Tnformation Society

lechnologies

CEWdCxJNﬂD'

Effactive Componants for the Srids

Project no. FP6-034442

GridCOMP

Grid programming with COM Ponents : an advanced component platform
for an effectiveinvisiblegrid

STREP Project

Advanced Grid Technologies, Systems and Services

D.GIDE.O4 — Grid IDE Tuned Prototype and Final Dmeuntation
(Manual and Detailed Architectural Design)

Due date of deliverable: 30 November 2008
Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this deble: UoW

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination L evel
P PUBLIC PU

Keyword List: Integrated Development Environmendniponent Composition, Deployment,
Component Monitoring and Steering
Responsible Partner: Vladimir Getov, UoW

GridCOMP e

§ ;,L
MODIFICATION CONTROL
Version Date Status Modifications made by
0 DD-MM-YYYY Template | Patricia Ho-Hune
1 10-12-2008 Draft Artie Basukoski
2 12-12-2008 Draft Stavros Isaiadis
3 15-12-2008 Draft Alessandro Basso
4 18-12-2008 Draft Vladimir Getov
5 6-1-2009 Draft Stavros Isaiadis
6 8-1-2008 Draft Artie Basukoski
7 10-1-2008 Final Vladimir Getov

Deliver able manager
Vladimir Getov, UoW

List of Contributors
Stavros, Isaiadis, UoW

Artie, Basukoski, UoW
Alessandro, Basso, UoW

List of Evaluators
Gaston Freire Amoedo, GridSystems

Marco Aldinucci, UNIPI

Summary

Component-oriented development is a software desigthodology which
enables users to build large scale Grid systeniatbgrating independent and
possibly distributed software modules (componentgg well defined
interfaces, into higher level components. The miagmefit from such an
approach is improved productivity, firstly, by afagiting away network level
functionalities, thus reducing the technical densarsecondly, by combining
components into higher level components, compolileraries can be built up
incrementally and made available for reuse. Thesldgwnent platform, which
is tightly integrated with Eclipse software framewo was designed to
empower the developer with all the tools necesgarycompose, deploy,
monitor, and steer Grid applications. In the fpatt of this report, we present
our design for the final tuned version of an inggd development
environment for Grids (GIDE) to support componenéted development,
deployment, monitoring, and steering of large-sdaked applications. The
second part consists of a manual for the instalaind application of the
GIDE.

GridCOMP FP6-034442 page 2 of 35 D.GIDE.O4

— X —w:'{’\ \/—/7\}‘3
Grigoompe (¢

Table of Content

1 DETAILED ARCHITECTURAL DESIGN......outiiiiiiiiiiiieiee e 4
O 1= 1 =0 V=5 T 4
24 9 S [N PSP 5
1.3COMPOSITION PERSPECTIVE ...cvtuittttieettseeetnsesetunsseesnsaressssesssesessasesnaseennnarernnaaens 6

1.3.1 Component REPOSITOTY VIEWcccceeeeeiiiiiiiieiieie e 7
1.3.2 PropertiesS VIBWccooiiiiieeecie et 8
1.3.3 GIDE LOQ VIBW ..ttt e e e e e e e e aeeeeas 9
G T A T] o) SO PPPORPSPPPPIN 9
1.3.5 Validation .ovveeeiiiii e 11
1. ADEPLOYMENT PERSPECTIVE ..icttuiitttietttie ittt teeettsseestsesesnsesesnseesssssesesnsesesnseessnsnenes 11
1.4.1 DeSCriptor REPOSITOIY .ovvviviiiiiiiiiii e e et e e 12
1.5MONITORING AND STEERING PERSPECTIVE ...uuiiiitiiiiitiieieiieseitseeeetneeeninseesnneasennnaees 14
1.5 1 MONITOMNG VIBW ...t e e e e e e e e e e s 15
1.5.2 Live MONItOriNg CAnVEAScccoviiiiiiiiiiiiiiieeie it a e 16
1.5.3 SEEEIING oottt r e e e e e e e e e e e e e eas 17
1.5.4 ReSOUIrCe MONITOT VIEWiiiiiiiiii e et 18

2 IMANUAL ettt e e e e e e e e e e e e ettt ttaaaaaaaaaaaaaas 19

2. LSETTING UP oottt e e et e e e e e e e e e e e 19
2.1.1 EClIPSE ProjeCt VEISION ..uuuiiiei ettt e 19
2.1.2 Behavioural Skeletons Rules file EAitOrccoovviiiiiiiiiiiiiiieeeee, 19
2.1.3 1C2D plugins for GIDE MONItOIINGccuvvuuiiiiiieieeeeeeeieeeeeeere e 19
2.1.4 INSTAlAtiON ..o aes 19
2.1.5 Directory and File StruCtUre.........coooiiiiiiiiiiiiie e 20

W = <[U 17 1 =S 21
2.2 1 StArtiNg UP oo 21
2.2.2 Using GIDE Tools and PerspectivVescccceeveeieeeiiiiiiiiiiieie e 21

PG 1 @0 1= T] I 22
2.3.1 IMPOrting ADL fil@S ..o 22
2.3.2 EXPOrting t0 ADL fIl@Suuiiiiiiiiiiiiiieeeeeee e 24
2.3.3 CoOmMPONENt REPOSITONY ..eoviiiiiiiiiiiiieeeee e 27
2.3.4 PrOPEITIES ittt e et e e e e e e e e aas 28

A D = =0) V] =1 I 30
2.4.1 DeSCriptor REPOSITOIY wuvuuuiiiiii i e et 30

2.5MONITORING AND STEERING ..tuuitttuetttnesettneesatnsesetnesesunsesesnsesessseeesnseeeesnseeeennnanes 31
2.5.1 Architecture MONItOrING ..ccooeee e e e 32
I A (=TT o o o PP 32
2.5.3 RESOUICE MONITOL ..ot e e e e ee e 33

P)1, o = I I N =0 T 33
2.6.1 GIDE LOQ VIBWET ...ttt ettt et e e e e e e e e e e e e eas 33
BIBLIOGRAPHY ..ttt e e e bbbt e e e e e e e aeeaeeaeaeas 35

GridCOMP FP6-034442 page 3 of 35 D.GIDE.O4

— X —w:'{’\ \/—/7\}‘3
Grigoompe (¢

1 Detailed Architectural Design

1.1 Objectives

The role of WP4 evolves around the design and implgation of a grid IDE for the rapid
development, deployment, monitoring and steerimg3iod systems, as shown in the
following diagram.

Grid Integrated Development

Application Program / Compose Deploy Monitor &
(Algorithm) GCM Steer
{ J Obtain
Soluti
on

Metadata Description incl. ADL, etc.

Figure 1: Component-Based Program Development Pipeline

This Grid Interactive Development Environment (GIDEill support the assembly of Grid
components from existing off-the-shelf componeiite GIDE is being developed as a series
of Eclipse plug-ins [12], and is based on the G@dmponent Model (GCM) [13]
specification for the representation of compone@tSM is an extension of a widely adopted
component model, Fractal [2], which allows the &iehical composition of component-based
applications, i.e. components can comprise of @mptub-components. The GCM
implementation used is the one developed in WP2 @nodided through the ProActive
middleware.[9][13]

Support from GIDE comes at four distinct stageshat lifecycle of a component-based
application: development, deployment, monitoringg ateering. Specific objectives for each
of these stages follow.

At development, the main goal is to significantly reduce develemintimes by providing
such tools as component repositories for easy eeamsl sharing of components; intuitive
visual representation of application architectuaatomatic source code generation; legacy
code wrappers; and import/export from/to ArchiteetDefinition Language (ADL) files —that
standard means for describing application architecin Fractal/GCM. Following the early
prototype implementation and our initial experies)cthe objectives set for the 2007-2008
period included the finalization of the Eclipse mbthat would provide the foundations of

GridCOMP FP6-034442 page 4 of 35 D.GIDE.O4

AR,

GridCOMP G
GIDE, the finalization of the development perspegtiand further development support with
a series of helpful tools.

For deployment, the main objective of UoW was the verification @drrect integration
between the IC2D[14] plug-in and the GIDE (for applion deployment) and the need for
potential extensions.

For monitoring and steering (during execution) the objectives of UoW were toduce a

prototype of the monitoring perspective, and to tbet roadmap for finalizing monitoring
support. Partner TU’s objectives were to providexiended prototype of a Node Resource
Monitor.

Regardingnode resource monitoring, at execution, the application programmer haseo b
able to visualize his/her components, the host&/loich they execute, and their status. As a
complementary feature, one can also take advantigeomputational mobility and
components migration in order to dynamically andépipically change the location of
execution of components, and re-deploy them orvaset of machines. To achieve this, the
monitoring of the resource information of the maehis needed plus to the component
behaviour monitoring infrastructure. The objectieé this Node Resource Monitor is
monitoring the resource consumption informatiomhef machine.

Apart from these specific requirements, it was dedithat the packaging of the GIDE must
come in the form of regular Eclipse plug-ins thae &asy to install and maintain by
developers. Testing was carried out through apidicdo use cases.[4][10][11]

1.2 Design

The design of the GIDE was based on fulfilling #le requirements for WP4 from the
Description of Work Document. An analysis of theu#ements led to the high level block
diagram as depicted in Figure 2. The aim of the EIB to abstract the middleware and
platform dependent features as much as possibbitig so we reduce the learning curve as
well as the development and debugging effort, whazsin often be prohibitive when
developing in distributed and grid environmentse THIDE was designed with two different
user groups in mind: application developers and dantre operators[5]. For the application
developers we provide support for developing throgoaphical composition, but ensure that
the developer always has access to the middlewaretibnalities and source-code based
development if required. We recognise that acae$swer level functionalities is sometimes
necessary for debugging and improving program iefiwy. It also helps to avoid the cases
where applications become bulky and inefficiendefzelopment is forced to adhere to using
only pre-built components. Additional tools arecafecessary to enable easy deployment and
monitoring of both component status and resourcageisto facilitate the development
process.

GridCOMP FP6-034442 page 5 of 35 D.GIDE.O4

0-APPLICATIONS (USE CASES) WP5

PN PN
USES| | (Requirements) API
Eclipse < 4L
Framework 1-Development IDE 2-Data Centre IDE
1.2-Composition 1.3-Deployment 2.1-Monitoring 2.2-Steering
\
GIDE
Toolset
1.33-
1.2.1-ADL 123- 132 L 2.11- 2.1.2-Node
— 1R§:d:r2|r_ ey 1.3.T10-;est Debug Euenalgzi:z:t Gerraraie || e 2,2,1é1-Stan/ 224.2Install
Verifier Generator Tool pToon Monitor Monitor top Remove

Figure 2: GIDE Block Diagram

Such monitoring functionalities are also applicaltde a data centre environment. By
repackaging the GIDE functionality, a simplifiecbtdor installing, monitoring and mapping
necessary component code to available resourcesbeaprovided for a Data Centre
environment. However, the framework [7] must previddditional support for steering to
enable the data centre operators to install, rereowé upgrade to new versions of component
code if required. Data centres have high turnoaées: Hence there is a need for a simple
design that would facilitate fast handovers, andbémn operators to assist newcomers in
coming to terms with the application quickly. That® Centre version will be deployed once
all the functionality of the development has beealfsed.

The GIDE is built on the Eclipse framework leveragthe facilities provided by the Eclipse
Modelling Framework (EMF) and the Graphical ModajliFramework (GMF). A detailed
discussion of these frameworks is outside the sobpkis document, but excellent resource
material is available fronittp://www.eclipse.org/modeling/gmfior the interested reader.
Choosing Eclipse guards from obsolescence and emabéamless customisation and
extension through its plug-in architecture. It ieading Java development environment, and
allows easy integration with many libraries, indhgl the ProActive middleware libraries
being used for the CFI. In addition, it providezess to countless other plug-ins available
online from other developers. The development emvirent has been distributed as a set of
plug-ins. The GIDE provides its main functionalstiéor composition, deployment, and
monitoring as different so-called perspectives Ealipse specific method for grouping a set
of functionalities as a graphical view. For theadaentre operators, we intend to deliver a
standalone application as a Rich Client Platfori@PRapplication. [8]

The following is a detailed description of the ftionalities within each of the main
perspectives, editors and views of the GIDE.

1.3 Composition Perspective

The composition perspective represents the partevbevelopers will spend most of their
time. It consists of the main composition editorcallection of supporting views, and a
variety of tools to assist in the composition oftdbuted applications, importing/exporting
from/to ADL files, component source code managerrlegacy code support[6], behavioural

GridCOMP FP6-034442 page 6 of 35 D.GIDE.O4

FTaIN
GridCamE

skeletons support, sharing and reusing of existorgponents, and various other development
related functions.

allll =
T TR
& A - WK - I ¥ =

D = LR d s pm s B

f
1§ 500 i, PRV Ly | - v =Pt o
= | |yt =]

1.3.1 Component Repository View

f g GIDE Repository View - ™ GIDE Log View | | Properties | (24 F‘rul:u]ems\} £l consale |
“Title | Marme | Implementation Class |
CompID com.ibrm. bis. CompID corm.ibr. bis. CompID:
ComplCMatcher o, ibm. bis, CompIDratcher ; |
DS com, atosarigin. usercase. dso, D50 ~ Tmport to Diagram
Fook org.gridcomp. usecases.wingdesign. ... Open for Editing (Standalones)
¥ Delete
1 Shaw ADL
Ty Refresh
L. ! Export Components =
| =%

The component repository holds stored componemtsgalith their associated ADL files,
source code files, semantic and diagram files. répesitory is stored in simple XML format

in the GIDE distribution root folder and allows thme-use, manipulation, and sharing of
components. In more detail, the user can storestirgg composition (whether it is a simple
primitive component, a composite component, or ewerwhole application) into the
repository for future usage. Such repository congpds can then be imported into other
compositions. This allows the user to develop apliegtion in convenient parts and then
assemble it hierarchically from existing piecesor& component can be manipulated in a
variety of ways: apart from the typical introspesdit, and delete, the user can also associate

GridCOMP FP6-034442 page 7 of 35 D.GIDE.O4

o

source code files with the stored components, #thg. implementation of a primitive
component or the source code for an attribute obletr Finally, an important feature of the
repository is the ability to export and import eailions of components into a single archive
for distribution and sharing between multiple GlDiEtances. Each component in the archive

will be stored complete with its ADL descriptiomusce code files, semantic model, and
diagram model.

1.3.2 Properties View

E GIDE Repository: igw |Ef| GIDE Log Wew | =5 Er-,gp&_:r_tlg{ ; I___"_ Problems | El Consulei

O Component Type Server

Propert:

Core

1] = _oreProperties
Deployment | Impl Class = org.q
Atkributes | Logger =
Appearance Mame = Serve

Fl Deplovment Propertiss
Exported Virtual Modes
Wirtual Mode

The properties view displays the properties of therently selected composition item,

including its GCM properties, appearance propertaasd various other project specific
properties.

Among the GCM properties available for components its name, implementation class,
logger name, virtual node, exported virtual nodasd attributes, as per the GCM
specification. A number of miscellaneous propertiessh as author and comment, as well as
appearance properties such as font size and typedee also available.

Similarly, interfaces have the following GCM propes: cardinality, contingency,
implementation class, name, and the read-onlypadperty; and a number of miscellaneous
other properties such as an optional comment,@&nd i

GridCOMP FP6-034442 page 8 of 35 D.GIDE.O4

a0

1.3.3 GIDE Log View

Qf GIDE Repository Yiew :ﬁ'.l GIDE Log View : Properties | {% Problems [El console |
| Mo | Level I Message | Time
i INFO Monitaring Server initialized successfully Z003/09/09 20:38:17
io FIMNE Created new RMI regiskry at pork: S678 Z003/09/09 20:38:17

The GIDE Log view is available in all GIDE persgees, although composition is arguably
the one where it is the most useful. It providesimaependent view dedicated solely to
reporting informational, debug, and error messagdise GIDE user.

The GIDE Log view provides a configuration facility filter reported messages to the user
based on their type or severity and the numberigplayed items, while it also supports
exporting and importing log files, a function uddfuthe case of bug reports.

1.3.4 Editor

The editor is where all the graphical component position takes place. It consists of a
composition canvas and a palette of available itefhe user can drag and drop standard
items from the palette to the canvas (components iaterfaces) and use the interface
connection tool in order to bind client to serveterfaces and thus create the required
application architecture.

Importing existing components into the diagram tiglo the repository view is another
helpful option: the user can develop his applicatio pieces (for clarity and ease of
maintenance) and can then merge them all togetheastemble the final application
composition.

The editor makes available a number of tools thnoilng context menu, namely support for
adding and editing legacy component wrappers artweural skeletons and automatic
generation and manipulation of component sourcee ok primitive components, server
interfaces, and attribute controllers).

Legacy component wrappers enable the developerntorporate legacy code in the
component-based application. The wrapper is simaptgmplate where the developer sets a
number of required legacy parameters, includingphth to the executable, any command
line arguments necessary and the input file peraniss For more details on legacy code
wrapping please refer to D.CFI.04.

Support for behavioural skeletons follows the sdogic as for the legacy code wrappers. At
design level skeletons are provided in the forrdifferent design templates depending on the

GridCOMP FP6-034442 page 9 of 35 D.GIDE.O4

U

X ety

GridCOMP ¢ 55
Erfective Componsnsa for the Grids QI&L/

type of the skeleton, and the developer then spscihe skeleton parameters. At the lower
level each skeleton is merely a hierarchy of irgpehdent ADL templates, associated with a
number of standard source code files.

Currently two behavioural skeletons are supportieel:Data-Parallel and the Farm skeletons.
Nevertheless, the logic behind skeletons is vemjlar and other types of skeletons can be
easily supported in the future.[1]

The final major tool available through the editeithie automatic source code generation and
manipulation. For each component in the compostiorumber of source code files might be
required before moving to the next phase of depkywm For example, for primitive
components, the implementation class is requiretilewfor components with server
interfaces the interface files are needed. The GibD#e generation tools attempts to abstract
away from the developer the lower level source irequents of the GCM model (interface
bindings, attribute controllers etc.) by providitige necessary code automatically. For
instance, in the source file of a component thataias client interfaces, a binding controller
interface must be implemented that enables thespéaction and acquisition of each of the
client interfaces. The following listing provides simple example of a component
“Clienlmpl” with a single client interface, “senat of type
org.gridcomp.gide.component.examples.Service (all generated helping comments have
been removed for clarity.

i mport org.objectweb.fractal.api.NoSuchInterfaceException ;

i mport org.objectweb.fractal.api.control.lllegalBindingEx ception;

i mport org.objectweb.fractal.api.control.lllegalLifeCycle Exception;

public cl ass Clientimpl i mpl ement s

org.objectweb.fractal.api.control.BindingController {
privat e org.gridcomp.gide.component.examples.Service service ;
private static final java.lang.String SERVI CE_CLI ENT_I NTF = ‘"service" ;
publ i ¢ voi d bindFc(String myClientltf, Object serverltf) t hr ows

NoSuchlinterfaceException, lllegalBindingException,
lllegalLifeCycleException {
i f (myClientltf.equals(SERVI CE_CLI ENT_I NTF)) {
service = (org.gridcomp.gide.component.examples.Service)

serverltf;
}
}
publ i ¢ String]] listFc() {
return new String[] { SERVI CE_CLI ENT_I NTF };
}
publ i ¢ Object lookupFc(String itf) t hr ows NoSuchlinterfaceException {
i f (itf.equals(SERVI CE_CLI ENT_I NTF)) {
return service ;
}
return null;
}
publi ¢ voi d unbindFc(String itf) t hr ows NoSuchinterfaceException,
lllegalBindingException, lllegalLifeCycleException
i f (itf.equals(SERVI CE_CLI ENT_I NTF)) {
service = null;
}
}

GridCOMP FP6-034442 page 10 of 35 D.GIDE.O4

o

The user can choose to have the complete impletimntsource file generated, or just a
relevant sub-part that he can then integrate texasting source file. The following figure
illustrates these options.

GIDE: Beskes
GIDE: Legacy
Open Source File: org.gridocomp, gide, component. examples. ClientImpl2

GIDE: Source Generation

BIDE: Monitoring

Generate Full Saurce: org. gridcomp. gide. companent. examples. ClientImpl2

| Show Properties Yiew Genetate Akt Cortroller 5o

Fropetties (50 o Tnterface Salrce

Generate Binding Controllar Source For arg.aridcomp.gide. compaonent. examples ClisntImpl2

Remaye from Context e e] s B

The user can always open and edit any associatedeséiles for a component through the
editor context menu as shown above.

1.3.5 Validation

The GMF Framework provides facilities for runtimalidation during the development
process. As component diagrams are developed, afs@&CL constraints will stop the
developer from creating invalid diagrams. One exXanmgp to not allow self loops, i.e. an
interface can not connect to itself.

& 1

More constraints, such as limiting the connectidnclent to server and server to client
interfaces, as well as limiting connections to awel of nesting, are being implemented.

1.4 Deployment Perspective

The deployment perspective provides support for daployment of an application using
independent architecture and application desclptdkrchitecture descriptors provide
information about the available infrastructure rgses while application descriptors clarify
the requirements of an application.

GridCOMP FP6-034442 page 11 of 35 D.GIDE.O4

FTaIN
GridCamE

i
B
I
ig
iR
¥
i

B chia 24 < eyl S

This perspective contains only one related viewg thescriptor repository view, which
provides the bulk of the functionality currentlya@iable to support deployment.

1.4.1 Descriptor Repository

ko

Application Descriptor Filename Descripkion

deployment.xml

“ Edit

E’ izenetate Default Deplover
-.'i:_l Copy and Spen

4 Edit Description

¥ Delete

[ﬁi Impork Application Descriptor

The descriptor repository holds two collections fiés: architecture descriptors and
application descriptors (as per the new GCM Depleytriramework). It allows the addition
of new, and manipulation of existing descriptorshilev it also provides an automatic
deployment class generator. The default deploymlkasts generated can be thought of as a
template for deployment where the user can filhis application-specific parameters. A
simple GCM sample deployment class as generateledsIDE can be seen in the following
listing.

public class Sample {

private static GCMApplication gcma= null;

GridCOMP FP6-034442 page 12 of 35 D.GIDE.O4

private static File desc = null;

private static Node[] nodes = nul | ;

private static HashMap<String, Object> context = null;
private static Factory factory = null;

public static voi d main(String args[]){

try{

/**

* edit (if necessary) the deployment descriptor location

*/
gcma= null;
context = null;
nodes = nul | ;
desc = newFile("GCMD_app.xml");

depl oy();
//@todo: execution code
/lundeploy();

} cat ch (Exception ex){
ex.printStackTrace();

}
}
public static void deploy(){
try{
bool ean deploying = fal se;
if (gcma== null){
gcma = PAGCMDeployment.
| oadAppl i cati onDescri pt or (desc.toURI().toURL());
gcnma.startDeployment();
gcma.waitReady();
/**
* edit the virtual node name
*/
GCMVirtualNode vn = gcna.getVirtualNode("<default node>");
nodes = vn.getCurrentNodes().toArray(new Node[] {});
(cont ext = newHashMap<String, Object>(1)).
put("deployment-descriptor" , gcm);
deploying = true;
}
i f (deploying) {
fact ory = FactoryFactory.
get Fact or y(FactoryFactory. FRACTAL_BACKEND);
/**
* edit (if necessary) the location and name
* of the root component ADL description
*/
Component root = (Component) factory.
newComponent("<root ADL location>" , context);
GridCOMP FP6-034442 page 13 of 35 D.GIDE.O4

x iy

/**

* uncomment if you want to start
* the root component at this point

*/

/[((LifeCycleController)root.

getFcinterface("lifecycle-c ontroller")).startFc();
/**
* uncomment and edit the name of the
* initiating interface and (if necessary) the related
* interface method

*/
/l((<initiating interface>)root.
getFclinterface("<initiating in terface>")).main(null);

} cat ch (Exception ex){
ex.printStackTrace();

}
}
public static void undeploy() t hr ows Exception {
if (gecma!l= null){
Registry. i nst ance().clear();
gcma.kill();
}
}
}

1.5 Monitoring and Steering Perspective

The Monitoring and Steering Perspective is usednduruntime to dynamically monitor a
running application, and allow the user to perf@some manual runtime reconfiguration
(steering) -aside of the autonomic adaptationdH&l might take place during runtime. Live
monitoring and steering is performed with the uka tive monitoring canvas very similar to
the composition canvas (all shapes are equivalent).

GridCOMP FP6-034442 page 14 of 35 D.GIDE.O4

M

54 (=3
File Edit Diagram Mawigate Search Project Run Window Help
|- 1% e T o GIDE Deploy...
| [7hama =lls = u T | | w0 - B v [S1e # - [[100% vI %3 GIDE Composi...,
| 2 e = 1] GIDE Moriitor. ..
1l Live Manitoring view 5N _JTJ Examplez java } Ml example. gidecomposition_diagram })] Example: java] = O |/ 88 GIDE Legerd 22 \ Tom
d [~ Compasition Colars

Defaultitiarmal

Main
Legacy component

Client
Behawioural Skeleton

il

~Manitaring Colors

1

Starked
Stopped

Serving request

N

“Waiting for request
'Walting by necessity

Migrating

b

=0

1|

-] ¢ I W roperties | = og View ‘erification View esaurce Monitor onsole | T Navigal or | o= Qutline
GIDE Maritoring View 53, Propert | GIDE Log View | v Verification Vi GIDE R Monitor |] Console | = Navigator | 5= outli
= =50 B

Configuration |Liva Prupert\esl
W | Refreshinterval: |off >
Available Deployed Applications
=[] |

Defaultyh
DieFaultwid

~Monitoring Functions

rri {127,000, 1:1099) (Windows P v5.1)

Server
Mainer i ff127.0.0,1:1099) (windows XP v5.1)

1.5.1 Monitoring View

The main view in the monitoring perspective is thenitoring view which enables the user to
select a remote host for introspection. The usestrptovide the name or IP address of the
remote host, the relevant port, and the commumwisgirotocol used to start the remote GCM

process.

Add host to monitor B x|

Host bo monitor
’7Name ot IP | [N _ﬂ Port | 1099 Protocol ; |rmi -vI

Hasts will be recursively searched Up ko & depth of F

QK I Cancel |

Upon introspection of the host, the GIDE will idépntany running GCM applications and
will fill in the table with those (as illustrated the following figure).

GridCOMP FP6-034442 page 15 of 35 D.GIDE.O4

FTaIN
GridCamE

) .
) GIDE Moritaring Yiew 2

Configuration |Live Properties |

—Monitoring Funckions

) | Refresh inkerval: | off o,

—fvailable Deploved Applications

Zli!| %| s

SErver rroi {1 27.0.0,1:1099) (windows $P w510 Drefaulkih
Mainer proiff127.0,0,1:1099) (wWindows 5P w5.1) Drefaulkihl

The user can then select any of the available ngnapplications for monitoring. Updates to
the running application will be signaled by an uhglag notification system (each
component notifies GIDE for any changes it endurdsecondary update mechanism is also
available in the form of immediate refresh and gaid polling (in user-defined intervals).A
second tab in the monitoring view, shows the ruatinformation for the selected component.
This information ranges from application-wide distgsuch as the total number of hosts and
virtual machines), to node specific details (susimame, URL, and operating system) and
refined component-specific details (such as itseastatus, and id).

&) GIDE Monitoring View &2
Configuration Live Properties

= Companent
i~ Simple narme Main
Class name arg,objectweb, proactive. core. component, type . Composite
Current skakus \Waiking For Reguest
" Unique ID 20aFZcea: 1 1eacfcOfSc:-7FE0

= Application Waorld
i Mumber of hosts 1
" Mumber of virtual machines 3

[=1- Haost
i Host operating syskem Windows ¥P 5.1
" Host URL rmisff127.0.0,1:1099f

= Mode
i Mode name Nodel40436662
- Mode LRL v 127.0.0.1:1099/Model 40436662
- Job ID Undefined_JOBID
L Virtual Mode name Defaultyhl

= %M
- YM name fledzatd7rb07688: 208 2cea: 1leacfoOfSe:-5000
LM URL rmid 127,00, 1 1099/Pa_JYMZE2E204 33

1.5.2 Live Monitoring Canvas

The live monitoring canvas will pick-up any changesthe runtime architecture of the
application, both manual (when full steering fuantlity is available) and autonomic (for

GridCOMP FP6-034442 page 16 of 35 D.GIDE.O4

<

oS

example due to load balancing with the additioexifa workers). Standard colors are used to
identify the different states of components, emgeg for live components, red for stopped
components, etc.

BB GioE Legend 53 =

~Composition Colors

DefaulkiMormal

Legacy component

Behavioural Skeleton

. | Started

- Stopped

! Serving request
‘Waiting For requesk
Waiting by necessity

Migrating

1.5.3 Steering

Basic steering functionality is also available tigh the live monitoring canvas. The user has
the option to start or stop a particular componeither primitive or composite), while a
number of other features will be made availablensosuch as adding extra worker
components, rearranging interface bindings and more

Stopping a hierarchical component through the GIlDEnitoring canvas, delegates the
request to the GCM component which will send steguests recursively to its internal
components before eventually stopping itself. T&neerse process takes place when starting a
hierarchical component.

GridCOMP FP6-034442 page 17 of 35 D.GIDE.O4

X M

Mair

Cliemt

0 Add Moke

Mavigake
File 4
Edit L

¥ Delete From Model

Farmat L3
Filkers 4
GIDE: Beskes L4
GIDE: Legacy k
BIDE: Source Generation Ld
(IDE: Monitaring L4 Stap Camponent

bark Component

[Shaw Propetties View

FProperties

1.5.4 Resource Monitor View

The monitoring perspective also includes a resoumomitor view that gives information
about the current host, with the ultimate goal ofvding resource metrics on distributed
hosts as well.

@] GIDE Monitoring Yigw | - Properties (E,'J GIDE Log View [E-GIDE Fesource Mnnitnﬁxﬂ‘__E Cu:unsu:ule]

I Resource Manitor for the Grid IDE : Infarmation abouk the primarsy Dperating Systems

key | value
=l W Computer
NN Operating Syskem
E!‘i CPU(s) rumber: 4
f Memory and Processes Infarmation

- 1 Miscellaneous

EIE Disk{= kotal: 2
=) Mebwork Inkerfacefs) total: 4
(e ebh0

GridCOMP FP6-034442 page 18 of 35 D.GIDE.O4

I,

SridCOMP Sg&

2 Manual

2.1 Setting Up

2.1.1 Eclipse Project Version

It is highly recommended to download and installiige Ganymede with Modelling Tools
(around 300MB in size) which comes prepackaged allthrequired GMF Modelling plugins.

The following sections apply to the Eclipse Ganymedrsion with Modelling Tools.

2.1.2 Behavioural Skeletons Rules file Editor

The JBoss Drools project provides an Eclipse plugm editor with syntax highlighting for
editing rules files to be used with Behavioural I8k@ns. You can get the plugin here:
http://www.jboss.org/drools/downloads.htnSelect one of the Eclipse plugins depending on
your Eclipse version.

2.1.3 IC2D plugins for GIDE Monitoring

Due to the restructuring of the GIDE Monitoring rhanisms, a dependency on the IC2D has
now been introduced. However, because of some @istemcies in the latest IC2D released
plugins and the requirements of GIDE, slightly omsized IC2D plugins are provided with
the GIDE distribution.

Further, since 1C2D required the BIRT plugin in @rdo work correctly, users must update
Eclipse and install BIRT with the following simpi¢eps:

« Start Eclipse Ganymede (similar steps for Euroghather versions) and go télélp
— Software Updates — Available Software' and expand the Ganymede" or
"Ganymede Project Updates' site (if it is not there click refresh and waitr fthe site
to appear)

+ Expand Charting and Reporting" and select all available BIRT plugins
+ Choose I'nstall”
+ When asked, accept the license agreement and gentin

« Make sure the process completes successfully atarr&clipse when prompted.

2.1.4 Installation

« Download the GIDE package from
http://perun.hscs.wmin.ac.uk/dis/gide/wiki/indexpp@&IDE:Download

GridCOMP FP6-034442 page 19 of 35 D.GIDE.O4

e Pa® =)zt
GridComP {52!

Unzip it in a folder of your choice (e.g. C:\gide)

Edit eclipse.ini from the eclipse root folder ardtiafter -vmargs in separate lines the
following bold-faced lines (where "C:\GIDE" is wieater your GIDE root folder is):

-showsplash

org.eclipse.platform

--launcher.XXMaxPermSize 256M

-vmargs

- Dcom sun. managenent . j nxr enot e

- DA DE_HOVE=C: \ A DE

-Dj ava. security. policy=C \ G DE\ policies\gide.policy
-Dosgi.requiredJavaVersion=1.5

-Xms512m

-Xmx512m

The eclipse.ini file is located under <eclipse_honie Windows and Linux systems, and
under <eclipse_home>/Eclipse.app/Contents/MacOQ&aicOS systems.

Delete any previous versions of the plugins fromeblipse/plugins directory. Do not
rely on overwriting them because the version nusibeaty have changed!

Copy the GIDE plugins (and the modified IC2D plw)inin the eclipse/plugins
directory. If your GIDE plugins directory only caibs one or two zip/rar files, it
means that all plugins are archived inside thenth&t case you will need to extract
the archived plugins into the eclipse/plugins divec

Start eclipse

2.1.5 Directory and File Structure

Inside both versions there are the following fodder

descriptors: the root folder for the GIDE deployment descrip&pository
doc: documentation files

dtd: the default ProActive DTD file

libs: libraries that are needed for GIDE to functioogerly

logs: folder that contains all session log files

plugins: the folder that contains the GIDE Eclipse plugins

policies: policy files required by some internal GIDE compats
repository: the root folder for the GIDE component repository

temp: temporary folder for various GIDE purposes

templates. contains the template ADLs, model, and diagrdes ffor the Behaviourl
Skeletons and the Legacy component wrappers

user libs: this folder contains GIDE jar files that might beed by developers if they
wish to make use of the current GIDE Monitoringltoo

GridCOMP FP6-034442 page 20 of 35 D.GIDE.O4

— X —w:'{’\ \/—/7\}‘3
Grigoompe (¢

2.2 Basic Usage

2.2.1 Starting Up

With the latest plugin version there are no expbktartup procedures as all GIDE tools and
perspectives are readily available through Ecligsist follow the instructions under "Using
GIDE Tools and Perspectives".

2.2.2 Using GIDE Tools and Perspectives

There are a number of available tools specific BOE; ranging from Composition diagrams,
import and export facilities, resource monitorimglanore. This is only a quick start guide for
the most common functionality. For a detailed digstep guide have a look at the following
sections and the Tutorials section in the Wiki
(http://perun.hscs.wmin.ac.uk/dis/gide/wiki/indexppGIDE:Documentation#Tutorials).

+ To create a new composition, you must already laapeject in your workspace and
then go td=ile — New — Example — Gidecomposition Diagram.

« To change the appearance of the composition diggrigim click anywhere on the
empty canvas (not inside any components) and s&sat Properties View —
Rulers and Grid to set the Grid and Rulers appearance or s&lsotv Properties
View — Appearance to set the font and colors.

+ To show the properties of the composition itemar(gonents, interfaces, bindings)
select the component you want and its attributdisbeiloaded in the Properties View
Panel. If the latter is not currently visible orfmcus, right click on the composition
item of interest and seleShow Properties View

« To import an existing ADL into a new composition tgd=ile — Import — Other —
Import ADL and follow the Wizard instructions

« To export a composition diagram into one or moreL Alles go toFile — Export —
Other — Export to ADL and follow the Wizard instructions

« To view the GIDE log for the current session gdtondow — Show View — Other
— GIDE — GIDE Log View

+ To view the GIDE Component Repository gothndow — Show View — Other —
GIDE — Repository View

+ To move into the GIDE: Composition perspective aade all related views arranged
by default (including the Log and Repository viewg to Window — Open
Perspective — Other — GIDE Composition (same procedure for the GIDE
Deployment and GIDE Monitoring and Steering pertiges)

+ To import a component from the repository you malseady have a composition
diagram open and in focus. Then, select the compora want from the repository
view, right click and select 'Import'.

GridCOMP FP6-034442 page 21 of 35 D.GIDE.O4

/C,{?L"‘OJ\\«,
GridCcomMP § &™)
To generate source files for primitive componersisiver interfaces, or attribute
interfaces, go to the relevant composition iteghticlick and go to the GIDE context
menu to see all available options

-

To edit a component in the repository go to thes#pry view, select the component,
right click and seledEdit

To add a legacy component wrapper in the existiagrdm right click on the existing
component where the legacy wrapper will be addedotothe canvas) and select
GIDE: Legacy — Add L egacy Component Wrapper

For an application to be available for monitorihe far file ProActive_Extensions.jar
must be included in the classpath of the deploynmnject. It is located under
GIDE_HOME/userlibs. Then, from the Monitoring vieygu can select a host to start
monitoring for deployed applications. The table Iwihen be filled with all
applications running on the current host. Clicktloa "prepare for monitoring" button
to start monitoring. Once the live monitoring casivehows up the underlying
notification system will automatically update itttviany changes that happen. You
can also use the refresh now button, or set thegefinterval to a valid option to
enable a polling type of refresh.

To add a Data-Parallel Behavioural Skeleton ineisting diagram right click on the
existing component where the skeleton will be adttedor the canvas) and select
GIDE: Beskes — Add Data-Parallel Behavioural Skeleton. The system will then
ask for the skeleton parameters to be set, i.ecsa worker component for the
skeleton, a rules file path, and a descriptor patlding a Farm Behavioural Skeleton
requires a very similar process.

2.3 Composition

2.3.1 Importing ADL files

2.3.1.1 General

Current requirements for importing: if the top ledefinition name is package-qualified then
the file must be located in a directory structunattreflects the specified package. Any
referenced files must be either in the same dirgaioin their respective directory hierarchy
(if on their own they are package qualified) inheit the same root directory or in another
directory that is accessible through the classpath.

Any referenced DTDs must be available through Htpfile URLs, as absolute
filenames, or as relative filenames that are abkdlahrough the classpath. It is the
responsibility of the developer and not the GID&ptovide a DTD in his ADL files
that is accessible. However, the GIDE will resast & default location in the
installation directory where it looks for the detadTD (for the GIDE purposes this is
the ProActive DTD).

When adding to the repository only the imported ponent is added — not its internal
components independently. This is on purpose irrotd avoid cluttering and keep

things simple. If the user wants to add some ofinternal components separately he
can do so by importing those separately.

GridCOMP FP6-034442 page 22 of 35 D.GIDE.O4

. ,«ff@m
GridCOMP © 55
+ When importing a component and an identical nameady exists in the repository
the user will have the option to provide an altéueaname. In such case, and after
any potential name conflicts have been identifiad alerted the user, the repository
and the imported component have the new name. Hawéw locally copied ADL
files (if the user opted to copy locally) will bleetoriginal ADL files.

+ The option to add to the toolbox an imported congpdrhas not been implemented
yet

2.3.1.2 Wizard Options
+ SelectFile —» Import — Other — Import an ADL.

« In the first page, use the "Browse" button or typ¢he location of the top level ADL
file you wish to import. All dependencies will besolved automatically.

& ADL Import Wizard I - O] =]
Import ADL Step 2: Repository and Storage Settings

Select repository and toolbox options For the imported component

™ Copy ADL file(s) bo karget Faolder?
I Add cormponent to repositary?
[T |\ add componentta the tonlbok (ot yvet avaialely
Prowide a hurman readable description of this cormponent (optional)

Enter any u:utljer nokes significant For this companent (u:uptiu:ujalfl

(7) < Back PlExt = | Finish I Cancel

« In page 2 (see Figure) there are a number of aptielating to the import:

o Copy ADL file(s) to target folder: check this toveathe ADL files copied to
the target import folder in a hierarchical diregtstructure following the ADL
names, e.g. a component with name
"org.gridcomp.examples.SomeComponent” will be odpieo a folder
\org\gridcomp\examples inside the import targedéolselected.

o Add component to repository: check this to have the top level (and only the
top level!) component of the supplied ADL file addi@ the GIDE repository
for future usage. There will be only one comporagtded to the repository, the
top level one with all its potential subcomponertsit there will be no
recursive addition of the internal subcomponentseggrate repository entries.

GridCOMP FP6-034442 page 23 of 35 D.GIDE.O4

AR,
GridCOMP § e8!
You can leave this option unchecked if you arenigssome ADLs or you are
currently exploring the GIDE.

-

o Add component to the toolbox: this is not yet available functionality. A
toolbox with all available GIDE repository compotemwill be graphically
available in the GIDE composition perspective thilt allow users to quickly
import components in the current composition diagrdhis option is only
available if the component will be added to theosory.

o Descriptions: you can optionally provide a human readable deison as well
as other notes for the imported component. Thioops only available if the
component is to be added to the repository.

2.3.2 Exporting to ADL files

2.3.2.1 General

General Naming Requirements: top level canvas MU&We a name. All components and
interfaces must also have names.

« Component/definition names may be package qualiffredhe composition. The
package dictates the directory hierarchy whererélalting ADL will be placed. If a
sub component is not package qualified, it is asslito inherit the package from its
parent. If it is package qualified, it will be p&tin this potentially different directory
hierarchy, nevertheless in the same export rodtiieauser selects

+ When exporting to an ADL, the potentially differepéickages of a component will
only be significant when splitting the files. Othése it might not even be possible to
determine the difference.

« If one or more components in the composition haitkee an "extends" or an
"arguments" ADL attribute, then the "Export o mpikii files" option is enforced

2.3.2.2 Wizard Options

+ SelectFile — Export — Other — Export to ADL file(s).

GridCOMP FP6-034442 page 24 of 35 D.GIDE.O4

_imix)

Export to ADL Step 1: Source and Target options

Select export options For the selected composition

e

IR v

Select the source file: I D\Developmenthgidel examplest sample gide projects)sampletdefault. gide Browse...

Select atarget Folder: | Ciikemp Browse.,, I

I~ Export to multiple files?
¥ Include GIDE Ciagram (will preserve drawing coordinates, shapes, and sizes -recommendead)?

I Embed diagram in top ADL (f nat it will only be referenced Fram the 0L and will be savedin the same Folder)?

< Back I Mexk = l EIEE Zancel

Use the "Browse" button or type in the locationtleé source GIDE composition
diagram file you wish to export.

Use the "Browse" button or type in the target lmrafor the exported ADL file(s).

Export to multiplefiles: check this option to export the composition tdtiple ADL
files, one for each (sub) component. The files Wl organized in a hierarchy based
on their names: package qualified names will gm ithhe equivalent directory
hierarchy inside the target folder, e.g. a compbnemamed
org.gridcomp.examples.SomeComponent will go insidea folder
org/gridcomp/examples/ inside the target foldeesteld. Components with simple
(i.e. non package qualified) names, inherit thairepts packages. Note: if this option
is unchecked, only the top level package (if onistexwill be used to determine the
directory structure.

Include GIDE diagram: select this option to export the GIDE diagrane fis well.
This will preserve the drawing, shapes, sizeshaements etc. so that if the exported
ADL(s) are imported again (in the same or anothéDE} the diagram will be
preserved. This is highly recommended.

Embed diagram in top level ADL.: if the GIDE diagramto be included, it can be
done in two ways: through a reference from thelémpel ADL to an external diagram
file (which will have to be moved along the ADL(®)) through embedding the whole
GIDE diagram in the top level ADL in the form ofspecial comment recognizable
from the GIDE parsers. The latter option has theelieof not requiring a separate file
to be maintained but it "litters” the top level ADTLhis option is only available if the
"Include GIDE diagram" option has been selected.

GridCOMP FP6-034442 page 25 of 35 D.GIDE.O4

£ File Export Wizard I o =]
Export to ADL Step 2: Java Generation Options

Select Java Generation options

’ (/ A

1

¥ Generate Java skeleton source codes?

Target Folder: | Browse. .,

Select the target Folder For the Java files (leave empty o place them in the same Folder as the ADL)

Select the codebase For existing classes to be loaded (leave empty to use only existing dlasspathi

Java Codebase: | Browse. .. I

v Emit TODC comments in the source files?

Class Name I Composition Tkem | Tvpe | Exists? I
org, gridcomp, sample, Reader Reader class nio
org.gridcomp. sample. Writer \riter class no
org.gridcomp. sample, DSCOProgram | DSOProgram class no
org.gridcormp. sample, CallPiSql ZallPl=gl class no
org.gridcomp. sample. Compute Zompute class no
org.gridcomp. sample.intf . Read D3OProgram.read interface | no
arg.gridcomp. sample.inkF. \Wrike Compute.write, Writer write . interface no
org.gridcomp, sample.intf.Execute | Compute.execute interface no
org.gridcomnp, sample.intf, Skart Compute,start, CallPlSglstart interface no

< Back Mexk = I Finish I Zancel

Generate Java Skeleton Code: the user has the option to generate Java skefiégen
for the specified implementation and interface s#as(if any were specified in the
composition). All subsequent options are only aldé when this option has been
selected.

Target folder: optionally create the Java files in a differevitier than the ADL target
folder specified in the previous step.

Java Codebase: the GIDE will make an attempt to discover exigticlasses in the
current classpath in order to generate skeletorhadst for classes implementing
already existing interfaces. However, the user cBo specify an extra
implementation codebase folder where existing emswot available in the current
classpath can be found and loaded. If none of pleeied classes can be found the
Java generator will merely create the directory fdachierarchy and provide the class
header lines, e.g.

package org.gide.composition.somePackage;

/**

* Header JavaDoc

*/

GridCOMP FP6-034442 page 26 of 35 D.GIDE.O4

v ,«{Cf@%
public class SomeClass implements
org.gide.composition.Somelnterface {

However, if one of the specified interfaces canftwend (either in the classpath or the
specified codebase) any implementation source ifilggementing this interface will be filled
with sample methods, as in the following exampléciWwlassumes that one of the composition
components was implementing the org.xml.sax.Enggdiver

package org.gide.composition.somePackage;
import org.xml.sax.InputSource;
/**
* Header JavaDoc
*/
public class SomeClass implements org.xml.sax.Entit yResolver {
/**
*
* string_1 String
* string_2 String
*/
public InputSource resolveEntity (String string_1 , String
string_2){
/**
* @todo Fill in this method's logic code!
*/
return null;
}
}

« Emit TODO comments. check this option to have TODO Javadoc comment
generated for each class and each method (if arthigiclass.

« Names Table: this table shows which implementation class name® specified in
the composition diagram and the respective compasitems. It further shows which
of these classes were found in the classpath theiispecified codebase. The user can
select which of these to be automatically generated

2.3.3 Component Repository

The component repository holds stored componemtsgabith their associated ADL files,
semantic and diagram files.

f E 5IDE Repository Misw - E'J GIDE Log Yiew | T Pru:uperti&s} L Pru:ul:ulems\i = Console |

‘Title | Mame | Implementation Class
CompID com.ibrn.bis. CompID com.ibrm.bis. ComplC:
ComplDMatcher com.ibrn.bis, CompIDMatcher i
[t carm, abosorigin Usercase, dso, D50 - Impart to Diagram
Rook org.gridcomp. Usecases. wingdesian. ... ™ Open For Editing (Standalone)
¥ Delete
1 Show ADL
Ty Refrash
Lo Export Componenks
I

GridCOMP FP6-034442 page 27 of 35 D.GIDE.O4

GridCOMP © 6%

the Grid:

2.3.3.1 Selection Options

When a repository item has been selected the foipwptions are available:

Import to Diagram: the selected component will be imported inside trrently
selected component in the currently opened GIDEyrdm. This option is only
available when a GIDE diagram is already open.

Open for Editing (standalone): the component will be opened for editing in a
separate standalone GIDE editor. Upon finalizing tbquired changes, the user has
two options: "Save" which will overwrite the exisi component in the repository;
and "Save as..." which will prompt the user to emtenew location and a new name
for the component. The latter option will neithet@matically save the component in
the repository as well nor remove the previous é¢r@!the newly named component
to be saved to the repository the "Add/Update Riémy$ option in the "Save as..."
dialog must be checked.

Delete: will first ask for confirmation and if confirmed will remove the selected
component from the repository.

Show ADL: will open a new window with a tree representatminthe selected
component ADL.

Copy sour ce files: if the repository component has source files @ssed with it, the
user can select to copy them in a workspace prdcediting and/or use in a
composition

Update existing sour ce files. the user can update the source files associatédive
stored component by selecting a directory. The GIDIE then pick up all relevant
source files from that directory based on the im@atation attributes specified in the
stored component definition.

2.3.3.2 General Options

The component repository supports the import arbexof a collection of components to
enable sharing and reusing between different Gi3ances

Export Components: will create an '.grc' archive in the specifieddtion, with the
ADL, semantic, and diagram files of all selectechponents.

Import Components: will ask for a '.grc' archive file to import itsontent
components to the repository. In case of name ictsfthese will be resolved
interactively with the user's guidance.

2.3.4 Properties

The properties view displays the properties ofdbgently selected diagram item, including
its GCM properties, appearance properties, andwsmther project specific properties.

GridCOMP FP6-034442 page 28 of 35 D.GIDE.O4

E GIDE Repository: igw |Ef| GIDE Log Wew | =5 Er-,gp&_:r_tlg{ ; I___"_ Problems | El Consulei

[1 Component Type Server

Propert

Core i :

SAEEE— ~ 0rE Properties
Deplayment | Impl Class '= org.q
fttributes | Logger =
Appearance Tarne '= Serve

£l Deplayment Properties
Exported Yirtual Modes
Yirtual Mode

2.3.4.1 Core Properties

This tab contains the core GCM properties of thecsed diagram item, as well as some
project specific properties.

For components this tab shows the following prapsrt
« GCM core properties. name, implementation class, logger name;

+ GCM deployment related properties (read-only): virtual node, exported virtual
nodes;

« Miscellaneous properties: author, comment, extends, controller, id, andrésal-only
last-modified property;

« Parameters: instance arguments list, and formal parameter lis

For interfaces this tab shows:

+ GCM core properties: cardinality, contingency, implementation clasame, and the
read-only role property;

« Miscellaneous properties: comment, and id.

For the canvas the following properties are avéstab
+ GCM core properties. name;

+ Miscellaneous properties: author, comment, id, and the read-only last-medif
property;

« Source management properties. bin, and src; these properties specify the soance
class folders for the current project and are dsedource management. They can be
made relative to the current project (instead avigting absolute path names) by
including the tag <project>, for example: '<projgstc'.

2.3.4.2 Deployment Properties

This tab contains the GCM deployment properties ianohly available when a component
has been selected. It contains the following priypgoups:

GridCOMP FP6-034442 page 29 of 35 D.GIDE.O4

AR,
GridCOMP G
« Virtual Node: allows the user to set the virtual node name @ardinality. Changes
will not be saved until the 'Apply changes' buti®clicked

« Exported Virtual Node: provides support for defining the exported vittnades as
per the GCM specification. Functionality for edgirand deleting exported virtual
nodes is also available.

2.3.4.3 Attributes Properties

This tab provides support for defining the GCMihtites for the selected component (and is
obviously only available when a component has b&slacted). It contains the following
property groups:

« Attribute Controller: allows the user to set the signature for thigkatte controller
and provide an optional comment. Changes will mos&ved until the 'Apply changes'
button is clicked

« Attributes. enables the user to add attributes in the comname/value pair form
with an optional comment for each one. Functiopafibr editing and deleting
attributes is also available.

2.3.4.4 Appearance and Ruler Properties

The appearance properties section enables theaisenipulate the font size, type, and face
of the lettering and the border lines in the diagra

The ruler properties section is only available tteg canvas and allows manipulation of the
grid, the ruler spacing, and other related propsrti

2.4 Deployment

The main view in the deployment perspective is dieployment view which contains the
descriptor repository.

2.4.1 Descriptor Repository

The descriptor repository holds stored deploymestcdptors along with an optional human-
readable description. The repository actually hads collections of files: architecture
descriptors and application descriptors (as penéve GCM Deployment framework).

GridCOMP FP6-034442 page 30 of 35 D.GIDE.O4

o5

24

{

{

#pplication Descriptor Filename
deplovrment. xml

3~
DescriEtiDn |

=/ Edit

E Generate Default Deployver
i;:!- Copyand Dpen

&' Edit Description

W Delete

| Import Application Descripkor

2.4.1.1 Selection Options

When a repository item has been selected the foipwptions are available:
- Edit: opens the selected descriptor for editing

+ Generate Default Deployer: generates a default deployment class that the azse
customize. In more detail: through the applicatieployment descriptor table the user
can have the GIDE automatically generate a detieptoyment class. This class will
contain the default procedure for deployment (eading the descriptor, creating the
component hierarchy, starting execution etc.) which user must fill-in with his
application specific values and customize to fit ieeds. There two options available:
use the typical ProActive deployment framework, tbe new GCM deployment
framework.

+ Copy and Open: allows the user to copy the selected descrigt@r $pecified project
in the workspace and open it for editing outsiddghaf repository. This is useful for
example for finalizing template descriptors basedh® specific project requirements.

- Edit Description: allows the editing of the human-readable desoript

« Delete: asks for confirmation and deletes the selectadrg®or.

2.4.1.2 General Options

The component repository supports the import amubexof a collection of components to
enable sharing and reusing between different Gi3Eances

« Import Descriptor: this option will enable the user to select arseéng descriptor file
to import in the relevant descriptor repository ctatecture or application). An
optional human-readable description can also beged

2.5 Monitoring and Steering

The main view in the monitoring perspective is tmenitoring view which contains a
collection of applications currently available fime monitoring.

GridCOMP FP6-034442 page 31 of 35 D.GIDE.O4

e

IR v

&) GIDE Manitaring Yiew &3 S

Configuration |Live Properties |

—Monitoring Funckions

) | Refresh inkerval: | off o,

—fvailable Deploved Applications

DA

SErver rroi {1 27.0.0,1:1099) (windows $P w510 Drefaulkih
Mainer proiff127.0,0,1:1099) (wWindows 5P w5.1) Drefaulkihl

Live monitoring and steering is performed with thee of a live monitoring canvas very
similar to the composition canvas (all shapes auvalent). The canvas is however, read-
only in most aspects except moving and resizinglépcted components.

2.5.1 Architecture Monitoring

The monitoring view contains a table of currenthaigable applications for monitoring in the
selected host. To find deployed applications fonitwring the user must select a new host to
monitor (IP address, port, and communication pradod he table will then be filled in with
any applications running on the selected host. thigr functionality to work correctly, the
ProActive_Extensions.jar must be included in theliaption's classpath. This file is available
in the userlibs folder of the GIDE distribution.

To initiate monitoring of a running application sell the application from the table and click
the “prepare for monitoring” button. Once the lim®nitoring canvas shows up with the
selected application depicted, the underlying matiion system will automatically update it
with any changes that happen. You can also useefhesh now button, or set the refresh
interval to a valid option to enable a polling tygferefresh.

The live monitoring canvas will pick-up any changesthe runtime architecture of the
application, both manual (when full steering fuanality is provided -see below) and
autonomic changes (for example due to load balgneith the addition of extra workers).

The Monitoring view contains a second tab whichpldigs the properties of the selected
monitored component. These properties include #reen implementation class, virtual node
name of the component, as well as information ablmihost and the application as a whole.

2.5.2 Steering
Basic steering functionality is currently availabibeough the live monitoring canvas.

The user can right-click on the desired component select eitheGIDE: Monitoring —
Start Component or GIDE: Monitoring — Stop Component to try and start or stop the
component respectively.

GridCOMP FP6-034442 page 32 of 35 D.GIDE.O4

FTaIN
GridCamE

2.5.3 Resource Monitor

The monitoring perspective also includes a resounomitor view that gives information
about the current host.

E GIDE Monitaring Yiew |,:| Properties (?',' GIDE Log Wiew [a GIDE Resource Monitorﬂ__ = Console]

| Resource Maonitor For the Grid IDE ; Information sbout the primary Operating Systems

ke I walue |
El [Computer
E{j Operating Syste
EE P number: 4
E # Memory and Processes Information

- 1 Miscelaneous

Elci’ Disk(s) katal: 2
Btna Metwark Inkerface(s) total: 4
[+t 2kR0

2.6 Miscellaneous

2.6.1 GIDE Log Viewer

The GIDE Log Viewer provides an independent viewdidated solely to reporting
informational, debug, and error messages to theEGIger.

f 'GIDE Repositary Yiew [E‘J GIDE Log Wiew i Pr'operties| L'_ Problems | = Consolei
| Mo | Level | Message | Time: Source
i INFC Maonitoring Server initialized successFully! 2008109009 20:38:17 MaonitoringServet , nit)
io FINE Created new RMI regiskry at port: 5678 200510909 20:38: 17 MonitoringServer.getlo

2.6.1.1 Selection Options
When a log item has been selected the followingpaptare available:

« Open Item (equivalent to double clicking): opens up an infation window with
more details and a potential stack trace for thecsed log item.

2.6.1.2 General Options

The log viewer supports the import and export pfevious GIDE log (for example to send to
the developers along with bug reports)

GridCOMP FP6-034442 page 33 of 35 D.GIDE.O4

/C,{?L"‘OJ\\«,
GridCoMP G2
+ Clear Log Viewer: clear the messages in the log viewer. This wit delete the
current session log, and the log viewer can beoredtthrough thdRestore GIDE
Log Viewer option (see below).

-

« Delete: deletes the current session log and clears theiéwer. This is an irreversible
action (as opposed to the 'Clear Log Viewer' agtion

+ Restore Log Viewer: populates the log viewer with the log items oé tburrent
session.

« Open Log File: opens the underlying log file in an editor.

« Configure: opens a dialog window that enables the uselttr the types of messages
displayed in the viewer, and select the numbeteoh$ appearing in it.

« Import Log: replaces the current session log with the onectsd from the
filesystem.

« Export Log: exports the current session log to the seledledhfthe filesystem.

GridCOMP FP6-034442 page 34 of 35 D.GIDE.O4

e Pa® =)zt
GridComP {52!

Bibliography

[1] M. Aldinucci, S. Campa, P. Dazzi, N. Tonellotto, Zappi. D.NFCF.04: NFCF prototype
and early documentation.
https://bscw.ercim.org/bscw/bscw.cqi/d510923/D.NEaFfinal. pdf

[2] F.Baude, D. Caromel, C. Dalmasso, M. Daneluttdi¥tov, L. Henrio, C. PéreGCM:

A Grid Extension to Fractal for Autonomous Distributed Components, Annals of
Telecommunications, Springer, 2009, (to appear).

[3] A.Basso, A. Bolotov, V. GetoBehavioural Model of Component-based Grid
Environments, In: From Grids to Service and Pervasive Computapg 19-30, Springer,
2008.

[4] A. Basukoski, P. Buhler, V. Getov, S. IsaiadisWeigold, Methodology for Component-
based Development of Grid Applications, Proc. ACM Workshop on Component-based
High-Performance Computing, ACM Press, 2008.

[5] A. Basukoski, V. Getov, J. Thiyagalingam, S. Isaa@Gomponent-based Devel opment
Environment for Grid Systems: Design and Implementation, In: Making Grids Work, pp.
119-128, Springer, 2008.

[6] D. Caromel, L. Du, Y. Wu, X. Wu, C. Dalmasso, Gréte Pezzi. D.CFI.04: Methods and
techniques for legacy code wrapping as components.
https://bscw.ercim.org/bscw/bscw.cqi/d510898/D.CG% | Final.pdf

[71 V. Getov, Integrated Framework for Development and Execution of Component-based
Grid Applications, Proc. IEEE IPDPS, IEEE CS Press, 2008.

[8] V. Getov, S. Isaiadis, A. Basukoski, J. Thiyagadimg D.GIDE.03: Grid IDE Prototype
and Early Documentation, EU GridCOMP Project, J@0€8.
https://bscw.ercim.org/bscw/bscw.cqi/d510932/D.GITE Final.pdf

[9] ProActive 3.90http://proactive.inria.fr/

[10] T. Weigold, P. Buhler, J. Thiyagalingam, A. Basuips/. Getov, Advanced Grid
Programming with Components: A Biometric Identification Case Sudy, Proc. IEEE
COMPSAC, pp. 401-408, IEEE CS Press, 2008.

[11] T. Weigold, F. Tumiatti, G Freire. D.UC.04.A Usesea: early documentation.
https://bscw.ercim.org/bscw/bscw.cgi/d510892/D.UCAO Final.pdf

[12] Eclipse:http://www.eclipse.org/

[13] Grid Component Model: https://bscw.ercim.org/bsaeik.cgi/112268GridComplST-5-
034442-Final.CPF

[14] 1C2D: http://docs.huihoo.com/proactive/3.2.1/IC22ligsePlugin.html

GridCOMP FP6-034442 page 35 of 35 D.GIDE.O4

