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Executive Summary: This deliverable reports the architectural design of the
non-functional component subsystem of CoreGrid Component Model (GCM) im-
plementation. Since GCM components are defined as autonomic elements, their
non-functional subsystem is basically an autonomic manager. As a result, the design
of the non-functional component subsystem includes the definition of component as-
semblies that can automatically be managed, and the mechanisms and policies to
manage them. At this end, we present behavioural skeletons for the GCM, which
are an abstraction aimed at simplifying the development of GCM applications, and
in particular self-managed ones. Behavioural skeletons abstract component self-
management in component-based design as design patterns abstract class design
in classic OO development. As here we just want to introduce the behavioural
skeleton framework, emphasis is placed on general skeleton structure, their archi-
tectural design in GCM, and the general mechanisms needed to manage them rather
than on their autonomic management policies. Preliminary experimental results are
presented.
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1 Introduction

The grid poses new challenges in terms of programmability, interoperability, code
reuse and efficiency. These challenges mainly arise from a key feature that are
peculiar to grid, namely uncertainty. Neither the target platforms nor their status
are fixed during the application run on a grid [16]. This makes application adaptivity
an essential feature in order to achieve high performance and to exploit efficiently
the available resources [4].

The basic use of static adaptation covers straightforward but popular method-
ologies, such as copy-paste, and OO inheritance. A more advanced usage covers the
case in which adaptation happens at run-time. These systems enable dynamically
defined adaptation by allowing adaptations, in the form of code, scripts or rules,
to be added, removed or modified at run-time [11]. Among them it is worth to
distinguish the systems where all possible adaptation cases have been specified at
compile time, but the conditions determining the actual adaptation at any point
in time can be dynamically changed [8]. Dynamically adaptable systems rely on
a clear separation of concerns between adaptation and application logic. This ap-
proach has recently gained increased impetus in the grid community, especially via
its formalization in terms of the Autonomic Computing (AC) paradigm [17, 9, 6].

The CoreGrid Component Model (GCM) definition natively embodies the AC
idea [13]. A GCM autonomic component consists of one or more managed compo-
nents coupled with a single autonomic manager that controls them. To pursue its
goal, the manager may trigger an adaptation of the managed components to react
to a run-time change of application QoS requirements or to the platform status.

In this regard, an assembly of self-managed components implements, via their
managers, a distributed algorithm that manages the entire application. Several ex-
isting programming frameworks aim to ease this task by providing a set of mecha-
nisms to dynamically install reactive rules within autonomic managers. These rules
are typically specified as a collection of when-event-if-cond-then-act clauses,
where event is raised by the monitoring of component internal or external activity
(e.g. the component server interface received a request, and the platform running
a component exceeded a threshold load, respectively); cond is an expression over
component internal attributes (e.g. component life-cycle status); act represents
an adaptation action (e.g. create, destroy a component, wire, unwire components,
notify events to another component’s manager). Several programming frameworks
implement variants of this general idea, including ASSIST [22, 4], AutoMate [19],
SAFRAN [14], and finally the CoreGrid Component Model (GCM) [13]. The latter
two are derived from a common ancestor, i.e. the Fractal hierarchical component
model [18]. All the named frameworks, except SAFRAN, are targeted to distributed
applications on grids.

Though such programming frameworks considerably ease the development of
an autonomic application for the grid (to various degrees), they rely fully on the
application programmer’s expertise for the set-up of the management code, which
can be quite difficult to write since it may involve the management of black-box
components, and, notably, is tailored for the particular component or assembly of
them. As a result, the introduction of dynamic adaptivity and self-management
might enable the management of grid dynamism, and uncertainty aspects but, at
the same time, decreases the component reuse potential since it further specializes
components with application specific management code.

Within GridCOMP project, we proposed behavioural skeletons as a novel way
to describe autonomic components in the GCM framework. Behavioural skeletons
aim to describe recurring patterns of component assemblies that can be (either stat-
ically or dynamically) equipped with correct and effective management strategies
with respect to a given management goal. Behavioural skeletons help the appli-
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cation designer to 1) design component assemblies that can be effectively reused,
and 2) cope with management complexity by providing the programmer with com-
ponent templates that, once instantiated, can take the part of general application
management strategy spanning component assemblies in the horizontal (i.e. wiring)
and the vertical (i.e. nesting) extent.

In Sec. 2 the basic design principles of GCM are reviewed. In Sec. 3 we in-
troduce the concept of behavioural skeletons as parametric abstractions of GCM
components autonomic features, while in Sec. 4 we illustrate a reduced set of be-
havioural skeletons commonly exploited in parallel computations. In Sec. 6 we
illustrate the architecture and the implementation of the autonomic features de-
scribed in the GCM that will be exploited to implement behavioural skeletons, and
in Sec. 7 we present preliminary results of experiments of the farm behavioural
skeleton. Finally, in Sec. 8 we summarize our work and our main results.

2 The Grid Component Model

GCM allows component interactions to take place with several distinct mechanisms.
In addition to classical “RPC-like” use/provide ports (or client/server interfaces),
GCM allows data, stream and event ports to be used in component interaction.
Furthermore, collective interaction patterns (communication mechanisms) are also
supported. The full specification of GCM can be found in [13].

GCM is therefore assumed to provide several levels of autonomic managers in
components, that take care of the non-functional features of the component pro-
grams. GCM components thus have two kinds of interfaces: functional and non-
functional ones. The functional interfaces host all those ports concerned with im-
plementation of the functional features of the component. The non-functional inter-
faces host all those ports needed to support the component management activity in
the implementation of the non-functional features, i.e. all those features contribut-
ing to the efficiency of the component in obtaining the expected (functional) results
but not directly involved in result computation. Each GCM component therefore
contains an Autonomic Manager (AM), interacting with other managers in other
components via the component non-functional interfaces. The AM implements the
autonomic cycle via a simple program based on the reactive rules described above.
In this, the AM leverages on component controllers for the event monitoring and
the execution of reconfiguration actions. In GCM, the latter controller is called
the Autonomic Behaviour Controller (ABC). This controller exposes server-only
non-functional interfaces, which can be accessed either from the AM or an external
component that logically surrogates the AM strategy. According to GCM specifi-
cation [13], we call passive a GCM component exhibiting just the ABC, whereas we
call active a GCM component exhibiting both the ABC and the AM1.

2.1 Describing Adaptive Applications

The architecture of a component-based application is usually described via an ADL
(Architecture Description Language) text, which enumerates the components and
describes their relationships via the used-by relationship. In a hierarchical compo-
nent model, such as the GCM, the ADL describes also the implemented-by relation-
ship, which represents the component nesting.

However, the ADL supplies a static vision of an application, which is not fully
satisfactory for an application exhibiting autonomic behaviour since it may au-

1Notice a passive GCM component is not just an adaptable component, but is supposed to
provide ports for component monitoring and steering.
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tonomously change behaviour during its execution. Such change may be of several
types:

• Component lifecycle. Components can be started or stopped.

• Component relationships. The used-by and/or implemented-by relationships
among components are changed. This may involve component creation/de-
struction, and component wiring alteration.

• Component attributes. A refinement of the behaviour of some components
(which does not involve structural changes) is required, usually over a pre-
determined parametric functionality.

In the most general case, an autonomic application may evolve along adaption
steps that involve one or more changes belonging to these three classes. In this
regard, the ADL just represents a snapshot of the launch time configuration.

The evolution of a component is driven by its AM, which may request manage-
ment action with the AM at the next level up in order to deal with management
issues it cannot solve locally. Overall, it is a part of a distributed system that
cooperatively manages the entire application.

In the general case, the management code executing in the AM of a compo-
nent depends both on the component’s functional behaviour and the goal of the
management. The AM should also be able to cooperate with other AMs, which
are unknown at design time due to the nature of component-based design. Cur-
rently, programming frameworks supporting the AC paradigm (such as the ones
mentioned in Sec. 1) just provide mechanisms to implement management code.
This approach has several disadvantages, especially when applied to a hierarchical
component model:

• The management code is difficult to develop and to test since the context in
which it should work may be unknown.

• The management code is tailored to the particular instance of the man-
aged elements (inner components), further restricting the possible component
reusability.

For this reason, we believe that the “ad-hoc” approach to management code is
unfit to be a cornerstone of the GCM component model.

3 Behavioural Skeletons

Behavioural skeletons aim to abstract parametric paradigms of GCM component
assembly, each of them specialized to solve one or more management goals belonging
to the classical AC classes, i.e. configuration, optimization, healing and protection.

Behavioural skeletons represent a specialization of algorithmic skeleton concept
for component management [12]. Algorithmic skeletons have been traditionally used
as a vehicle to provide efficient implementation templates of parallel paradigms. Be-
havioural skeletons, as algorithmic skeletons, represent patterns of parallel compu-
tations (which are expressed in GCM as graphs of components), but in addition they
exploit the inherent skeleton semantics to design sound self-management schemes
of parallel components.

Due to the hierarchical nature of GCM, behavioural skeletons can be identified
with a composite component with no loss of generality (identifying skeletons as
particular higher-order components [15]). Since component composition is defined
independently from behavioural skeletons, they do not represent the exclusive means
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of expressing applications, but can be freely mixed with non-skeletal components.
In this setting, a behavioural skeleton is a composite component that

• exposes a description of its functional behaviour;

• establishes a parametric orchestration schema of inner components;

• may carry constraints that inner components are required to comply with;

• may carry a number of pre-defined plans aiming to cope with a given self-
management goal.

Behavioural skeleton usage helps designers in two main ways: The application de-
signer benefits from a library of skeletons, each of them carrying several pre-defined,
efficient self-management strategies; and, the component/application designer is
provided with a framework that helps the design of new skeletons and their imple-
mentations.

The former task is achieved because (1) skeletons exhibit an explicit higher-order
functional semantics, which delimits the skeleton usage and definition domain; and
(2) skeletons describe parametric interaction patterns and can be designed in such a
way that parameters affect non-functional behaviour but are invariant for functional
behaviour.

4 A Basic Set of Behavioural Skeletons

Here we present a basic set of behavioural skeletons for the sake of exemplification.
Despite their simplicity, they cover a significant set of parallel computations of
common usage.

One class of behavioural skeletons springs from the idea of functional replication.
Let us assume the skeletons in this class have two functional interfaces: a one-to-
many stream server S, and a many-to-one client stream interface C (see Fig. 1). The
skeleton accepts requests on the server interface; and dispatches them to a number
of instances of an inner component W, which may propagate results outside the
skeleton via C interface. Assume that replicas of W can safely lose the internal
state between different calls. For example, the component has just a transient
internal state and/or stores persistent data via an external data-base component.

Farm A stream of tasks is absorbed by a unicast S, each task is computed by
one instance of W and sent to G, which collect tasks from-any. This skeleton
can be equipped with a self-optimizing policy because the number of Ws can be
dynamically changed in a sound way since they are stateless. The typical QoS goal
is to keep a given limit (possibly dynamically changing) of served requests in a time
frame. The AM just checks the average time tasks need to traverse the skeleton,
and eventually reacts by creating/destroying instances of Ws, and wiring/unwiring
them to/from the interfaces.

Data-Parallel A stream of tasks is absorbed by a scatter S; each task is split
in (possibly overlapping) partitions, which are distributed to replicas of W to be
computed. Results are gathered and assembled by G in a single item. As in the
previous case, the number of Ws can be dynamically changed (between different
requests) in a sound way since they are stateless. As in the previous case, the
skeleton can be equipped with a self-configuration goal, i.e. resource balancing and
tuning (e.g. disk space, load, memory usage), that can be achieved by changing the
partition-worker mapping in S (and C, accordingly).
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Active-Replication A stream of tasks is absorbed by a broadcast S, which sends
identical copies to the Ws. Results are sent to G, which reduces them. This paradigm
can be equipped with a self-healing policy because it can deal with Ws that do not
answer, produce an approximate or wrong answer by means of a result reduction
function (e.g. by means of averaging or voting on results).

The presented behavioural skeletons can be easily adapted to the case that S
is a RPC interface. In this case, the C interface can be either a RPC interface or
missing. Also, the functional replication idea can be extended to the stateful case
by requiring the inner components Ws to expose suitable methods to serialize, read
and write the internal state. A suitable manipulation of the serialized state enables
the reconfiguration of workers (also in the data-parallel scenario [4]).

Anyway, in order to achieve self-healing goals some additional requirements on
the GCM implementation level should be enforced. They are related to the imple-
mentation of the GCM mechanisms, such as the messaging system, the component
membranes, and their parts (e.g. interfaces). At the level of interest, they are prim-
itive mechanisms, in which correctness and robustness should be enforced ex-ante,
at least to achieve some of the described management policies.

The process of identification of other skeletons may benefit from the work done
within the software engineering community, which identified some common adapta-
tion paradigms, such as proxies [20], which may be interposed between interacting
components to change their interaction relationships; and dynamic wrappers [21].
Both of these can be used for self-protection purposes. As an example a couple of
encrypting proxies can be used to secure a communication between components.
Wrapping can be used to hide one or more interfaces whether a component is de-
ployed into an untrusted platform.

4.1 Specifying Skeleton Behaviour

Autonomic management requires that, during execution of a system, components of
the system are replaced by other components, typically having the same functional
behaviour but exhibiting different non-functional characteristics. The application
programmer must be confident about the behaviour of the replacements with re-
spect to the original. The behavioural skeleton approach proposed supports these
requirements in two key ways:

1. The use of skeletons with its inherent parametrization permits relatively easy
parameter-driven variation of non-functional behaviour while maintaining func-
tional equivalence.

2. The use of a formal or semi-formal specification to describe component be-
haviour gives the developer a firm basis on which to compare the properties
of alternative realisations in the context of autonomic replacement.

The skeleton designer can use the description to prove rigorously (manually, at
present) that a given management strategy will have predictable or no impact on
functional behaviour. The quantitative description of QoS values of a component
with respect to a goal, the automatic validation of management plans w.r.t. a given
functional behaviour are interesting related topics, which are the subject of ongoing
research. Examples of semi-formal specifications of the proposed skeletons can be
found in [1, 5].

As byproduct, behavioural skeletons categorize GCM designers and program-
mers in three classes. They are, in increasing degree of expertise and decreasing
cardinality:
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• GCM users. They are supposed to use behavioural skeletons together with
their pre-defined AM strategy. In many cases they should just instantiate
a skeleton with inner components, and get as result a composite component
exhibiting one or more self-management behaviours.

• GCM expert users. They are supposed to use behavioural skeletons overriding
the AM management strategy. the personalization does not involve the ABC,
thus does not need specific knowledge about GCM membrane implementation.

• GCM skeleton designers. They are supposed to introduce new behavioural
skeletons or classes of them. At this end, the design and development of a
brand new ABC might be required. This may involve the definition of new
interfaces for the ABC, the implementation of the ABC itself together with its
wiring with other controllers, and the design and wiring of new interceptors.
This requires a quite deep knowledge of the particular GCM implementation.

4.2 GCM Specification and Behavioural Skeletons

In terms of the GCM specification [13], a behavioural skeleton is a particular com-
posite component exhibiting an autonomic conformance level strictly greater than
one, i.e. a component with passive or active autonomic control. The component
exposes pre-defined functional and non-functional client and server interfaces ac-
cording to the skeleton type; functional interfaces are usually collective and con-
figurable. Since skeletons are fully-fledged GCM components, they can be wired
and nested via standard GCM mechanisms. From the implementation viewpoint, a
behavioural skeleton is a partially defined composite component, i.e. a component
with placeholders, which may be used to instantiate the skeleton. As sketched in
Fig. 1, there are three classes of placeholders:

1. The functional interfaces S and C that are GCM functional interfaces, which
may be equipped with monitoring interceptors controllers (currently objects).

2. The AM that is a particular inner component. It includes the management
plan, its goal, and exported non-functional interfaces.

3. Inner component W, implementing the functional behaviour.

The orchestration of the inner components, and thus ABC functionality, is implicitly
defined by the skeleton class. In order to instantiate the skeleton, placeholders
should be filled with suitable entities. Observe that just entities in the former two
classes are skeleton specific.

In addition to a standard composite component, a behavioural skeleton is further
characterized by a formal (or semi-formal) description of the component behaviour.
This description can be attached to the ADL component definition via the standard
GCM ADL hook, which can be used with any behavioural specification language.
In this regard, a description based on the Orc language have been proposed within
GridCOMP and CoreGrid projects [1, 5].

5 About GCM collective communications

The GCM specification includes structured communications, i.e. the support for
many-to-one and one-to-many communications on top of both remote method in-
vocation and data streaming. In particular, the current GCM specification [13],
introduces a set of collective interfaces, so-called multicast and gathercast (see [13]).
GridCOMP FP6-034442 page 9 of 18 D.NFCF.01
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Figure 1: GCM implementation of functional replication. ABC = Autonomic Be-
haviour Controller, AM = Autonomic Manager, W = Worker component, S = Server
interface (one-to-many communication e.g. broadcast, data-parallel scatter, uni-
cast), C = Client interface (many-to-one communication e.g. from-any, data-parallel
gather, reduce, select).

These interfaces aim to split-and-distribute/gather-and-join data in a flexible way
(through the generalized aggregation mechanism). The two operations are defined
as functions T→ list of T, and vice-versa, and can be used with both single RPC
call or stream items. However, they hardly capture typical operations performed
on stream computations because they can hardly deal with many, possibly consecu-
tive, stream items (or RPC calls) in stateful way. As an example a typical operation
on streams consist in dispatching successive stream items to different components.
This operation, usually called unicast, is naturally described by a stateful function
stream of T → T, that can be hardly matched with multicast GCM type.

Within this deliverable we elaborate on the role of stream interfaces in GCM and
we introduce the definition and the implementation of unicast in GCM prototype.
The unicast interface is part of a set of interfaces specifically designed to cope with
the distribution of consecutive stream items from a single source interface toward
a target interface dynamically chosen in set. The interfaces in the set typically
belong to different components, while the target interface is dynamically chosen
at the dispatch time of each item knowing the history of previous choices. As
an example, this enable to dispatch consecutive items in a stream (or consecutive
calls of a method) toward different components in round-robin fashion. Previously
mentioned from-any interface covers the collection of items in a similar fashion.
Several variants of this kind of interfaces can be imagined, as an example unicast-
on-demand, from-any-unordered, and from-any-ordered. Previous works with the
ASSIST coordination language proved the expressiveness and efficiency of these
kind of interfaces [22, 3, 4].

6 GCM Autonomic Features Implementation

6.1 Autonomic Behavior Controller

According to the GCM specification, a component with passive autonomic behavior
must expose the interfaces of some standard basic controllers (component, attribute,
binding content and lifecycle controller) and a AutonomicBehaviorController2,
interface:

2The AutonomicBehaviorController was formerly named AutonomicController.
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Monitor
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Figure 2: Relation between AM and ABC.

interface AutonomicBehaviorController {

String[] listAutonomicOperations();

any execOperation(String op, any ...);

}

The listAutonomicOperations method lists all the autonomicity-handling op-
erations provided by the controller. Each operation returned by this method is
executed by invoking the execOperation method, where the first argument is the
identifier of the operation as returned by the listAutonomicOperations method
and the second (vararg) argument is a list of parameters supplied to the operation.

As sketched in Fig. 2, the ABC implements the basic operations for compo-
nent monitoring and steering. These operations are used within the AM to realize
autonomic control strategies.

The implementation choices of ABC are targeted to the ProActive implementa-
tion of the GCM. In this deliverable, two stable implementations of this interface
are provided: one for primitive components and one for composite components, and
in particular for behavioural skeletons.

In the case of primitive component, the interface enables the programmers to
expose primitive component monitoring and steering features. At this end, a basic
implementation of the ABC for primitive component is provided. This controller,
located in the component membrane, acts as a proxy for the component-specific
implementation of the component monitoring and steering features. In the case of
primitive components, the ABC controller consists of a controller template, since
no general implementation can be given. The ABC template should be fully im-
plemented by the component designer. The design of ABC controller is compliant
with the design of other controllers, e.g. the BC for primitive components. Actu-
ally, the only required non-functional interface for this ABC implementation is the
Component controller interface.

Besides the primitive components implementation, a general implementation of
the ABC for composite components is provided for each skeleton class (e.g. func-
tional replication). In this case, since each skeleton (class) exhibits a predetermined
semantics, it is possible to provide the component designer with a fully implemented
ABC controller, and then to considerably ease component designer task.

The goal of this implementation is two-fold: first, to provide an implementation
of skeletons belonging to functional replication class for composite components (in
particular for the farm skeleton); and to show how ABC ports can be used within
AM strategies.

Given a primitive component with several server and client interfaces, the final
goal is to provide a mechanism to increase its parallelism degree (and reduce it
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later, if necessary) in order to face sudden increases/decreases in its workload.
Increasing the parallelism of a primitive component means duplicate it and pro-

vide in some way the mechanisms needed to dispatch server interface invocations
and to collect client interfaces invocations. To provide a uniform mechanism to
manage the parallelism degree of a primitive component, we decided to force the
component developer to wrap the original component inside a composite compo-
nent with the same interfaces of the original one, the generic composite component
controllers and the specific ABC controller (see Fig. 3). Being a passive GCM
component, the AM is not present at this stage.

PC

ABC

Functional
server port

Functional
client port

Non-functional
server ports

PC

PC

ABC

Functional
server port

Functional
client port

Non-functional
server ports

Figure 3: The wrapping of a primitive component PC and its duplication

The ABC controller exposes the server interface described above with three
autonomic operations: one to query the average queueing time of the last five calls
of an observed server interface and two to respectively increase and decrease the
parallelism degree of the component (i.e. add/remove copies of the original primitive
component). While the monitoring of the functional server interfaces can be easily
implemented exploiting the interception mechanisms provided by ProActive, the
run-time modification of the content of a component must be carefully planned. In
the following, the implementation of the increase parallelism operation is discussed.

The addition of a primitive component to a running one requires the reconfigu-
ration of part of the application. Two distinct scenarios are possible:

1. a primitive component must be wrapped in a composite one containing the
original component and a new copy, with all the required mechanisms in the
composite component membrane;

2. a new instance of a primitive component must be added to a composite one
already containing several copies of the primitive component.

The first scenario corresponds to increase the parallelism degree from 1 to 2, while
the second one to increase the parallelism degree from n to n+1 (with n > 1). The
critical part of the whole procedure corresponds to the first scenario. Stopping a
primitive component and creating a new composite component are not difficult to
implement, but modifying at run-time the content of components is difficult.

In its basic form, this operation adds an exact copy of the original primitive
component, inside the composite component. The sequential steps performed by
this operation are depicted in Fig. 4:

1. The composite component is stopped, through its lifecycle controller. This
causes the stop of the inner component(s) as well, but the membrane is still
working, and the incoming functional/non functional calls are correctly en-
queued in the queque of the ProActive active object implementing the mem-
brane. Note that, according to the ProActive implementation of composite
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Figure 4: The sequence of actions implemented by ABC to create a new copy of
the primitive component.

components, the incoming non functional calls are still served when the com-
ponent is stopped.

2. The type of the primitive component is retrieved and a new instance is created
and added to the composite one.

3. A new collective client interface is created for each functional server interface
of the primitive component (which have a corresponding server interface in
the composite component’s membrane). This (internal) interface requires a
particular management in the ProActive implementation of the membrane. It
is possible to modify such behavior to manage the scheduling of the incoming
calls. There is not an equivalent internal collective server interface at this
point, because there are no particular implementation issues in connecting
several client interfaces (from the primitive components) to a server interface
(the original internal interface in the membrane). Moreover, we decided not
to force the wrapping composite to have external multicast interfaces.

4. The new and old component interfaces are bound to the interfaces in the
membrane of the composite component, and the whole component is restarted.

6.2 Autonomic Manager

A GCM component with active behavior must expose the component and some
basic controllers (AC, BC, CC, LC) along with two additional interfaces:

interface AutonomicServerManager {

any commitContract(String qosContract);

}

interface AutonomicClientManager {

any raiseViolation(any violationId);

}

The commitContract method takes a QoS contract as input, and activates the
steering of the behavior of a component to adapt itself to the requirements of the
contract. If at runtime this contract is not respected, the raiseViolation method
is used to signal this event.

The Autonomic Manager entity is responsible for the strategy to enforce at run-
time a particular QoS contract. In doing so, it exploits the component’s Autonomic
Behavior Controller in order to inspect the non-functional status of the components
and to trigger corrective actions to respect the contract. Logically, it is part of the
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membrane of a component because it is involved with the non-functional manage-
ment, but it should have its own lifecycle, independent from the lifecycle of the
component it is attached to.

An Autonomic Manager for the farm-like composite component discussed in the
previous section has been implemented. The AM is implemented as a special inner
component of the composite one, in such a way to:

• expose non-functional client interfaces (e.g. AutonomicClientManager) which
can not be specified in the current ProActive implementation;

• exhibit a lifecycle independent from the lifecycles of the primitive components.

AM

ABC

Non-functional
server port

Non-functional
client port

Non-Functional
server ports

WFunctional
server port

Functional
client port

Figure 5: The component in Fig. 3 with the Autonomic Manager.

The AM is connected to the ABC through an additional binding to an internal
server interface on the farm component membrane. This binding is exploited to
invoke the ABC specific operations. Moreover, all the composite components ex-
hibiting an active autonomic behaviour, thus including an AM, have a customized
lifecycle controller (LC). This is mainly due to the fact that the standard GCM-
ProActive LC cannot selectively stop the inner components. The customization
enable to stop all the inner component but the AM, which cannot be stopped be-
cause it is driving the component reconfiguration.

7 Preliminary Experiments

In this section we present preliminary experiments of the farm behavioural skeleton.
These experiments aim to evaluate basic farm behaviour skeleton functionality and
speedup. All the experiments have been conducted using a cluster with 9 nodes: one
gateway/client/management node and eight processing nodes. Each node consists
of two (hyper-threaded) 2Ghz Xeon CPUs and 1Gbyte DDR400 RAM on-board.
The cluster uses for the internal communications Fast-Ethernet adapters (100 Mbit-
s/s). All the cluster nodes run Fedora 5 Linux operating system. The kernel version
installed during the test sessions was the 2.6.20-1.2316 with the SMP support.
The ProActive jar version used was the 3.2 and the other jars used were the ones
bundled with the ProActive distribution. All the experiments were performed using
rmissh as ProActive communication protocol. The GCM code used in the exper-
iments is described in [2]. The experiments were performed using several different
computation to communication time ratio (i.e. computational grain). The results
reported in Fig. 6 and Fig. 7 show that good speedups can be achieved provided
the workers exhibit a large grain. Currently, this seems to be largely due to some
inefficiency in the ProActive communication machinery (that relies on Java RMI
and Java serialization mechanism). As evident from Fig. 8, we currently succeeded
to saturate just a wee fraction of the theoretical network bandwidth. In this regard,
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Figure 6: Speedup of the farm skeleton with respect to the number of workers.

the well-know Java serialization inefficiency is not likely to be the prominent cause
of the poor communication throughput. As a matter of fact, the communication
throughput figures shown Fig. 8 for native types (e.g. int) and full-fledged objects
(e.g. java.lang.Integer) do not significantly differ, and both of them are well be-
low expected values. We expect to further investigate the phenomena together with
WP2 project partners. Also, we are currently planning a new set of experiments
in order to evaluate behaviour skeleton reconfiguration overhead and re-activeness,
i.e. the ability of behavioural skeletons to drive timely and low-latency parallelism
degree variation to address non-functional requirements [7].

8 Conclusion

The challenge of autonomicity in the context of component-based development of
grid software is substantial. Building into components autonomic capability typi-
cally impairs their reusability. We have proposed behavioural skeletons as a com-
promise: being skeletons they support reuse, while their parametrization allows
the controlled adaptivity needed to achieve dynamic adjustment of QoS while pre-
serving functionality. We have described how these concepts can be applied and
implemented within the GCM. We have introduced a significant set of skeletons,
together with their self-management strategies. We presented the GCM implemen-
tation of a class of those (functional replication class), that have been exemplified
via the farm skeleton. The presented behavioural skeletons have been implemented
in GCM-ProActive [10], in the framework of the WP3 of the GridCOMP project
and are currently under extensive experimental evaluation. Preliminary results,
confirm the feasibility of the approach.
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[8] F. André, J. Buisson, and J.-L. Pazat. Dynamic adaptation of parallel codes:
toward self-adaptable components for the Grid. In Proc. of the Intl. Workshop
on Component Models and Systems for Grid Applications, CoreGRID series.
Springer, Jan. 2005.

[9] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schütt. On adaptability in
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