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Summary This deliverable describes the methodology and the strategies used to derive the
performance models used within the autonomic managers of behavioural skeletons modelling
common parallelism exploitation patterns within GCM.

In particular, we describe the general features of the functional replication behavioural skele-
ton as representative of a whole class of GCM composite components modelling classical parallel
patterns. Then we outline the methodology used to derive performance models. Eventually,
we will shortly discuss the results achieved by implementing autonomic controllers that used
that performance models to autonomically take care of performance tuning of these behavioural
skeletons.
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1 Introduction

Programmers developing component based grid applications are often interested in achieving
high performance. After application design and implementation, and after the usual functional
debugging, a performance tuning step is usually needed to reduce bottlenecks and to exploit
available resources. In order to be able to tune performance, an idea of the theoretical perfor-
mance of the application is needed. Then, in case the performance measured is less than the
ideal one, both application and system1 programmers may look for inefficiencies and consequent
code transformations aiming at improving the performance of the code. In case the performance
turns out to be really close to the ideal one, instead, the programmers may just refine those small
details needed to match user requests and then they may deliver the application to production.

Even in case performance is not a primary concern, programmers would like to have at least
an estimation of the application running time on the available resources. As an example, they
may wish to be aware that faster resources are needed in case the achieved completion time of
the application is not a suitable one.

Having a precise idea of the performance of a given application whose source code is known2

is a very hard task. It can be demonstrated, for instance, that optimal mapping of generic
process graphs (or component assemblies) on generic network of processing resources (or grids)
is a NP-complete problem. As a consequence, figuring out the best performance (the one coming
from the execution of the best component configuration) is itself an hard task. In addition, this
problem happens to be statically unsolvable if the execution framework (platforms and networks)
may unevenly change along time (as happens in grids).

This notwithstanding, some good approximation or even some kind of exact values can be
derived in case the computation parallel pattern is not fully general, but rather belonging to
a set of well-known patterns, that possibly cover (alone or properly nested) most of the paral-
lelism exploitation patterns used in grid applications. In this case, either we are able to have a
heuristic way to determine the expected performance starting with some base parameters, or,
at least, we will have an idea of the effect of the variation of some basic feature of the program
implementation on the overall program performance. In the former case, we can gather the
needed parameters, instantiate a formula and compute the expected performance to be com-
pared with the one actually measured. In the latter, we can try to set up heuristics that attempt
to improve/tune program performance even without having a precise quantitative idea of the
performance improvement achieved.

Notice that the idea of founding application development on a set of restricted pattern for
parallelism exploitation is not uncommon. The whole algorithmic skeleton community, as well
as the community working on parallel design patterns and the one interested in coordination
languages come up with the idea that a well designed set of (restricted) parallelism exploitation
patterns (or skeletons, or coordination constructs) may couple an high expressive power with a
very efficient implementation [7, 13, 11, 5, 3].

The concepts from skeleton/pattern research areas can be easily migrated to component
frameworks. In GCM, and in the related research activities within CoreGRID and GridCOMP,
several groups worked in the direction of considering algorithmic skeleton for efficiency. Here we
want to show how the skeleton concepts can be exploited to derive suitable performance models
for generic (component and skeleton based) parallel/distributed grid applications, in such a way
some performance tuning activities can either be completely delegated to the programming tools
and to the programming environment implementation, or proper tools can be provided to skilled
user that allow performance tuning to be performed manually, knowing in advance the best
theoretical performance.

Therefore in this project we did not take into account generic methodologies to derive per-
formance models for generic, possibly pre-existing, third party components. This will be very
difficult to achieve, due to the poor possibilities the user has to introspect actual implementa-

1The ones implementing the programming framework.
2When using components this is a quite strong assumptions as components are black boxes, actually.
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tion of a component, and eventually useless, unless the basic components can be assembled in
a larger composite component whose semantics is under the programmer control as well as its
precise performance model.

In this document, we will show how by restricting the kind (pattern) of parallel computation
implemented using components we will be able to derive performance models for some notable
composite components that can be used for performance debugging/tuning of generic parallel grid
applications. The resulting methodology is basically made up of three distinct steps: i) precise
understanding of parallel pattern3 semantics, ii) derivation of an estimate performance model,
combining some parameters coming either from the target architecture or from the application
components, and iii) usage of the performance estimate to tune/debug the application.

2 Performance model targets

When dealing with performance, we should specify which is the performance measure of interest.
Roughly speaking, performance of a (parallel) program may be intended as the time spent to
see the program terminating, namely the time to compute the program result. This kind of
performance is the one of interest for the doctor waiting for the CAT4 image to appear on
the video immediately after the patient body has been irradiated by a convenient X-ray dose.
However, this is not the only measure of interest. Another convenient performance measure is
the service time of an application, i.e. the time spent by an application to deliver two consecutive
results (or to accept two consecutive input items). This is the kind of measure for the technician
processing all the CAT images for storage (e.g. compressing them). In this case, the time spent
processing the single image is not so important, provided we can process the bunch of images
coming from (possibly different CAT machines and patients) in real time, that is in less than the
time needed to store the single image on the disk/mass storage.

In computer science, the former kind of measures is often referred to with the term latency,
while the second one is referred to with the term throughput.

Here we show how proper performance models can be derived for structured parallel com-
ponents that model throughput. Similar techniques can be used in case latency is of stronger
interest, but we will not address this here as the very same methodology outlined in Sect. 5 can
be used.

Figure 1 shows a typical component application scenario and outlines typical “components”
for latency and throughput performance measures. The latency of component COMP A accepting
service requests on its single provides (or server) port is given by the time spent to deliver the
relative “answer”. Component COMP A uses (concurrently) COMP B and COMP C. Therefore
the latency is given by the sum of the time spent accepting the user request (1), computing locally
to COMP A (2), sending a request to COMP B and to COMP C (3) and (4), waiting for COMP
B and COMP C computing the results (5) and (6), receiving results from COMP B and COMP
C (7) and (8) and eventually delivering the result to the user (9). Provided that COMP A may
handle concurrent requests, the throughput is given by the maximum of the latency of COMP
A (2) and the maximum of the latencies of COMP B (6) and COMP C (7), as the component
program can be viewed as a two stage pipeline5.

3 Behavioural skeletons

As already outlined in Sect. 1, very often efficient and scalable grid applications happen to
be exploit parallelism according to well-known parallelism exploitation patterns. Within the
CoreGRID Programing model Institute [8] and GridCOMP, we decided to exploit this concept

3the one used in the application at hand
4Computerised Axial Tomography.
5we assume communications are smaller that internal computation, here, otherwise also the communication in

between the two stages should have been taken into account as one of the pipeline stages
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Figure 1: Component application scenario and performance measures.

far beyond what already happened in the algorithmic skeleton community [6] by introducing the
behavioural skeleton (BeSke) concept [1].

A BeSke packs together two well-known and useful concepts:

Algorithmic Skeletons are used within a BeSke to represent and model the functional part
of a computation, in particular the part expressing the parallel computation to be per-
formed. Each BeSke assumes/models/uses a particular algorithmic skeleton. An algorith-
mic skeleton is a known, efficient, nestable and parametric way of expressing a parallel
computation. It represents a known and efficient way of expressing parallel computations
in that the parallel pattern modelled is well known, used in a large number of parallel/dis-
tributed6 applications and efficient implementation of the skeleton are known for a large
number of target architectures, including grids. Skeletons are parametric in the computa-
tion used to model the parallel patterns they represent. A skeleton modelling a pipeline
takes pipeline stages as parameters. Therefore the skeleton is generic and the users, by
providing proper parameters, can instantiate the generic skeleton to suit their particular
necessities. Also, skeletons are nestable. Skeleton code parameters (such as a pipeline
stage or a farm worker, as an example) can be themselves represented by other skeletons.
The overall effect is that by providing a limited, carefully designed set of base skeletons,
complex parallel applications can be expressed using quite complex (deep) skeleton trees:
the root node representing to topmost parallelism exploitation pattern, the internal nodes
representing more local parallel patterns and, eventually, the leaf nodes representing the
sequential portions of code used in the application. Fig. 2 represents the skeleton tree for
a simple parallel image processing application, using well know skeletons.

Autonomic Managers are used within BeSkes to implement all those controls that do not af-
fect what results are computed by the applications (i.e. its functional behaviour) but rather
those affecting how the results are computed (i.e. they manage the non-functional aspects
of the computation). The management of non-functional features is clearly optimised with
respect to the particular skeleton modelled by the BeSke. The management is implemented
as a classical control loop (see Fig. 3). Within BeSkes, autonomic management [4] takes

6or grid, in our case. We do not claim a particular specificity of grid applications w.r.t. parallel and/or
distributed applications running on more traditional target architectures, for what concerns the parallelism ex-
ploitation patterns used
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Figure 2: Sample image processing application. Skeleton structure (top) and possible component
based implementation exploiting GCM collective ports (bottom).
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Figure 3: Autonomic manager control loop.
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Figure 4: GCM functional replication BeSke family.

care of the performance aspects related to (skeleton) program execution. In particular, in
the control loop:

1. in the monitor phase, some parameters are monitored, those relevant for the skeleton
performance model,

2. in the analyse phase, the performance model of the skeleton is consulted, instantiated
with the proper values from the monitoring phase and, in case something is going
“wrong” w.r.t. the model, a corrective action is decided

3. in the plan phase, the execution of the corrective action just decided in the analyse
phase is planned as a(n ordered) set of actions, and

4. eventually these corrective actions are executed in the execute phase.

More in detail (see also [2]), and taking into account that we are considering BeSkes in
the GCM context, a BeSke can be represented as in Fig. 4. The figure represents a functional
replication family of BeSkes. The family is represented by a meta-behavioural skeleton in that
it can be specialised to implement a family of BeSkes, all those where a collection of identical
workers (the W component in the figure) are used to process some input data appearing on the
functional server (provides) port S. By specialising the behaviour of the S and C port, we can
actually obtain several particularly useful instances of BeSkes:

task farm BeSke In this case the S port delivers any input item to one (and only one) of the
worker components W. The C port passes each one of the input items appearing from any
one of the workers onto the output. A task farm BeSke can be used to compute a function
f7 over all the elements of an input stream 〈x1, . . . , xm〉 producing the result output stream
〈f(x1), . . . , f(xm)〉. Whether or not the output stream preserves the ordering of the input
stream is a parameter of the task farm BeSke.

(map) data parallel BeSke In this case the S port scatters any input item to all the workers.
Each worker therefore receives a partition of the input data and produces a partition of
the output. Port C gathers contributes to the final result from all the workers W and
delivers onto the output the final, aggregated result. Using the same conventions adopted
to describe the task farm BeSke, a map data parallel BeSke can be used to compute

〈[f(x11), . . . , f(x1n)], . . . , [f(xm1), . . . , f(xmn)]〉
7provided f is the function computed by the inner worker components
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out of an input stream such as

〈[x11, . . . , x1n], . . . , [xm1, . . . , xmn]〉

fault tolerant BeSke In this case the S port broadcasts input values to all the workers. Each
worker computes the same function f using a different algorithm. The port C gathers
results from all the workers and passes to the output the “majority” result, i.e. the result
computed by the majority of the workers. The fault tolerant BeSke can be used in all those
cases where different algorithms can be used to compute the same function and we want
to be absolutely sure that the “best” result possible is given as output for each one of the
input stream items.

Referring to the structure of the functional replication BeSke family drawn in Fig. 4 we may
now better outline what are the different items and which is their precise role in the BeSke:

S is the input server (provides) port. It accepts service request from outside and dispatches
the whole input data or portions of the input data to all or to some of the inner workers
according to its dispatching policy. The dispatching policy is a parameter of the functional
replication BeSke family.

C is the output client (uses) port. It delivers results to the component whose server port is
connected to this port. The delivered results can come from the single data items computed
by the inner workers as well as from some kind of re-composition strategy applied to all
the data items coming from the inner worker and relative to the same input data on S.
The re-composition strategy is a parameter of the functional replication BeSke family.

W are the worker components. More precisely, these are instances of the same worker compo-
nent, possibly differentiated by some input data. In case of the fault tolerant BeSke, these
are instances of different components, actually. The common feature is that workers usually
compute all the same function on the input data. Worker component(s) are parameters of
the functional replication BeSke family.

ABC is the Autonomic Behaviour Controller. In the GCM jargon8 this is a controller providing
two kind of ports:

1. ports used to inspect the BeSke internal state. These are the ports used in the monitor
phase of the autonomic cycle. As an example, a port will be provided in the ABC
controller of a task farm BeSke that expose its service time.

2. ports used to modify the BeSke internal assembly. These are the ports used in the
execute phase of the autonomic cycle. As an example, a port will be provided in the
ABC controller of a task farm BeSke that increases the internal parallelism degree by
inserting in the BeSke a fresh (new) worker component instance.

Within GridCOMP/GCM autonomic managers are currently programmed using a rule en-
gine9. Therefore GCM managers are supplied with a set of rules such as:

rule "increaseWorkersOnLowServiceTime"

when $workerBean:WorkpoolBean(serviceTime >

userContract.requestedServiceTime())

then $workerBean.addWorkerToLeastUsedPE();

end

The rules have a pre-condition (the when clause) that is used to decide whether or not the rule is
applicable. The rule engine executes applicable rules according to the well-known Rete algorithm
[9] (priorities among rules can be specified). The rules have also an action (the then clause)

8derived from the Fractal component model [10] that represents the basis of GCM
9The JBoss rule engine is used [12].
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expressing the actions to be taken when the rule is applicable (i.e. when the when condition is
true). In this case, the $workerBean referred to in the rule is the bean actually providing access
to the ABC ports.

The functional replication BeSke family comes with a set of pre-defined rules; nevetheless
users can extend or overwrite them. It is worth pointing out that all the other parameters
of the functional replication BeSke family are functional parameters (S, C, W) affecting the
results computed by the BeSke, while rules supplied to the AM manager will be non-functional
parameters, actually.

4 Performance models for Behavioural Skeletons

The performance goal of interest in BeSkes is throughput. This because within the GridCOMP
(and CoreGRID) project we are mainly focusing on stream parallel applications and use cases and
therefore it is quite natural to consider performance optimisation as throughput optimisation.
As a consequence, we are interested in figuring out proper models that compute the service
time of our GCM applications with respect to some known parameters that can be measured
by monitoring the target architecture used to run the GCM application and the components
building up the application itself.

However, as previously discussed, we are not interested in modelling the service time of generic
components (and consequently, of generic component applications). Instead, we are interested in
modelling service time of BeSkes and therefore of all those applications whose parallel structured
is modelled using a BeSke (or a BeSke composition, in the future).

In this Section we discuss how suitable service time performance models can be derived for
the class of BeSkes derived from the functional replication meta BeSke. Then, in Sect. 5 we will
discuss how the procedure used to derive performance models of the functional replication BeSke
family can be applied to more general cases, always based on BeSkes or on plain algorithmic
skeletons in the general case.

4.1 Performance model parameters

The first aspect to be taken into account is the kind of parameters we will be hopefully able to
monitor and measure on the target architecture and on the application at hand. Being BeSkes
in the functional replication family defined according to the same schema, which is composed
of several parts, we model their behaviour composing the behaviours of their parts. Therefore
we are interested in the time spent to dispatch an input data by the S port (TS), in the time
needed to handle an output item on the C port (TC) and on the time spent to process a single
item on a worker W (TW ). As the BeSke obviously constitutes a part of a large application,
we are interested also in the inter arrival time (TA) of input tasks (e.g. the service time of the
component “feeding” the functional replication BeSke family) and in the capacity (TD) of the
output connection (e.g. the service time of the component gathering and consuming functional
replication BeSke results).

Most of these times actually depend on the input data considered. A typical example is TW :
the time spent to process two distinct data items – e.g. images in the program of Fig. 2 – may
vary sensibly depending on the images considered. Being interested in throughput, we are de
facto interested in the steady state behaviour of the application and therefore we can rely on
average values for the parameters considered.

4.2 Performance modelling

The second aspect to take into account is the performance modelling of the BeSke. The BeSke
in the functional replication family can be viewed and modelled as a three stage pipeline:

1. a dispatching stage, mainly using S port resources and algorithms
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2. a computing stage, using the resources relative to the strand of workers, and

3. a collecting stage, mainly using C port resource and algorithms

Therefore the service time of the BeSke can be modelled as:

max{TS , f(TW , nw), TC}

being nw the number of instances of workers in the BeSke. The function f depends actually on
the precise kind of computation modelled by the BeSke. In case it is a task farm, f is simply

f(TW , nw) =
TW

nw

whereas in case it is a map, f is
f(TW , nw) = TW

as in the former case all the workers contribute to compute single items of the input stream,
while in the latter a single item of the input stream (a partition of it, usually) is computed by
all the workers.

4.3 Optimal performance

Eventually, we must figure out which is the asymptotic performance of the BeSke. The best
performance of BeSkes in the functional replication family will be achieved when the service
time of the BeSke does not exceed the inter arrival time TA or the output link capacity TD. As
a consequence, we (the autonomic manager within the BeSke, actually) will aim at reducing the
service time to the value

max{TA, TD}

In a task farm BeSke, service time can be decreased (increased) by adding (taking away)
workers from the worker strand. This follows from the simple consideration that in case port S
and C do not represent bottlenecks in the pipeline modelling the BeSke, the service time of the
task farm is simply given by

TW

nw

In the map BeSke instead, the service time (under the same assumptions on S and C) is given
by

TW

and therefore it can only be varied by varying the service time of the single workers. To be more
precise, we can’t assume that all the identical workers have the same service time. Different
processing resources are used to compute the different workers, and also different partitions of
the same input data may lead to different computation times. As a result, in map BeSke we
should consider

TW = ∀i ∈ [1, nw] : max{TWi}

This suggests that service time of the map BeSke can be improved by using faster resources to
compute slower workers or by using a slightly modified partitioning rule giving less work (smaller
partitions) to slower workers and more work (larger partitions) to faster workers.

The other technique that can be used to improve map service time is to parallelise workers10

by using a nested task farm BeSke to implement each one of the workers. This is perfectly
suited to the component philosophy: inner worker components are actually BeSkes (composite
components), but they appear as regular components to the map BeSke.

10the slower ones, in case there is some slow worker and a majority of much faster workers, or the whole worker
strand, in case there are no sensible differences
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5 General methodology for deriving (and using) perfor-
mance models

We want now to capitalise on what we discussed for the functional replication BeSke instances in
Sect. 4. In particular we want to describe a general methodology to derive and use performance
models for GCM BeSkes. The methodology is defined as an ordered set of steps:

1. The first step is relative to parallel semantics understanding. Once the BeSke has been
defined, in order to derive a precise and worth performance model, the parallel semantics
of the modelled algorithmic skeleton has to be completely understood. This means that
we must figure out which are the parallel activities involved in the skeleton execution and
which are the bottlenecks and parallelism sources inside the skeleton.

2. Once individuated the parallel activities, we pass to second step, that is to identify how
the modelling of these parallel activities can be re-conducted to already known performance
models for parallel patterns. As an example, in the previous section we showed how the
performance model of a task farm (or of a map data parallel skeleton) can be approximated
using the pipeline performance model. Most of times, the simple models for pipeline
and “strand of workers”, such as those used in the models for the functional replication
BeSke family, are sufficient to model the complete performance behaviour of considerably
more complex BeSkes. Just in case the different sub-components of the BeSkes cannot be
modelled re-using results for other, known parallel patterns, during this second step we
need to develop ad hoc performance models ex novo.

3. The third step is the identification of the parameters affecting the performance of models
of the BeSke at hand. Again, most of times this is a simple activity. The parameters of
interest are usually the ones of the inner, well known parallel patterns. They are quite
simple11 parameters, either relative to the target architecture or relative to the BeSke
sub-components.

4. The fourth step is relative to devising the proper optimal performance for the BeSke.
In particular, we should figure out which is the optimal performance to avoid dedicating
further or faster resources to the application execution when this performance has been
achieved.

5. The fifth and last step is related to devising proper heuristics allowing to decide which
are the rules to be inserted into the manager rule engine in order to ensure user (or system)
supplied performance contracts.

Overall to the five steps above lead the BeSke programmer to a point such that the autonomic
manager in the BeSke can be completed inserting a proper set of rules. However, steps one to
four are needed also in case of programmers that want to exploit parallel patterns but also to keep
the control of what’s going on in the application as far as application performance is concerned.
Actually, step five is also necessary, in this latter case, as programmers implementing their own
performance optimisation/tuning should know which rules (strategies) have to be applied when
tuning application performance.

5.1 Methodology application sample

We detail the steps of the methodology here by figuring out proper performance model(s) for
a particular kind of data parallel BeSke. We consider a skeleton that can be derived from the
functional replication BeSke with a limited set of changes. Given an input stream such as

〈s1, [x11, . . . , x1n], . . . , sm, [xm1, . . . , xmn]〉
11from the conceptual viewpoint, not from the viewpoint of how they can be collected from the target architec-

ture and from the application components

GridCOMP FP6-034442 page 12 of 18 D.NFCF.03



S

CFunctional 
server ports

Functional 
client port

AM

ABC

skeleton
behaviour
(e.g. ORC)

I
W

W

W
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the BeSke computes the output stream

〈[f(x11, s1), . . . , f(x1n, s1)], . . . , [f(xm1, sm), . . . , f(xmn, sm)]〉

where f is a pure function, and, as a consequence, there are no side effects on the “state” values
si. This BeSke models a quite common parallel pattern: a map data parallel where the workers
are specialised by a kind of read only state parameter.

This BeSke can be implemented in GCM as outlined in Fig. 5. In this case, the additional
input port I is used to pass the si state parameters. The I port scatters the received state
value to the workers and in the meanwhile inhibits port S from passing further values to the
workers. As soon as the workers receive the new state value, they complete the computation of
the current tasks, then update their own variable hosting the state value and eventually signal
that computation can be safely restarted. This signal will eventually unblock port S.

This BeSke models quite common parallel patterns. As an example, the biometric identifica-
tion [14] use case within GridCOMP happens to be perfectly modelled by the skeleton. In this
case, the input stream will be something as

DB1, fp11, . . . , fp1m1 , . . . , DBk, fpk1, . . . , fpkmk

and the BeSke will compute the output stream

y11, . . . , y1mk
, . . . , yk1, . . . , ykmk

where

yij = f(DBi, fpij) =
{

〈true, id〉 iff ∃〈fpt, id〉 ∈ DBi ∧match(fpij , fpt) = true
〈false, 〉 otherwise

Now, let us proceed through the performance modelling derivation methodology steps as defined
in Sect. 5.

Step 1 The parallel semantics of this BeSke is the following: there is a set of parallel activities
corresponding to the worker component instances and to the I, S and C ports. I, S and the
workers need to synchronise while receiving and processing one “state” value, otherwise
synchronisation is only given by plain data flow. S broadcasts input values (non state ones)
to all the workers. Workers compute a partial contribute to the final result (whether or
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not the given, broadcast fingerprint is present in their data base portion) and the C port
“reduces” the input values to a single output value using the following binary, associative
and commutative operator:

⊕(〈false, 〉, X) = X
⊕(〈true, id〉, ) = 〈true, id〉

Step 2 at the steady state, the performance model of the skeleton can be derived thinking to S,
the strand of W and C as three stages of a pipeline, as we did to model task farm BeSke.
However, in this case, some overhead due to the initialisation of state variables is to be
taken into account. If the mi are big, the overhead can be probably ignored. If not, it may
be evaluated adding a

(TI + TW )/mk

contribute to the TW
12.

Step 3 Parameters of interest in this case are the same of interest for the task farm BeSke
(service time of the worker components, of the S and C ports, plus the inter-arrival time,
etc.) plus the time spent by port I to scatter state to the workers (this time includes also
the synchronisation time needed to block S, and to reactivate it after worker flushing).

Step 4 The workers, in this case, perform a matching of a single fingerprint against all the
fingerprints in the portion of database received from port I. Therefore TW = g × Tmatch,
where g is the dimension of the data base portion and Tmatch is the time spent to match one
fingerprint. The optimal performance for the BeSke will be achieved when the time spent
to send fingerprints (sets) to the workers is almost the same used to match the fingerprints
against the local portion of the data base, assuming that mk are big and that the other
times in the BeSke pipeline are negligible. Therefore g turns out to be a parameter clearly
affecting the service time of the BeSke, an it will be considered to adapt service time in
the manager.

Step 5 The rules included in the manager rule engine could include:

• a rule stating that if the BeSke performs less than required by the user contract and
TW > TS then the number of workers is increased (e.g. by one);

• a rule stating that if the BeSke performs less than required by the user contract and
TW ≤ TS and there are available more powerful resources to host the worker compo-
nent execution, then worker components must be migrated to the faster resources;

• a rule stating that if the BeSke performs less than required by the user contract and
TW ≤ TS and there are not available more powerful resources to host the worker
component execution, then nothing can be done, and a contract violation should be
reported to the user.

6 Performance models for plain components (not behavioural
skeletons)

As stated before, we are not interested in deriving performance models for any generic compo-
nent application and therefore we are not interested in modelling performance of any generic
component. However, to be able to model performance of BeSkes we need to be able to get some
(at least approximated) values for the measures of interest of the components used as parameters
of the BeSke.

12this corresponds to spreading the initial overhead (time spent to sent the state partition to the workers plus
the time needed to flush the worker computations relative to the old state value, which is at most TW ) over the
computations of all the items logically referring to that state value
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Figure 6: Wrapping components for providing ABC.

One of the parameters of interest is the service time of a component (port). This time can
be asked to the component, if the component is a BeSke, through the ABC controller. However,
if the component is not a BeSke, this value should be obtained differently.

To this purpose, we assume to exploit component wrapping technology. Each component is
wrapped with a standard component provided by the BeSke framework, such that (see Fig. 6):

1. all the ports of the component are simply propagated as ports of the wrapping component
(both client and server ports, both the ones related to functional and the ones related to
non-functional interface)

2. the wrapper component (service time measure component in the Figure) measures the
times required by the wrapped component to answer to a service request coming onto a
server (provides) port

3. the wrapper component implements an ABC controller providing the ports needed to fetch
the service time and the other measures gathered in the wrapper component, according to
the standard BeSke non-functional interface API.

7 Results relative to the performance modelling of be-
havioural skeletons

We actually implemented BeSkes exploiting the performance models described in this work.
Deliverable D.NFCF.04 Early prototype and documentation describes this implementation. The
kind of results achieved can be figured out looking at Fig. 7. The Figure shows the output of
a medical image processing application. In the left, top window, the processed medical images
thumbnails are shown, in such a way the doctor may click on the thumbnails to see and evaluate
the real image. In the right window, throughput and resources used (number of workers used
by the application) are plotted as managed by the AM in the BeSke used (a task farm BeSke,
in this case). Initially, a number of processing elements were used to run the application. After
half of the total time plotted, additional load was delivered onto these (shared) resources due
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Figure 7: Adaptation of a BeSke exploiting performance models.

to different users and applications. The load caused a sudden decrease in throughput and the
manager intervened to prevent throughput falling down the user-supplied value by adding more
and more workers to the BeSke. This eventually kept the throughput in the range asked by the
user.

Observe that:

• adding new workers was considered a useful strategy in the manager as the monitored ap-
plication values and the BeSke performance model indicated we were not at the saturation
point (bandwidth of the worker strand equal to either TA or TD);

• the time spent adding new workers was sensibly smaller than the time expected remaining
time to conclude the computation. If not, adding workers would have resulted in pure
overhead.

8 Conclusions

We have discussed a methodology aimed at designing performance models for a particular class of
components implemented in GCM: the BeSke composite components. These components provide
the user with parametric parallel exploitation patterns that can be used/instantiated to build
a full range of (possibly complex) grid parallel applications. The methodology allows deriving
performance models for these kind of skeletons and the performance models can be exploited
within the BeSkes to implement efficient autonomic managers taking care of performance aspects
in the BeSke execution. The development of performance models for BeSkes has been already
demonstrated in the case of the task farm BeSke and in case of plain data parallel BeSkes derived
from the BeSkes in the functional replication family discussed in Sect. 3.

We are currently working to provide other BeSkes to the GCM users and all of these new
skeletons will require designing proper performance models to be exploited within their autonomic
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managers.
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