe, Reader Rzader class no
arg.gridcomp. sampe, Wriker Writer class no
org.gridcomp.sampe, DS0Program | DIOProgram class o
arg.gridcomp. sampe. CallPl5gl ZallPIsgl class no
org.gridcomp. sampe, Compuke Campute class o
org.gridcomp: samp e, intf .Read D3CProgran. read interface no
org.gridcomp. sampe. intf, Write Compute.write, Mirites write inkerface no
org.gridcomp, sampe.intf Execute | Compute, execute interface no
org.gridcomp. sampe.intf, Skart Campute, start, CallPlaglstart | interface | no

{2 < Back, I Mest = | Firish I Carcel

However, if one of the specified interfaces canftwend (either in the classpath or the
specified codebase) any implementation source ifilggementing this interface will be filled
with sample methods, as in the following examplécWwlassumes that one of the composition
components was implementing the org.xml.sax.Enggdver

package org.gide.composition.somePackage;

import org.xml.sax.InputSource;

/**

* Header JavaDoc

*/

public class SomeClass implements org.xml.sax.Entit yResolver {

/**

*

* string_1 String
* string_2 String

*/

public InputSource resolveEntity (String string_1, String string_2){
/**
* @todo Fill in this method's logic code!
*/

GridCOMP FP6-034442 page 25 of 26 D.GIDE.O3

return null;

. Emit TODO comments. check this option to have TODO Javadoc comment
generated for each class and each method (if artifgiclass.
. Names Table: this table shows which implementation class nawe® specified in

the composition diagram and the respective compastems. It further shows which of
these classes were found in the classpath or ispheified codebase. The user can select
which of these to be automatically generated.

GridCOMP FP6-034442 page 26 of 26 D.GIDE.O3

