
Project no.FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component
platform for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.NFCF.02 – NFCF early prototype
(with basic non functional features)

Due date of deliverable: May 31th, 2007

Actual submission date: June 26th 2007

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: UNIPI

Project co-funded by the European Commission within the Sixth Framework Programme
(2002–2006)

Dissemination level
PP Restricted PP

Keyword list: autonomic management, component controller, GMC, task farm
Responsible Partner: UNIPI

MODIFICATION CONTROL
Version Date Status Modifications made by

0 25-06-2007 Draft Marco ALDINUCCI
1 04-07-2007 Draft Marco ALDINUCCI
2 11-07-2007 Draft Marco ALDINUCCI

Deliverable manager

• Marco Aldinucci, UNIPI

List of Contributors

• Sonia Campa, UNIPI

• Patrizio Dazzi, ISTI-CNR

List of Evaluators

• Françoise Baude, INRIA

• Rajkumar Buyya, U. MELBOURNE

Executive Summary
The D.NFCF.01 deliverable released in the context of the GridCOMP project [1],

provides an architectural specification of the non-functional component subsystem
of GCM and introduce the behavioural skeleton framework as an abstraction for
leading the development of GCM applications. A behavioural skeleton exploits two
levels of adaptivity: i) a passive level, in which autonomic operations are provided as
a set of limited and well-defined primitives; ii) an active level, in which the adaptive
behavior of the component is leaded by a manager who takes care of planning and
taking adaptive decisions. A user can write her autonomic application on top of
both layers, depending on the level of autonomicity he needs.
While the D.NFCF.01 focuses on the general structure of behavioural skeletons, this
deliverable aims at presenting a first prototype of such autonomic subsystem on top
of which we have developed some applicative examples for structuring a parallel
application through the proposed framework.
In particular, the deliverable focuses on different implementations of the farm skele-
ton, a well-known pattern of parallelism we have implemented in a variety of use
cases within the prototype, as a readily usable adaptive component, by exploiting
both ProActive collective interfaces and single server interfaces.

The architectural aspects of the prototype has been give in in the D.NFCF.01
deliverable to which this tutorial is consequently related. The code sources have
been distributed as a zip archive with the current document.

GridCOMP FP6-034442 page 2 of 24 D.NFCF.02

Contents

1 Introduction 4

2 Implementing an asynchronous farm using the Multicast interface 4
2.1 Structure of the package multicusecase 5
2.2 Description of the application . 5
2.3 Definition and implementation of a user-defined controller 8
2.4 Implementation classes . 9

3 Implementing a synchronous farm using the Multicast interface 10
3.1 Description of the application . 10
3.2 Implementation classes . 12
3.3 Observations . 13

4 Implementing a farm by a user-defined proxy: passive level 13
4.1 Structure of the package passivefarm 13
4.2 Description of the application . 13
4.3 Implementation details . 17
4.4 Summarizing the general rules . 17

5 Implementing a farm by a user-defined proxy: active autonomic
control 18
5.1 Structure of the package activefarm 18
5.2 Description of the application . 18
5.3 The implementation class . 21
5.4 Summarizing the general rules . 22

6 How to compile 23

7 How to run the applications 23

GridCOMP FP6-034442 page 3 of 24 D.NFCF.02

1 Introduction

The objective of this tutorial is to illustrate how to define, to describe, to compile
and to run an autonomic application in which autonomic components and their
related autonomic controllers can be easily configured.

The tutorial offers four programming experiences distributed as a zipped archive
file within this document. The examples have been developed on top of the be-
havioural skeleton subsystem we provide in a prototype version. All the sample
applications focus on the implementation of an application using a task farm for
distributing working tasks. At first, the farm skeleton component has been defined
by implementing a multicast interface natively provided by ProActive for distribut-
ing the tasks to a set of workers (sub-components). Since both the management
policies and the implementation related to these interfaces has revealed to be in-
adequate to fully express the behavioural skeleton specification (particularly, they
do not support stream/event communication), we have provided a subsystem in
which a basic implementation of the farm component can be used, extended and/or
customized by the user. The use cases here presented can be summarized as follows:

• an autonomic application in which the component farm is implemented by
using the collective server interface Multicast natively offered by ProAc-
tive; in this version, a stream of input tasks is emulated through arguments
given to the multicast interface and the multicast interface methods do not
return values in order to fully emulate a stream communication (package
multicusecase in folder MulticastProj);

• an autonomic application in which the component farm is implemented by
using the collective server interface Multicast that exposes synchronous in-
vocations, i.e. its methods return values (package multicusecaseSynch in
folder MulticastProj);

• an autonomic application in which autonomicity is exploited at a passive level,
allowing the interaction with an autonomic controller to which the user can
ask for increasing/decreasing the parallelism degree by manually pushing com-
mands from the shell (package passivefarm in folder Passive);

• an autonomic application in which autonomicity is exploited at an active level.
A component manager takes care about monitoring the overall computation
time and it increases or decreases the parallelism degree (interacting with the
autonomic controller) in order to keep the statically given QoS requirements
(package activefarm in folder Active).

MulticastProj, Passive and Active represent an Eclipse Project each and
they all use as required project on the build path the OrgImport folder content. In
other words, OrgImport contains the “core” classes and files for the development
of GCM autonomic component applications, while the other projects represent the
use case we will detail in this tutorial.

2 Implementing an asynchronous farm using the
Multicast interface

The main goal of the experiments included in the package multicusecase is to
implement a farm in which a stream parallel computation is emulated by means of
a method call to the native multicast interface provided by ProActive. In order to
fully describe a stream communication, each method call to the multicast interface
returns a void type.
GridCOMP FP6-034442 page 4 of 24 D.NFCF.02

2.1 Structure of the package multicusecase

This package is composed by 4 sub-packages, as detailed in Tab. 1

Name of the Description of the sub-package
sub-package
adl contains the ADL descriptors configuring the

application (with .fractal extension)
descriptor contains the XML files and the implementation files

implementing the AutonomicController
impl contains the user java implementation classes
itf contains the user java interface classes

Table 1: Composition of the multicusecase package

2.2 Description of the application

The application is depicted in Fig.1

Server
server.fractal

Server
server.fractal

Server
server.fractal

Producer
producer.fractal

testcase.fractal
multicastComposite.fractal

Figure 1: Asynchronous farm application

The application component (described in the testcase.fractal file) exposes a
server interface offering a service: each invocation to such server interface activates
a Producer (described by the producer.fractal file) component that is in charge
of managing the stream of requests to be sent to the farm. The stream is emulated
by means of lists of tasks. The farm is represented by the composite component
described in the multicastComposite.fractal file; it exposes a server interface
offering a (parallel) service through a multicast interface and includes a number of
sub-components implementing the workers of the farm. Each request sent to the
composite component through a method call to the multicast interface provides a
list of tasks as arguments: such tasks are scheduled among the available workers
exploiting the round-robin policy natively offered by ProActive.

Notice that this structure is simpler than the one proposed in the D.NFCF.01
document because the goal of this application is to shape how multicast interfaces

GridCOMP FP6-034442 page 5 of 24 D.NFCF.02

work and how they can be used to describe our farm component. In the next section
we will provide a more complex structure example.

Pragmatically, the ADL file testcase.adl included into the adl package is the
file describing the application and it is structured as follows.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="multicusecase.adl.testcase">

<interface signature="multicusecase.itf.Producer"

role="server"

name="runTestItf"/>

<!-- the producer component -->

<component name="tester"

definition="multicusecase.adl.producer"/>

<!-- second component: the farm -->

<component name="multicastComposite"

definition="multicusecase.adl.multicastComposite"/>

<!-- the internal bindings -->

<binding client="this.runTestItf"

server="tester.runTestItf"/>

<binding client="tester.clientItf"

server="multicastComposite.multicastServerItf"/>

<!-- declare the type of the component -->

<controller desc="composite"/>

</definition>

The first line declares the name of the current file in the context of the package.

<definition name="multicusecase.adl.testcase">

A composite component definition is represented by:

• the interface(s) the component offers. As mentioned above, our application
offers just a server interface (the one that we will call in order to get the ap-
plication running), whose name is runTestItf and the signature is defined in
the java class multicusecase.itf.Producer. These information are detailed
by the interface tag:

<interface signature="multicusecase.itf.Producer"
role="server"
name="runTestItf"/>

• a set of references to the ADL files describing the inner components (one per
each inner component). The entry describing each sub-component (the pro-
ducer and the farm in our case) is given by the component tag and it specifies
the logic name of the component and the path of the ADL file describing it.
As an example,

<component name="tester"
definition="multicusecase.adl.producer"/>

GridCOMP FP6-034442 page 6 of 24 D.NFCF.02

defines a component whose logical name in the context of this file is tester,
and whose ADL file descriptor is included in the multicusecase.adl package
and is named producer.adl.

• the bindings between the current internal interfaces and the sub-components.
In our case, there is just one internal binding between the internal client in-
terface runTestItf and the producer’s server interface runTestItf belonging
to the logical sub-component named tester.

<binding client="this.runTestItf"
server="tester.runTestItf"/>}

By looking backward at the definition of the sub-components, you will notice
that tester is the producer sub-component and you will need to access the file
multicusecase.adl.producer to appreciate the details of its server interface
named runTestItf.

• the external bindings between the inner components. Again, in this piece of
code you will have a sequel of <binding . . .> tags in which a server and a
client interface will be exploited, on the basis of the static binding that your
application will set up at launching time.

In our case, the client interface of the sub-component tester named clientItf
will be linked to the server interface named multicastServerItf belonging
to the multicastComposite subcomponent:

<binding client="tester.clientItf"
server="multicastComposite.multicastServerItf"/>}

At the end, the type of the native component application’s controller is de-
clared as been composite.

The ADL description of the farm component The farm component is de-
scribed in the multicusecase.adl.multicastComposite file.

<definition name="multicusecase.adl.multicastComposite">

<!-- interface declarations ->

<interface signature="multicusecase.itf.MulticastTestItf"

role="server"

name="multicastServerItf"

cardinality="multicast"/>

<!-- inner subcomponents ->

<component name="server0" definition="multicusecase.adl.server(0)"/>

<component name="server1" definition="multicusecase.adl.server(1)"/>

<component name="server2" definition="multicusecase.adl.server(2)"/>

<component name="server3" definition="multicusecase.adl.server(3)"/>

<component name="server4" definition="multicusecase.adl.server(4)"/>

<!-- internal bindings ->

<binding client="this.multicastServerItf" server="server0.serverItf"/>

<binding client="this.multicastServerItf" server="server1.serverItf"/>

<binding client="this.multicastServerItf" server="server2.serverItf"/>

<binding client="this.multicastServerItf" server="server3.serverItf"/>

<binding client="this.multicastServerItf" server="server4.serverItf"/>

<!-- reference to the xml file describing the Autonomic controller for

GridCOMP FP6-034442 page 7 of 24 D.NFCF.02

this component->

<controller desc="/multicusecase/descriptor/

AutonomicControllerMulticastItf.xml"/>

</definition>

At this point, you should be able to understand the logic behind these definitions.
We will just point out two entries:

• the multicastComposite component exports a server multicast interface only,
and such type of interface must be declared. Thus, in the <interface . . . >
tag, it must be declared that the cardinality of the interface is multicast
(instead of the default singleton).

• in the controller section entry we want to specify our-own set of con-
trollers. The file AutonomicControllerMulticastItf.xml appearing in the
<controller . . . > entry is an XML file (detailed later) containing a set of
references to the interfaces and the classes implementing the component’s
controllers.

All the other components included in the application are primitive components.
We will detail the component description representing a worker of the farm but the
same considerations apply also for the definition of the Producer component.

Each worker is implemented by a primitive component; the ADL description of
such component is given in the multicusecase.adl.server file.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="multicusecase.adl.server" arguments="id">

<!-- the server interface offering a service ->

<interface signature="multicusecase.itf.ServerTestItf"

role="server"

name="serverItf"/>

<!-- the class implementing the interface ->

<content class="multicusecase.impl.ServerImpl"/>

<!-- the controller type->

<controller desc="primitive"/>

</definition>

The file contains the definition of the server interface used for accepting new
activation requests from outside. Note that no bindings need to declared since
the wiring between the server interfaces and outer client interfaces have already
been declared in the main description file testcase.adl. In the case of a primitive
component, the tag <content class=. . . > must to be used to specify the Java class
implementing the component business code.

2.3 Definition and implementation of a user-defined controller

The description ADL file multicastComposite.fractal, contains the declaration
of the set of controllers to be associated to the composite component. By specifying
the entry
<controller

desc=’’/multicusecase/descriptor/AutonomicControllerMulticastItf.xml’’>

GridCOMP FP6-034442 page 8 of 24 D.NFCF.02

the framework associates to the given component all the interfaces and the imple-
mentations of controllers it needs, as specified in the XML file.
In detail, the file AutonomicControllerMulticastItf.xml associates to the mul-
ticast controller of the composite component, the native controller MulticastCon-
trollerImpl.

The native version of the controller is in charge of applying a proper distribution
policy to each list given as input task to the invoked multicast interface method it
controls. As a consequence, the 1 : N communication pattern a multicast interface
exploits, is strictly applied to the single list of tasks and consecutive method invo-
cations on the same interface are independent the one with respect to the other, i.e.
they are stateless. Nevertheless, in the perspective of implementing a stream parallel
communication pattern, we need to alter the multicast interface behaviour in order
to express a 1 : 1∗ distribution (one to one chosen in a set, a.k.a. unicast) communi-
cation pattern, in which the destination of each task can be dynamically defined on
the basis of interface state. The state may keep the trace of the distribution of pre-
vious items in the stream and the current status of the workers (sub-components).
The decision process for the distribution of each task is a key issue for the defi-
nition and the exploitation of both the functional replication skeletons defined in
D.NFCF.01 and future autonomic features. As a first approximation of a more
flexible multicast controller, we provided a new implementation of this controller
interface. In particular, the native version of the controller offers a distribution
policy in which, for each method call, the distribution of the tasks in the input
list always starts from the same component: in our version, the multicast controller
records the last sub-component (i.e. worker) it sent a tasks and, at the next method
call, it deliver the task to the successive one. The class implementing the new mul-
ticast controller is the multicusecase/descriptor/RoundRobinPolicy.java.
If you want to switch from one version of the multicast controller implementation,
to the other one, you simply need to specify the actual implementation between the
<implementation>. . .</implementation> tag related to the MulticastController
interface.

<controller>

<interface>

org.objectweb.proactive.core.component.controller.MulticastController

</interface>

<implementation>

multicusecase.descriptor.RoundRobinPolicy

</implementation>

</controller>

Notice that this version of the multicast controller does not fully implement the
unicast communication pattern we actually need for expressing stream parallelism,
because we are not concretely able to overtake the fact that the multicast interface
has been conceptually designed to support a list-based pattern of parallelism. This is
why we needed to implement a user-defined proxy on top of a single server interface,
as will explained in details in Sec. 4 and Sec. 5.

2.4 Implementation classes

The main class Test.java is available in the main package (multicusecase). The
application invokes a number of method calls to the server interface of the Producer
component testConnectedServerMulticastItf, by passing the number of tasks
to be produced (i.e. the length of the list to be given as argument to the multicast
interface) and the size of each tasks (lists of WrappedInteger values).

In between the activations of the producers, the autonomic controller (imple-
mented by the class AutonomicControllerMulticastItfImpl) is asked to increase
GridCOMP FP6-034442 page 9 of 24 D.NFCF.02

the parallelism degree by invoking the operation "increaseParallelDegree" as a
primitive one (passive level).

Each worker is implemented by the class ServerImpl, that implements the in-
terface ServerTestItf. Such interface exposes the method

public void getService(WrappedInteger a);

since the multicast interface MulticastTestItf to which it is bound exposes the
method

public void getService(List<WrappedInteger> a);

Note that returning a void type is the way we use to emulate a stream communi-
cation.

The service offered by the worker is a dummy function lasting a couple of seconds.
By running the application you will realize that if the tasks pushed into the

farm (long values passed through the multicast interface method’s input list) are
less than the number of available workers, you will not be able to improve the
overall service time. Increasing the parallelism degree won’t help in getting a better
performance. In fact, the distribution policy is very strict in this sense: each task
must be a finite list of elements and these elements are distributed as a whole. Then,
the availability of computing elements does not depend on the adaptive behavior
of the component but on the structure of the single task. This is primarily why we
worked on a way to adapt the component behavior by looking at the application’s
features instead of the single task structure (see Sec. 4 and 5). A consequence of
the fact that a multicast interface works on a task base (i.e. defines its distribution
policy on the basis of the single task structure) is that successive invocations of the
interface methods will be serialized, loosing the ability to express parallelism among
task, i.e. stream-parallel computations.

3 Implementing a synchronous farm using the Mul-
ticast interface

The following application is structurally quite similar to the previous one but in
this case the method calls to the multicast interface are plain RPC method calls,
i.e. they return a value to the caller. Moreover, before returning the service result
to its caller (the Producer), each worker invokes a method call on a server interface
belonging to a component (the Collector) outside the farm, thus augmenting the
synchronicity level between sub-components.

3.1 Description of the application

The application is quite similar to the one described in Sec. 2.2, but the overall
application is represented by three stages: the Producer, the composite component
representing the farm and exposing the multicast interface and the Collector.
The Collector is described by the collector.fractal file and exposes a server
interface to which the farm sends all the results computed by the inner worker by
invoking the proper Collector’s server interface.

The overall application is depicted in Fig.2
The farm has been detailed in Fig.3: in this version, the composite component

exposes two interfaces, a multicast server interface distributing the work load to the
inner sub-components (the workers) via a round-robin policy and a client interface
to which all the sub-components will be bound to send their results to the collector
component.
GridCOMP FP6-034442 page 10 of 24 D.NFCF.02

Producer
producer.fractal

testcase.fractal

Collector
collector.fractal

Farm
multicastComposite.fractal

Figure 2: Application structure

Server

Server

Server

multicastComposite.fractal

Figure 3: Structure of the farm component

We will detail the testcase.fractal component, just to clarify the concept.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="multicusecaseSynch.adl.testcase">

<interface signature="multicusecaseSynch.itf.Producer"

role="server"

name="runTestItf"/>

<!-- the producer component -->

<component name="tester"

definition="multicusecaseSynch.adl.producer"/>

<!-- second component: the farm -->

<component name="multicastComposite"

definition="multicusecaseSynch.adl.multicastComposite"/>

<!-- the collector component -->

<component name="collector"

definition="multicusecaseSynch.adl.collector"/>

<!-- the inner bindings -->

<binding client="this.runTestItf"

server="tester.runTestItf"/>

<binding client="tester.clientItf"

server="multicastComposite.multicastServerItf"/>

GridCOMP FP6-034442 page 11 of 24 D.NFCF.02

<binding client="multicastComposite.CollectorItf"

server="collector.runTestItf"/>

<controller desc="composite"/>

</definition>

As you can see by comparing this file with the testcase.fractal presented in
Sec. 1, the only major differences between these two versions are represented by the
tags defining the collector component:

• a <component . . . > tag for declaring its logic name and the .fractal file de-
scribing it

<component name="collector"
definition="multicusecaseSynch.adl.collector"/>

• and a <binding . . . > tag for binding the client interface belonging to the farm
component to the collector’s server interface.

<binding client="multicastComposite.CollectorItf"
server="collector.runTestItf"/>

The collector component is a primitive component exposing a server interface. Its
Fractal description file is given as follows (collector.fractal):

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="multicusecaseSynch.adl.collector">

<interface signature="multicusecaseSynch.itf.CollectorItf"

role="server"

name="runTestItf"/>

<content class="multicusecaseSynch.impl.CollectorImpl"/>

</definition>

3.2 Implementation classes

The existence of the collector implies the introduction of client interface on the
component implementing a worker to be internally bound to the client interface
provided by the farm. Thus, the multicastComposite.fractal definition file,
exposes

• a multicast server interface as in Sec. 2.2

<interface signature="multicusecaseSynch.itf.MulticastTestItf"

role="server"

name="multicastServerItf"

cardinality="multicast"/>

• and a client interface that will be bound to the collector’s server interface
runServerItf,

<interface signature="multicusecaseSynch.itf.CollectorItf"

role="client"

name="CollectorItf"

cardinality="singleton"/>

GridCOMP FP6-034442 page 12 of 24 D.NFCF.02

as described in the testcase.fractal file. Note that the client interface is a
singleton interface.

Each server component representing a farm is described in the file server.fractal,
quite similar to the one detailed in Sec. 2.2 but also offering a client interface

<interface signature="multicusecaseSynch.itf.CollectorItf"

role="client" name="CollectorItf" />

that will be bound in the farm component definition file to the farm’s client interface.

<binding client="server0.CollectorItf" server="this.CollectorItf"/>

<binding client="server1.CollectorItf" server="this.CollectorItf"/>

<binding client="server2.CollectorItf" server="this.CollectorItf"/>

<binding client="server3.CollectorItf" server="this.CollectorItf"/>

<binding client="server4.CollectorItf" server="this.CollectorItf"/>

3.3 Observations

In both the synchronous and asynchronous versions of the application, we have a
number of problems due to the emulation of a stream of tasks through a (bounded)
set of structures that need a fixed amount of memory.
Generally speaking, we have had two kinds of problems:

• OutOfMemoryException raised each time we try to emulate a very long stream:
this problem is probably due to the data structures (typically ArrayList) that
ProActive run-time system allocates to manage futures and/or data returns.
When the stream you want to emulate is too long, you may encounter this
kind of exception.

• NullPointerException raised when we try to access to values not readily
available: this problem is probably due to the way data are accessed before
they are ready. The waiting behaviour of the read operations seems to be not
always safe.

4 Implementing a farm by a user-defined proxy:
passive level

The main goal of this application is to implement a farm in which a stream parallel
computation is emulated by means of a method call to standard fractal/proactive
interfaces that distributes the method calls, in a round-robin fashion, to a set of
components acting as farm workers.

4.1 Structure of the package passivefarm

This package is composed by 4 sub-packages, as depicted in the table above, and
one more file (Main.java) needed to launch the application and interact with it.

4.2 Description of the application

The application component (described in the application.fractal file and de-
picted in the 5 figure) exposes a server interface offering a service: each invocation
to such server interface activates a Tester (described by the tester.fractal file)
component that is in charge of generating streams of requests to be sent to the
farm. Each stream consists in a certain number of functional method invocations.

GridCOMP FP6-034442 page 13 of 24 D.NFCF.02

Name of the Description of the sub-package
sub-package
adl contains the ADL descriptors configuring the application
deployment contains the deployment XML file
impl contains the user implementation class of the application
itf contains the user interface class of the application

Table 2: Composition of the passivefarm package

W

ABC

Functional
server port

Functional
client port

Non-functional
server ports

W

W

ABC

Functional
server port

Functional
client port

Non-functional
server ports

Figure 4: Passive Farm structure

The farm component (depicted in Fig. 4) consists in a composite component
which structure is described in the farm.fractal file; it exposes a server inter-
faces offering a service and contains a sub-component which can be replicated on-
demand by the Autonomic Behavior Controller (ABC). After their creation, the
sub-component duplicates are scheduled on virtual nodes whose names follow this
template: <original-subcomponent-name>-vn-<integer-number>. The ABC as-
sumes to find a deployment folder (called “Deployment”) outside of the main pack-
age (using the File System metaphor, the main application package and the de-
ployment folder have the same parent), inside the folder the ABC looks for the file
“deployment-descriptor.xml” and parse it searching virtual nodes matching the
template stated above. The ABC is present in the composite component membrane
even if the farm.fractal file does not directly specify a customized controller de-
scription file because it extends the AutonomicControllerForFarm.fractal ADL
file contained in the package

org.ercim.gridcomp.component.autonomic.controller.adl

where the information about the embedding of ABC is specified.
The method calls invoked on the farm component server interface are scheduled

among the available workers exploiting the round-robin policy. Each call is en-
queued into the local queue of the assigned worker. Each worker executes each
call en-queued inside its local queue eventually returning the result of the method
execution if the method return type is not void.

To clarify what we described, it can be useful to have a look at the ADL files
cited above. First of all the application.fractal one:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="passivefarm.adl.application">

<interface signature="passivefarm.itfs.Tester"

GridCOMP FP6-034442 page 14 of 24 D.NFCF.02

Tester

ABC

Farm

Worker

Worker

Figure 5: Application with the passive farm

role="server" name="runTestItf"/>

<!-- first stage: the tester -->

<component name="tester" definition="passivefarm.adl.tester"/>

<!-- second stage: the farm -->

<component name="farm" definition="passivefarm.adl.farm"/>

<!-- internal bindings -->

<binding client="this.runTestItf" server="tester.runTestItf"/>

<binding client="tester.collectiveClientItf" server="farm.serverItf"/>

<controller desc="composite"/>

<virtual-node name="application-node" cardinality="single"/>

</definition>

The definition tag, as usual, indicates the name of ADL file and bounds the
area in which the component definition tags must be specified. The first line inside
such area describes the external interface of the application component, its server
role, its signature and its name. Then two component tags are present, the former
refers to the tester component and the latter to the farm one. After, the binding
among the two internal components and the application one (clearly represented
by the this keyword) are specified. In the last part of the file are inserted the
description of component controllers and the information about virtual node for
the component deployment.

The tester is a primitive component, hence its ADL is quite simple:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="passivefarm.adl.tester">

<interface signature="passivefarm.itfs.Tester" role="server"

name="runTestItf"/>

<interface signature="passivefarm.itfs.ServerItf" role="client"

name="collectiveClientItf"/>

GridCOMP FP6-034442 page 15 of 24 D.NFCF.02

<content class="passivefarm.impls.TesterImpl"/>

<virtual-node name="application-node" cardinality="single"/>

</definition>

Indeed, inside the definition part there are only the declaration of component
external interfaces, the name of the java class implementing the component and
eventually the deployment information. Writing the ADL of the farm component
is still very simple, nevertheless it needs to pay more attention.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="passivefarm.adl.farm"

extends="

org.ercim.gridcomp.component.autonomic.controller.adl.\

AutonomicControllerForFarm">

<interface name="serverItf" role="server" contingency="mandatory"

signature="passivefarm.itfs.ServerItf" />

<component name="server"

definition="passivefarm.adl.server"/>

<binding client="this.serverItf"

server="server.serverItf"/>

<virtual-node name="farm-node"

cardinality="single"/>

</definition>

In this case the definition tag specifies an extends relationship between the
farm ADL file and the AutonomicControllerForFarm one, which has been designed
to ease the embedding of ABC inside components. It permits to avoid the controller
declaration inside the farm ADL file separating the architecture description issues
required for the autonomicity from the functional one. The following parts of the
ADL file are pretty trivial: the definition of an interface with the same role, signature
and contingency of the one exposed by the internal component, the embedding of
the replicable component (called server in this example), the binding between the
farm and server component and the deployment information.

The last ADL file defined in this example is server.factal. It describes the
structure of the primitive component inserted into the farm composite component
to be duplicated on demand by the ABC. In particular, the nature of its exter-
nal interface, the class containing the component “business–code” and deployment
information:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="passivefarm.adl.server">

<interface signature="passivefarm.itfs.ServerItf"

role="server" name="serverItf"/>

<content class="passivefarm.impls.ServerImpl"/>

<virtual-node name="server-node" cardinality="single"/>

</definition>

GridCOMP FP6-034442 page 16 of 24 D.NFCF.02

4.3 Implementation details

This component application is instantiated and executed by the Main class, imple-
mented by the Main.java file present in the main package (passivefarm). Once
started the Main class exploits a number of method calls to the server interface of
the Tester component (runTestItf), passing, as arguments, the number of tasks
to be produced (i.e. the number of method calls to invoke on farm server interface)
and the size of each task (lists of Integer values).

Between one activation and the next one of the Tester, the autonomic behavior
controller (implemented by the class AutonomicControllerForFarmImpl) of the
farm component is asked to increase (or decrease) the parallelism degree (number
of internal sub-components containing the “business–code” and acting as workers).
The operations “increaseParallelDegree” and “decreaseParallelDegree”) are
called through the invocation of the execOperation method, which can be manu-
ally triggered by the user via the the “+” and “-” keys (respectively), followed by
“Enter” key on the same terminal in which the application has been launched.

The farm internal component(s) “business–logic” is implemented by the class
ServerImpl, that implements the interface ServerItf. Such interface exposes the
method

IntWrapper compute(Vector<Integer> a)

Taking a vector of Integer as input, executing a dummy iterative function for each
Integer element and eventually returning a result that is a combination of the
results obtained for each Integer computed.

4.4 Summarizing the general rules

In the previous sections we described in deep an applicative testbed. It is made
by two main components, a tester and a farm. The farm parallelism degree can be
increased or decreased on demand simply invoking a non-functional method on an
ABC able to reconfigure the farm. The non-functional methods implemented by
the ABC are consistent with the GCM autonomic specification:

• String[] listAutonomicOperations(): method to obtain the list of non-
functional operations provided by the AB controller instance upon which it is
invoked.

• any execOperation(String op, params...): method to execute the non-
functional operation whose name is specified as first argument. The other
arguments consist of operation input parameters.

The farm is equipped with an ABC instance (AutonomicControllerForFarm1) of-
fering three non-functional operations:

• increaseParallelDegree;

• decreaseParallelDegree;

• JobEnqueuingTime.

This last one can be used to monitor the average time each component request
requires to be completed (completion time): the en-queuing time added to the com-
puting time. To use a farm in place of a primitive component in a Fractal/ProActive
application is quite easy, and can be done simply writing an additional ADL file
defining the farm and changing the ADL files referring to the replaced component
ADL substituting its name with the farm ADL name. To write the farm file the
programmers are required to follow simple rules:
GridCOMP FP6-034442 page 17 of 24 D.NFCF.02

• the definition tag must extends the AutonomicControllerForFarm defini-
tion

• the farm component must contain only one sub-component: the one to be
replicated

• the farm component must expose all the interfaces exposed by the internal
sub-component

This is what is needed to have a farm component in place of a primitive com-
ponent able to reconfigure itself. Nevertheless the reconfiguration activity must be
triggered by an external entity (passive farm). In the next section will be described
how to implement a farm able to trigger a reconfiguration action on itself given a
specific non-functional contract (active farm).

5 Implementing a farm by a user-defined proxy:
active autonomic control

The application presented in this section has a structure similar to the one presented
in the previous section, the main difference regards the way the farm reconfigures
itself. Indeed, if in the previous section is described how to replace a component
with a farm able to increase or decrease its parallelism degree on demand, in this
section is described how to replace a component with a self-reconfiguring farm.

5.1 Structure of the package activefarm

The structure of the application described here has a few differences w.r.t. the one
introduced for the passive farm. In this case the package is composed by 5 sub-
packages, as depicted in the table above, and one more file (Main.java) needed to
launch the application and interact with it.

Name of the Description of the sub-package
sub-package
adl contains the ADL descriptors configuring the

application
autonomics element contains the implementation of the

manager for this application
deployment contains the deployment XML file
impl contains the user implementation class of

the application
itf contains the user interface class of the application

Table 3: Composition of the activefarm package

5.2 Description of the application

The application component (described in the application.fractal file) contains
two components: client (described by the client.fractal file) and stage (de-
scribed by the composite stage.fractal file). client component is in charge
of generating a stream of requests to be sent to the stage one (the farm compo-
nent); The stream consists of functional method calls. The farm (its structure is
represented in Fig. 6) is represented by the composite component described in the
composite stage.fractal file:

GridCOMP FP6-034442 page 18 of 24 D.NFCF.02

AM

ABC

Non-functional
server port

Non-functional
client port

Non-Functional
server ports

WFunctional
server port

Functional
client port

Figure 6: Active Farm structure

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="activefarm.adl.composite_stage"

extends="activefarm.adl.customized_farm_with_manager">

<interface name = "server-compute"

role = "server"

contingency = "optional"

signature = "activefarm.itfs.Compute"/>

<component name="innerStage"

definition="activefarm.adl.server" />

<binding client="this.server-compute"

server="innerStage.server-compute" />

</definition>

Similarly to the application presented in Sec. 4 the farm component is imple-
mentable simply declaring for it the same interfaces the internal sub-component
exposes, embedding the proper “business–logic” component, performing internal
binding and declaring the ADL definition as an extension of a certain other ADL
definition. In the previous application the definition to be extended was fixed and
part of the autonomic framework (AutonomicControllerForFarm) whereas in this
case it must be properly written or at least customized. That’s because it contains
the reference to the ADL defining the autonomic manager, typically implemented
by the same programmer implementing the application. In this example the ADL
extended is activefarm.adl.customized_farm_with_manager:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL

2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="activefarm.adl.customized_farm_with_manager">

<component name="automan"

definition="activefarm.adl.customized_manager"/>

<binding client="automan.client-autonomic-controller"

server="this.autonomic-controller"/> <controller

GridCOMP FP6-034442 page 19 of 24 D.NFCF.02

desc="/org/ercim/gridcomp/component/autonomic/controller/

config/AutonomicControllerForFarm.xml"/>

</definition>

It contains the declaration of the autonomic manager component (automan),
the internal bindings and the controllers description. As we stated before this
file is not fixed and it is not provided with the autonomic framework however its
implementation is quite simple and, roughly speaking, the programmer can reuse
the same file written once and for all simply replacing the name of the manager
definition file with the one defining the manager the programmer wants to use.

The ADL file defining the autonomic manager of this example is the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL

2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="activefarm.adl.customized_manager" extends="

org.ercim.gridcomp.component.autonomic.manager.adl.\

AbstractAutonomicManager">

<content class=

"activefarm.autonomic_elements.FarmificationAutonomicManager"/>

</definition>

The structure of this file is quite simple: a definition tag extending the ADL file
AbstractAutonomicManager and the declaration of the class name containing the
autonomic manager implementation.

The AbstractAutonomicManager ADL file defines all the interfaces an auto-
nomic manager must have, namely a commit-contract server interface, two raise-
violation interface (an internal one with a server role and an external one with a
client role) and a client-autonomic-controller interface bound to the autonomic
controller of the composite component containing the autonomic manager.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name=

"org.ercim.gridcomp.component.autonomic.manager.adl.\

AbstractAutonomicManager">

<interface name = "commit-contract"

role = "server"

contingency = "option"

signature = "org.ercim.gridcomp.component.autonomic.manager.itf.\

AutonomicServerManager"/>

<interface name = "raise-violation"

role = "client" contingency = "optional"

signature = "org.ercim.gridcomp.component.autonomic.manager.itf.\

AutonomicClientManager"/>

<interface name = "internal-raise-violation"

role = "server"

GridCOMP FP6-034442 page 20 of 24 D.NFCF.02

contingency = "optional"

signature = "org.ercim.gridcomp.component.autonomic.manager.itf.\

AutonomicClientManager"/>

<interface name = "client-autonomic-controller"

role = "client"

contingency = "optional"

signature = "org.ercim.gridcomp.component.autonomic.controller.itf.\

AutonomicController"/>

<virtual-node name="autonomic-manager-node"

cardinality="single"/>

</definition>

The autonomic manager for the active farm of this example application is im-
plemented through the “FarmificationAutonomicManager” class, that extends the
“AbstractAutonomicManager” one and implements the abstract method

protected void enforcePerformanceContract(String qosContract)

that receives a performance contract as input and try to enforce it acting on the
ABC of the farm component for adjusting the parallel degree. Currently we are
investigating several possibilities about the structure of the performance contract.
Hence, in the current implementation of the autonomic support, the parsing and the
management of the qosContract should be implemented by the AM programmers.

All these steps of ADL files instrumentation, are required to insert the autonomic
manager and the ABC into the composite component and its membrane and creating
a binding between them.

5.3 The implementation class

The main class Main.java is available in the main package (activefarm). It instan-
tiate the application and start its life-cycle. The client component of the application
exploits a number of method calls to the server interface of the stage component
server-compute.

The autonomic manager (class AutonomicControllerForFarmImpl) of the farm
component monitors the average en-queuing time of the task computed by the farm
and asks ABC to increase (or decrease) the parallelism degree (number of available
workers) when the performance contract is not obeyed.

To measure the en-queuing time, the manager must activate the monitoring sup-
port, in fact during its initialization call the “JobEnqueuingTime” non-functional
operation with new Object[]{new Boolean(true)} as parameter. For each ob-
served method, in order to obtain the average completion time of the last 5 method
calls the manager invokes “JobEnqueuingTime” non-functional operation with “new
Object[0]{ObservedMethodName}” as parameter, where “ObservedMethodName”
is the name of the method the manager wants to obtain completion time. Each
worker is implemented by the class Server, that implements the interface Compute.
Such interface exposes the method

GenericTypeWrapper compute(Integer i)

The service offered by the worker is a dummy iterative function.

GridCOMP FP6-034442 page 21 of 24 D.NFCF.02

5.4 Summarizing the general rules

In this section we have described how to implement a component application in
which in place of a primitive component the programmer needs an autonomic farm
able to increase or decrease its parallelism degree automatically. In particular has
been stated that the programmer is in charge of performing the following steps:

• write your own autonomic manager such that it extends the abstract class
AbstractAutonomicManager

• customize the ADL file describing the manager

• customize the ADL file describing the farm structure

• write a ADL file extending the ADL file describing the farm structure, em-
bedding the “business–logic” component and declaring the same external in-
terfaces of the contained sub-component

The last step is the same required for the passive version of the farm (see Sec. 4).
Instead, the first three steps are specific of this active version.

GridCOMP FP6-034442 page 22 of 24 D.NFCF.02

6 How to compile

All the experiments have been developed under ProActive 3.2.. The compilation
process requires a compliance level to Java 1.5 and you need to include a set of java
packages in the classpath: as an example, if you use Eclipse, you should configure
your Java Build Path as depicted in Fig. 7.

Figure 7: Libraries required for compiling the application

7 How to run the applications

In order to start the application, type of your Eclipse Run window the name of the
main class of the project.

Figure 8: Run Eclipse window configured to run the application

Moreover, remember to configure the arguments needed by the JVM in the
Arguments tab (see Fig. 9).
GridCOMP FP6-034442 page 23 of 24 D.NFCF.02

Figure 9: Arguments to configure the JVM

References

[1] M. Aldinucci, S. Campa, P. Dazzi, and N. Tonellotto. D.NFCF.01 – Non func-
tional component subsystem architectural design. GridCOMP STREP deliver-
able D.NFCF.01, June 2007.

[2] E. Bruneton. Developing with Fractal. The Object Web Consortium, Feb. 2004.
http://fractal.objectweb.org/tutorials/fractal/index.html.

[3] T. O. W. Consortium. ProActive official homepage: http://www-sop.inria.
fr/oasis/ProActive/index.ph.

[4] J. S. E. Bruneton, T. Coupaye. The Fractal Component Model. The Object Web
Consortium, Feb. 2004. http://fractal.objectweb.org/specification/
index.html.

[5] C. N. of Excellence. Deliverable D.PM.04 - Basic Features of the Grid Compo-
nent Model. The Object Web Consortium, Sept. 2006.

[6] O. R. Team. ProActive Manual v.3.2. The Object Web Consortium, Apr. 2007.

GridCOMP FP6-034442 page 24 of 24 D.NFCF.02

