

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform
for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.UC.04.A – Use cases: early documentation

Due date of deliverable: 1 June 2008

Actual submission date: 5 June 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: GS

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU PUBLIC PU

Keyword List: use case, prototype, component, GCM
Responsible Partner: Gastón Freire, GS

GridCOMP FP6-034442 page 2 of 54 D.UC.04.A

MODIFICATION CONTROL
Version Date Status Modifications made by

1.0 05-06-2008 Draft Fabio Tumiatti, Thomas Weigold, Gastón Freire
1.1 05-06-2008 Draft Gastón Freire
1.2 17-06-2008 Draft Fabio Tumiatti, Thomas Weigold, Gastón Freire
1.3 25-06-2008 Draft Gastón Freire
1.4 02-07-2008 Final Fabio Tumiatti

Deliverable manager

• Gastón Freire, GS

List of Contributors

• Thomas Weigold, IBM

• Fabio Tumiatti, ATOS

• Gastón Freire, GS

List of Evaluators

• Magdalena Escalas, GS

• Marco Danelutto, UNIPI

Summary

• This document describes the early prototypes of the use case applications. Their
current architectural design is explained in depth, along with the configuration and
usage of the demonstrators. A summary of the leveraged features from GridCOMP
(and GCM) and the next planned actions for each use case is also offered.

GridCOMP FP6-034442 page 3 of 54 D.UC.04.A

Table of Content
1 INTRODUCTION ... 5

2 BIOMETRIC IDENTIFICATION SYSTEM ... 6

2.1 ARCHITECTURAL DESIGN.. 6
2.1.1 Architecture of the application.. 6

2.1.1.1 GCM Component architecture and GCM adapter ... 6
2.1.1.2 Business Processes .. 7
2.1.1.3 Demo Application ... 9

2.1.2 GCM Components ... 9
2.1.2.1 Components diagram... 9
2.1.2.2 Components description .. 11

2.1.2.2.1 Application... 11
2.1.2.2.2 Matcherfarm... 11
2.1.2.2.3 ABC ... 11
2.1.2.2.4 Automan... 11
2.1.2.2.5 Matcher .. 11
2.1.2.2.6 Collector... 11

2.1.2.3 Interfaces... 11
2.1.2.3.1 Interface I1 ... 11
2.1.2.3.2 Interface I2 ... 12
2.1.2.3.3 Interface I3 ... 12
2.1.2.3.4 Interface I4 ... 13

2.1.2.4 Summary of the GCM features used ... 13
2.2 EARLY PROTOTYPE..13

2.2.1 Description...13
2.2.2 Configuration and usage..14
2.2.3 Examples ..15

2.3 NEXT ACTIONS...16

3 COMPUTING OF DSO VALUE ..17

3.1 ARCHITECTURAL DESIGN...17
3.1.1 Architecture of the application...17
3.1.2 GCM Components ..18

3.1.2.1 Components diagram... 18
3.1.2.2 Components description .. 18

3.1.2.2.1 DSOProgram component ... 18
3.1.2.2.2 Reader component.. 19
3.1.2.2.3 ComputeUnit component ... 19
3.1.2.2.4 Compute component .. 19
3.1.2.2.5 Writer component .. 20
3.1.2.2.6 CallPlSql component.. 20

3.1.2.3 Interfaces... 20
3.1.2.4 Summary of the GridCOMP features used.. 21

3.2 EARLY PROTOTYPE..22
3.2.1 Description...22
3.2.2 Configuration and usage..23
3.2.3 Examples ..24

3.3 NEXT ACTIONS...25

4 EDR PROCESSOR ..26

4.1 ARCHITECTURAL DESIGN...26
4.1.1 Architecture of the application...26

4.1.1.1 Extract, Transform and Load... 27
4.1.1.1.1 EDR File Input ... 27
4.1.1.1.2 CountryPhoneCodes file input ... 28
4.1.1.1.3 Sort codes... 28
4.1.1.1.4 CountryCode lookup .. 29
4.1.1.1.5 CodeService Mapper.. 29
4.1.1.1.6 Add currency code ... 29
4.1.1.1.7 Rates file input ... 29
4.1.1.1.8 Sort rates .. 29
4.1.1.1.9 Rate lookup .. 29

GridCOMP FP6-034442 page 4 of 54 D.UC.04.A

4.1.1.1.10 Normalize consumption ... 29
4.1.1.1.11 Apply rate... 30
4.1.1.1.12 District obtainment... 30
4.1.1.1.13 Add system info ... 30
4.1.1.1.14 Result file output.. 30

4.1.2 GCM Components ..30
4.1.2.1 Components diagram... 30

4.1.2.1.1 Non-autonomic... 30
4.1.2.1.2 Autonomic.. 31

4.1.2.2 Components description .. 32
4.1.2.2.1 EDRProcessor .. 32
4.1.2.2.2 EDRSlaveFarm .. 32
4.1.2.2.3 EDRSlave... 32
4.1.2.2.4 ResultsCollector ... 32
4.1.2.2.5 FileOperator ... 32

4.1.2.3 Interfaces... 32
4.1.2.3.1 EDRProcessor .. 32
4.1.2.3.2 EDRSlave... 33
4.1.2.3.3 EDRSlaveMulticast.. 33
4.1.2.3.4 FileOperator ... 33
4.1.2.3.5 ResultsCollector ... 34

4.1.2.4 Summary of the GridCOMP features used.. 34
4.2 EARLY PROTOTYPE..36

4.2.1 Description...36
4.2.2 Configuration and usage..36

4.2.2.1.1 Autonomic version... 39
4.2.3 Examples ..41

4.3 NEXT ACTIONS...41

5 WING DESIGN ..42

5.1 ARCHITECTURAL DESIGN...42
5.1.1 Architecture of the application...42
5.1.2 GCM Components ..43

5.1.2.1 Components diagram... 43
5.1.2.1.1 Non-autonomic... 43
5.1.2.1.2 Autonomic.. 44

5.1.2.2 Components description .. 44
5.1.2.2.1 WingDesign ... 44
5.1.2.2.2 ParameterSweeper.. 44
5.1.2.2.3 MerakFarm... 45
5.1.2.2.4 Merak... 45
5.1.2.2.5 ResultsComposer ... 45

5.1.2.3 Interfaces... 45
5.1.2.3.1 WingDesign ... 45
5.1.2.3.2 ParameterSweeper.. 45
5.1.2.3.3 Merak... 46
5.1.2.3.4 MerakMulticast .. 46
5.1.2.3.5 ResultsComposer ... 47

5.1.2.4 Summary of the GCM features used ... 47
5.2 EARLY PROTOTYPE..48

5.2.1 Description...48
5.2.2 Configuration and usage..48

5.2.2.1.1 Autonomic version... 52
5.2.3 Examples ..53

5.3 NEXT ACTIONS...53

6 REFERENCES ...54

GridCOMP FP6-034442 page 5 of 54 D.UC.04.A

1 Introduction

This document is part of the “D.UC.04 Use cases: early prototypes and early documentation”
deliverable, due in M24 of the GridCOMP project.
Also, 4 compressed files (D.UC.04.B*.zip), contain the code (binaries and/or source)
corresponding to the four use case early prototypes.

The applications selected for the use cases are the following:

1. Biometric Identification System
2. Computing of DSO Value
3. EDR Processor
4. Wing Design

Each one is covered in a separated section of this document, all of which have a common
structure:

1. First, there is an update on the architectural design, highlighting any aspects that have
changed or evolved since the primitive version [1]. Also, a description of the
infrastructure needed to run the application (data bases, application servers, workflow
systems, third-party software components, etc.) is offered.

2. The current (early) prototype is described, explaining its configuration and usage,
while providing some examples.

3. A summary of the planned actions for the next period of the project is included.

GridCOMP FP6-034442 page 6 of 54 D.UC.04.A

2 Biometric Identification System

2.1 Architectural design

2.1.1 Architecture of the application
The high-level architectural design of the Biometric Identification System (BIS) as outlined in
D.UC.03 (Section 2.2.2) and shown in Figure 1 has been retained for the prototype described
in this document. However, under the covers, there have been many changes in the way the
system is implemented. The parts of the system that have undergone significant changes are
the GCM component architecture and the GCM adapter, the business processes (workflow
scripts) interacting with the GCM adapter, and the demo application. The main reason for this
is the fact that we have now considered the use of WP3 results, namely, we have implemented
and improved the BIS with the autonomic behavioural skeletons. The details of changes in
these parts of the system are described in the following subsections.

Figure1: Biometric identification system high-level overview

2.1.1.1 GCM Component architecture and GCM adapter

When looking for ways to take advantage of behavioural skeletons to implement the
distributed fingerprint matching required for the BIS application, the so-called “task-parallel
farm” behavioural skeleton was available (c.f. D.NFCF.01) from WP3. This skeleton assumes
that a stream of independent tasks is available and that the tasks can be distributed (e.g.
round-robin) to a number of workers. Furthermore, it is assumed that the workers do not
maintain any state, which means that new workers can simply be allocated by cloning an
existing worker. Obviously, this does not fit well to the distributed identification strategy we
had implemented in the first primitive prototype. The approach there was to split the database
of known identities into the appropriate pieces, distribute them across the available workers,

GridCOMP FP6-034442 page 7 of 54 D.UC.04.A

and then broadcast the identification requests to all workers. Each worker could then search
its part of the database for the given identity. Unfortunately, this strategy did not produce
independent tasks and implied that the workers maintained their state, which contradicts with
the task-parallel farm requirements.

After providing this feedback to the WP3 partners and discussing the situation, they focused
on the implementation of another skeleton, the so-called “data-parallel skeleton”, which
satisfies the requirements of the BIS and similar data-parallel applications in general. In the
meantime, we decided to make use of the task-parallel farm by radically changing our
distributed identification strategy as follows:

� We make use of the farm skeleton including an autonomic manager (AM) similar to
the example presented in D.NFCF.02, Section 5. The AM measures the farm
performance with respect to a given service contract (desired performance in
tasks/sec.) and increases or decreases the number of workers if required.

� Instead of distributing parts of the database across nodes, it is assumed that each
worker has access to the complete database. More precisely, each worker initially
loads the complete database into memory for fast access.

� Instead of broadcasting an identification request to all nodes, the GCM adapter
generates a number of tasks which it submits to the farm. Each task includes the
biometric information (fingerprints) of the person to be identified and the part of the
database (index and length) to be searched in the context of this task.

With this strategy, we have transformed the data-parallel problem into a task-parallel problem
which can be solved with the available farm skeleton. This represents the approach used to
implement the current prototype described in the following subsections.

2.1.1.2 Business Processes

The business processes for BIS management and for the actual identification functionality are
interacting with the Grid via the GCM adapter. Consequently, the change in the strategy also
affects the logic implemented in the corresponding workflow scripts. The “startup” (c.f.
D.UC.03) process, as illustrated in Figure 2, now calculates and submits the quality of service
(QoS) contract to the AM in activity 3 and then allocates the desired number of initial workers
within the farm in activity 4. In the previous design, the node performance was determined
and the database was distributed at this point in the workflow.

GridCOMP FP6-034442 page 8 of 54 D.UC.04.A

Figure 2: Business process “startup” activity-flow diagram

The identification process, named “identify”, has changed as well. It now initiates the
generation and submission of tasks. The results are collected asynchronously until all tasks
have been processed. While doing this, the process sends monitoring events to the workflow
monitor attached to the workflow engine. These events report the current state of the
identification process (e.g. number of tasks processed etc.), which is then visualized in the
command shell described below.

Figure3: Business process “identify” activity-flow diagram

GridCOMP FP6-034442 page 9 of 54 D.UC.04.A

2.1.1.3 Demo Application

The first version of the BIS as described in D.UC.03 was static with respect to user
interaction. The system was started with fixed parameters, only one person was identified, and
the application terminated afterwards. To provide a more flexible and interactive demo, it was
planed to implement a simple graphical user interface to vary system parameters and initiate
identification requests interactively. However, due to the fact that the code base of the BIS
had been changing constantly while moving towards the autonomic version, we decided to
postpone the GUI implementation. Instead, we implemented a command shell which offers
the same level of interactivity as a GUI, but it is much easier to adapt to the changing base
functionality. The GUI will be implemented in the last phase of the project to make the demo
visually more attractive.

2.1.2 GCM Components

This section describes the GCM component architecture, component description, and
interface description of the current BIS prototype.

2.1.2.1 Components diagram

The current BIS prototype, in contrast to the first version as described in D.UC.03, is now
based on the autonomic farm skeleton developed within WP3. Figure 4 illustrates the GCM
component architecture used in the prototype and indicates how it interacts with the non-
componentized part of the application.
At the heart of the component system, there is the farm skeleton which consists of a
composite component named matcherfarm. It includes a custom controller, the autonomic
behaviour controller (ABC), which implements the autonomic functionality, for instance,
increasing or decreasing the number of worker components within the farm. Furthermore, the
farm includes a default implementation of an autonomic manager component, here named
automan. These three components represent the farm skeleton. To apply the skeleton, we need
to parameterise it by adding a worker component, here named matcher. This is the component
which the ABC clones and adds to the farm as many times as required to increase parallelism.
By default, the farm starts with one matcher component. When the number of matchers is
increased the ABC automatically replaces the interface I1 of the matcherfarm component with
a collective (unicast) interface so that multiple matchers can be bound to it.

Besides the farm, the BIS architecture also includes a collector component and an application
component. The collector component collects the biometric matching results coming from the
farm and forwards them to the workflow engine controlling the BIS. The dashed lines in
Figure 4 illustrate the interaction between the non-componentized part of the BIS application,
namely the workflow engine, and the GCM component system. Furthermore, Figure 4
indicates that all matcher components have access to a shared database storing the identities
known by the BIS.
As far as deployment is concerned, the idea is that only the matcher components, which
represent the workers, are to be distributed.

GridCOMP FP6-034442 page 10 of 54 D.UC.04.A

Figure 4: GCM component architecture

Figure 5 shows how the component system has been graphically composed within the GIDE
to generate the required ADL files.

Figure 5: BIS component composition in GIDE

GridCOMP FP6-034442 page 11 of 54 D.UC.04.A

2.1.2.2 Components description

2.1.2.2.1 Application
The application component is a composite component enclosing the complete component
system of the BIS application. As such it hides internal components and only offers one server
port to receive identification tasks via interface 1 (I1).

2.1.2.2.2 Matcherfarm
The matcherfarm component represents the autonomic farm skeleton as provided by WP3.

2.1.2.2.3 ABC
To implement the behavioural skeleton the default component controller of the matcherfarm
component has been replaced by an autonomic behaviour controller (ABC). The ABC is part
of the farm skeleton. It offers autonomic operations (as defined in I4) which can be triggered
by the autonomic manager (automan) or any other external entity.

2.1.2.2.4 Automan
The automan component constantly monitors the behaviour of the farm and decides when it is
required to trigger an autonomic operation via the ABC. The decision is based on the QoS
contract which has been previously committed via I3.
The default implementation of the autonomic manager included in the farm skeleton monitors
the average service time of the tasks passing through the matcherfarm (from I1 to I2). If the
average service time reaches the threshold defined by the QoS contract the autonomic
manager increases the parallel degree (number of matcher components in the farm) via the
ABC. Correspondingly, the parallel degree is decreased if the average service time drops
significantly below the threshold. The QoS contract defines the desired performance of the
farm in tasks/second. We have used the default implementation of the autonomic manager
almost unchanged. We just modified some minor details such as the number of tasks over
which the average service time is calculated.

2.1.2.2.5 Matcher
The matcher component includes the actual fingerprint matching functionality. When a
matcher component is created it accesses the shared database and loads it into RAM for faster
access. Afterwards, it receives tasks via its interface I1 and returns results via I2. While
processing a task, it matches the fingerprints of a given person against a given part of the
database.

2.1.2.2.6 Collector
The collector component collects the results from the farm and sends them back to the BIS,
more precisely, to the identification workflow which further processes them.

2.1.2.3 Interfaces

This section describes the interfaces I1-I4, as denoted in Figure 4 in more detail.

2.1.2.3.1 Interface I1
Interface I1 is used to transfer tasks from the application component to the matcherfarm and
from there to the matcher components. Thus, it is named IDInput and includes the identify()
method as shown below. Apart from the live scan data (fingerprints) of the person to be

GridCOMP FP6-034442 page 12 of 54 D.UC.04.A

identified and the information about the part of the database to be searched, it also includes
the handle of the workflow the identification task belongs to. Therefore, it is possible to use
the farm for processing multiple identification requests concurrently.

public interface IDInput {

/** Match live scan against (part of) the database.
 *
 * @param liveScan Fingerprints of the person to be identified.
 * @param numFingers #fingers which need to match to consider it a match.
 * @param far Desired false accept rate.
 * @param start DB record number (0 - n) to start with.
 * @param numRecords Number of records to match.
 * @param procHandle Handle of the identification workflow this
 * identification request belongs to.
 * @return RFU.
 */
 public DoubleWrapper identify(LiveScan liveScan, int numFingers,
 double far, int start, int numRecords,
 String procHandle);
}

2.1.2.3.2 Interface I2
Interface I2 is used to transfer the result of a biometric matching task from the matcher
components to the farm and from there to the collector component. The interface, named
IDOutput, is shown below. As the identify() method in the interface I1, the result() method in
I2 includes the workflow handle. The collector component uses this handle to return the result
to the corresponding instance of the identification workflow. Furthermore, it includes the
name of the node the task was processed on, the number of DB records searched, and the ID
of the matching record, if a match was found.

public interface IDOutput {

/** Receives result from matcher component.
 *
 * @param nodeName Node name.
 * @param numRecords Number of records matched.
 * @param match RID of matching record, zero if no match, - 1 if error.
 * @param procHandle Handle of the identification workflow this
 * identification request belongs to.
 */
public void result(String nodeName, int numRecords, int match,
 String procHandle);
}

2.1.2.3.3 Interface I3
Interface I3 is used by the BIS to initially define or update the QoS contract with the
autonomic manager.

public interface AutonomicServerManager {

 /** Commit Qos contract to the autonomic manager.
 *
 * @param qosContract Contract string in the format “TaskPerSecond := N”
 * /
 GenericTypeWrapper commitContract(String qosContra ct);
}

GridCOMP FP6-034442 page 13 of 54 D.UC.04.A

2.1.2.3.4 Interface I4
Interface I4 is used by the autonomic manager to trigger autonomic operations offered by the
ABC. The available operations are: “Farm::ServiceTime”, "Farm::IncreaseParallelDegree",
and "Farm::DecreaseParallelDegree". This allows the manager to retrieve the average
service time and to take appropriate action if required.

public interface AutonomicController {

/** Lists available autonomic operations.
 * @return Array of strings defining the available operations.
 */
public String[] listAutonomicOperations();

/** Execute the desired autonomic operation.
 *
 * @param op String defining the operation to execute
 * @param params varialble argument list
 * @return Result of the operation.
 */
public GenericTypeWrapper execOperation(String op, Object ... params);
}

2.1.2.4 Summary of the GCM features used

During the second year of the project, the focus was on exploring the WP3 results and
integrating the autonomic functionality into the BIS prototype. This implies the use of almost
all of the other features of the CFI such as composite components, collective interfaces,
deployment descriptors, etc. Furthermore, we have use the GIDE for graphical component
architecture design, composition, ADL file generation and monitoring. Also, we have
published our experiences with the CFI and the GIDE in [2].

2.2 Early prototype

2.2.1 Description
The prototype (V2) as described in the previous sections brings a number of improvements
over the first version (V1) delivered in D.UC.03, mostly because it uses the autonomic farm
developed in WP3. However, due to the fact that the task-parallel farm does not satisfy all
needs of the BIS, a few trade-offs had to be made. The pros and cons of the current prototype
with respect to the first version and its overall functionality can be summarized as follows.

• Thanks to the autonomic farm skeleton, the V2 prototype dynamically scales
depending on system parameters to maintain the desired performance. In V1 the
performance estimations were only made during system startup meaning that it was
completely static.

• In addition to performance, the V2 prototype also scales with respect to concurrent
identifications. In V1, all nodes where working on one identification request at any
point in time. Consequently, people could only be identified sequentially. V2, in
contrast, can be used to work on an arbitrary number of identifications concurrently.

• The use of the farm skeleton significantly reduced the development time, which
becomes clearly visible when comparing the code size of V1 and V2. Both prototypes
required about the same amount of code to be written whereas V2 provides much
more functionality. Adding all this functionality to V1 manually, without the use of
the skeleton, would have required significantly more effort.

GridCOMP FP6-034442 page 14 of 54 D.UC.04.A

• The trade-off made is the fact that the workers have to load the complete database into
RAM. This limits the scalability of the solution to the amount of RAM available.
Also, loading the complete database requires quite some time such that the farm grows
relatively slow.

Although the current prototype does not represent the optimal solution to the problem, it
works well and is a good demonstrator for both, the autonomic farm skeleton and the CFI as a
whole. Furthermore, its development has generated very important feedback for the WP3
partners and significantly influenced the development of the data-parallel farm skeleton.

2.2.2 Configuration and usage
The current prototype is available in the file D.UC.04-IBM.zip (available through BSCW).
For running the prototype the file js.jar including Rhino 1.6R7 must be downloaded from
http://www.mozilla.org/rhino/ and stored into the subdirectory lib/ePVM/. This is required by
the workflow engine included in the BIS.

The prototype is configured to run on Grid5000. It makes use of two deployment descriptors.
Firstly, the file descriptor/BIS-Grid.xml defines the node on which the initial worker of the
farm is running on. The farm itself is running on the default node (the local JVM of the
application). Secondly, the file deployment/deployment-descriptor.xml defines all nodes
available to the farm for allocating additional workers. It assumes the file nodesBIS.properties
to be present including a list of machine names reserved in Grid5000 (an example file is
included).

The application can be started via the included run script. The application takes command line
arguments with the following syntax: <max-time> <db-size> <task-size> <additional-
workers>. Max-time denotes the desired maximum identification time (time to search the
complete DB for a matching identity) in seconds, db-size defines the desired database size,
task-size indicates the number of identities matched per task, and additional-workers defines
the number of workers in addition to the initial worker the farm should start with.

When the application is started, it displays the initial parameters defined at the command line.
Then, the nodes are started by activating the deployment descriptors, the database is accessed
(and generated if required), and the GCM components are deployed. Finally, the QoS contract
is calculated based on the current parameters and submitted to the autonomic manager.
Afterwards, the BIS application is ready and enters its command shell mode displaying the
prompt GridCOMP BIS> as shown below.

Starting BIS:
 Max. identification time: 10 sec.
 DB size : 50000
 Task size : 50
 Additional workers : 100

Starting nodes
Connecting to database
Deploying grid components
Submit QoS contract (100 tasks/sec.) and allocated additional workers
BIS startup successful (identities: 50000, QoS cont ract: 100 tasks/sec.,
additional workers: 100)

GridCOMP BIS>

GridCOMP FP6-034442 page 15 of 54 D.UC.04.A

Once started, the BIS application can be used interactively via the command shell. Typing the
command “?” lists the available commands offered by the shell as shown below.

GridCOMP BIS> ?
 identify [<id>]
 id -> id (1-n) of the person to identify (0 means unknown person, no

id means randomly choosen)
 time <max-time>
 max-time -> desired max. identification time in se conds
 task <task-size>
 task-size -> number of matches per task sent to th e farm
 ls
 list the current application state (e.g. number no des in the farm)
 quit
 quit BIS application.

The shell commands allow modifying application parameters, retrieving the application state,
as well as triggering identification requests. This way, one can see how the farm automatically
increases/decreases the parallel degree while processing identification tasks to reach the given
performance goal.

2.2.3 Examples
The trace below shows how an identification request is processed by the BIS prototype.
Firstly, the command identify is used to trigger the identification of a randomly chosen known
person. Here, the person with the ID 42147 is retrieved from the database, and its fingerprints
are used for identification. Secondly, 1000 identification tasks are generated and submitted to
the farm. Thirdly, the BIS prints the progress of the identification periodically. Finally, after
one of the nodes reported the matching ID to be 42147, the person is retrieved from the
database, and it can be seen that the identification was successful.

GridCOMP BIS> identify
Identify known person:
 RID : 42174
 First Name : John
 Last Name : Doe 42174
 Adress : 1 st Avenue, New York City, USA
1000 identification tasks submitted to farm

Outstanding tasks : 999
Number of nodes : 1
Identities matched: 50

Outstanding tasks : 998
Number of nodes : 2
Identities matched: 100

Outstanding tasks : 989
Number of nodes : 11
Identities matched: 550

Outstanding tasks : 976
Number of nodes : 24
Identities matched: 1200

Outstanding tasks : 712

GridCOMP FP6-034442 page 16 of 54 D.UC.04.A

Number of nodes : 96
Identities matched: 14400

Outstanding tasks : 621
Number of nodes : 96
Identities matched: 18950

Outstanding tasks : 529
Number of nodes : 96
Identities matched: 23550

Outstanding tasks : 378
Number of nodes : 96
Identities matched: 31100

Outstanding tasks : 355
Number of nodes : 96
Identities matched: 32250

Outstanding tasks : 231
Number of nodes : 96
Identities matched: 38450

Outstanding tasks : 32
Number of nodes : 101
Identities matched: 48400

Outstanding tasks : 0
Number of nodes : 101
Identities matched: 49974

Person successfully identified, rid: 42174, retriev ing identity from DB…
Identification successful:
 First Name : John
 Last Name : Doe 42174
 Adress : 1 st Avenue, New York City, USA
GridCOMP BIS>

2.3 Next actions

Together with this deliverable, a new version of the farm skeleton will become available.
Also, a first version of the new data-parallel farm will be finished. Depending on the time
constraints, we envision to either migrate to the new version of the task-parallel farm or even
switch to the data-parallel skeleton. The latter would more significantly improve the prototype
but requires substantial change to the workflow logic (back to the concept of distributing parts
of the database across workers).
Furthermore, we will replace the command shell with a Java GUI to make the user interaction
with the prototype more appealing.

Finally, we will continue to make use of the GIDE and provide feedback on its functionality
in technical meetings as carried out during the second year.

GridCOMP FP6-034442 page 17 of 54 D.UC.04.A

3 Computing of DSO Value

3.1 Architectural design

You can find the complete description of this use case and its background in the D.UC.03
deliverable. This section will only include a summary of the architectural design and an
update from the previous deliverable.

3.1.1 Architecture of the application

The application selected by Atos to be used by this use case was the “Computing of DSO
value”. The DSO (Days Sales Outstanding) is the mean time needed for an invoice to be paid.
The application is based on PL/SQL code and needs to be run the following infrastructure and
programs:

• One main server where the master database will be installed
• Install the database on the main server: Oracle Enterprise Edition or Oracle Standard

Edition *
• Several nodes computers (server, desktops, laptops) to be used as workers
• Install the database in each node: Oracle Express Edition (free of charge) *
• Install the Java runtime environment 1.6 in all computers/servers
• If you are using Windows operating system, you need to install the following

applications to enable ssh connections:
• Cygwin
• SSH server for Cygwin

The following picture illustrates the infrastructure needed to run the Computing of DSO
Value application:

GridCOMP FP6-034442 page 18 of 54 D.UC.04.A

* The database information (PL/SQL code, tables, etc.) will not be described and distributed with the documentation because the DB code is
confidential.

3.1.2 GCM Components

3.1.2.1 Components diagram

The following picture illustrates the components diagram proposed to use with the Computing
of DSO Values use case:

The application workflow used with this diagram is:

1. The client user interface makes a request to the DSOProgram component to start the
application

2. The DSOProgram component obtains the list of clients’ IDs to be processed from the
Reader component

3. The DSOProgram component breaks the list of clients’ IDs into chunks
4. These chunks are sent to the ComputeUnits component on the remote nodes to be

processed
5. The Compute component receives the chunks from the ComputeUnit and inserts it on

the slave database using the Writer component

6. After that, the Compute component calls the stored procedure to execute the PL/SQL
code using the CallPlSql component

3.1.2.2 Components description

3.1.2.2.1 DSOProgram component

GridCOMP FP6-034442 page 19 of 54 D.UC.04.A

The DSOProgram is the master component of the application, and it is responsible of the
program workflow. It offers a runnable server interface and 2 client interfaces, called read
and ourTaskMulticast.

3.1.2.2.2 Reader component

The Reader component offers the functionality to connect to the master database and gets the
list of clients’ IDs that will be processed by the application.

3.1.2.2.3 ComputeUnit component

The ComputeUnit component is a composite component with 3 sub-components. It is
responsible of the execution of tasks on the remote nodes and offers an ourTask server
interface.

3.1.2.2.4 Compute component

The Compute component offers the functionality to receive the tasks from the ComputeUnit
and execute them. The component receives the list of clients’ IDs and sends it to the Writer
component that will insert it in the node database. After that, the component starts the
CallPlSql component to execute the PL/SQL code.

GridCOMP FP6-034442 page 20 of 54 D.UC.04.A

3.1.2.2.5 Writer component

The Writer component offers the functionality to write on the node database the list of clients’
IDs to be processed by the PL/SQL code.

3.1.2.2.6 CallPlSql component

The CallPlSql component offers the functionality of wrapping PL/SQL code. This component
calls an Oracle stored procedure stored in the node database that will execute the PL/SQL
code.

3.1.2.3 Interfaces

The following codes illustrate the interfaces used to build the components listed above.

The first interface called is the Reader interface. It’s responsible for connecting to the master
database and getting the list of clients’ IDs from the clients table.

public interface Reader {

 /**
 * Gets the list of client's Ids from the database.
 *
 * @param clientId Id from the specific client to be processed
 * @param groupId Id from the group of clients to be processed
 * @return list of clients’ IDs
 */
 String[] getClients(String clientId, String groupId);
}

The DSOProgram component implements a multicast client interface, OurTaskMulticast,
which sends the task to several ComputeUnit components. This interface implements a
method called compute with two parameters, one using the parameter dispatch mode to be
ROUND_ROBIN and the other using the parameter dispatch mode to be BROADCAST.

public interface OurTaskMulticast extends Serializable {

 /**
 * A multicast client interface to send the tasks to the nodes
 *
 * @param clients the list of the list of clients’ IDs
 * @param dates the period to be processed
 * @return success or failure
 */
 public List<BooleanWrapper> compute(
 @ParamDispatchMetadata(mode=ParamDispatchMode. ROUND_ROBIN) List<List<String>>

GridCOMP FP6-034442 page 21 of 54 D.UC.04.A

 clients,
 @ParamDispatchMetadata(mode=ParamDispatchMode. BROADCAST) List<String> dates);
}

The OurTask interface is responsible for starting the process in the remote nodes.

public interface OurTask extends Serializable {

 /**
 * A server interface to receive the tasks on the nodes
 *
 * @param clients the list of clients’ IDs
 * @param dates the period to be processed
 * @return success or failure
 */
 public BooleanWrapper compute(List<String> clients, List< String> dates);
}

The Writer interface is responsible for connecting to the node database and inserts the list of
clients´ IDs on the temporary table to be executed by the PL/SQL code.

public interface Writer {

 /**
 * Insert the list of client's ids in the database.
 *
 * @param clients the list of clients’ IDs
 * @param start_date the initial date of the process
 * @param end_date the final date of the process
 * @return success or failure
 */
 public boolean insertClients(String[] clients , String start_date , String end_date);
}

The CallPlSql interface if responsible for executing the PL/SQL code stored inside the Oracle
Stored Procedure on the node database.

public interface CallPlSql {

 /**
 * Call the oracle stored procedure to be executed.
 *
 * @return success or failure
 */
 public boolean executePlSql();
}

3.1.2.4 Summary of the GridCOMP features used

The following GridCOMP features are used in the Compute of DSO Value implementation:

� Primitive components defined via ADL files (XML fractal files).
� Composite components including the bindings of the sub-components are defined via

the ADL.
� Use of deployment descriptors and Virtual Nodes to define the Grid infrastructure and

component deployment. The support of network protocols standards such as SSH is
used in the deployment descriptor.

� Server and client interfaces including one multicast server interface are defined.
� Use of different parameters of dispatch mode: BROADCAST and ROUND_ROBIN.

GridCOMP FP6-034442 page 22 of 54 D.UC.04.A

3.2 Early prototype

3.2.1 Description
The main differences between this prototype implementation and the primitive one are:

1. Current implementation is based on components, since the primitive one was based on

Active Objects.
2. Scheduler implemented inside the DSOProgram component. The temporary

Master/Slave API is not used any more.
3. Implementation of a graphical user interface to input parameters and view the

execution logs.
4. Implementation of the original DSO PL/SQL code: creation of the original tables,

packages and functions.

Some effort was spent in analyzing the different ways to distribute the PL/SQL code with a
grid solution. After some research and analysis, we identified 4 different ways to distribute a
PL/SQL code. The following images show the database structure and our analysis/comments
about each possibility.

The first analysis was to have the following database structure: all tables and PL/SQL code
are inside the master database and a part of the code is inside the node database. The code put
inside the node DB is only to start the PL/SQL process and to do the first calculation without
data access. This code will start the original PL/SQL code stored inside the master DB
through DBLink (direct connection between the databases). This option can be used when the
PL/SQL code does a lot of calculations without specific data access.

GridCOMP FP6-034442 page 23 of 54 D.UC.04.A

The second database structure is to have all tables inside the master database and a full copy
of the PL/SQL code inside the node database. The execution of the PL/SQL code will be
inside the node DB and all data access will be done through DBLink to the master DB. This
option was discarded because require too much network throughput, making the execution
slow.

The third database structure is to have all PL/SQL code and main tables inside the node
database. At the beginning of the process, the node DB will select from the master DB the
main data needed to execute the PL/SQL code and store it in the node tables. If the process
needs more data, it will take it from the master DB through DBLink. This option can be used
when the PL/SQL code does a lot of calculations with specific data access.

This database structure was selected to be used with the Computing of DSO Values use case
because the application PL/SQL code use specific information stored in specific tables to do
the calculations. The PL/SQL code will use the information stored inside the node tables to do
the calculation and if needs more date, it will take it from the master database through
DBlink.

The fourth database structure is to have all PL/SQL code and all tables inside the node
database. All processes will be executed inside the node DB without access to the master DB
and requiring database replication. This method was discarded because Oracle Express
Edition, which will be installed in the nodes, has limitation on disk space.

3.2.2 Configuration and usage
The first thing to do before executing this prototype is to install the required software listed in
section 3.1.1. After installing, testing and running all required software you can start to
configure the prototype.
You can find the binary code inside the file “D.UC.04 – DSO early prototype.zip”.
Uncompress the zip file and add the following libraries to the lib directory:

GridCOMP FP6-034442 page 24 of 54 D.UC.04.A

• ProActive 3.9 (ProActive binaries and related libraries)
• classes12.jar (JDBC library)

The following files need to be changed to configure and run the prototype on your
environment:

� \classes\com\atosorigin\usercase\dso\deployment.xml - open the deployment file and
rewrite it with the nodes information

� \classes\com\atosorigin\usercase\dso\comp\CallPlSqlImp.fractal - open the fractal file
and change the attributes url, user and pwd with the node database information. It is
necessary to have one fractal file for each node

� \classes\com\atosorigin\usercase\dso\comp\DSO.fractal – open the fractal file and
rewrite it with the virtual nodes information and the binding connections

� \classes\com\atosorigin\usercase\dso\comp\DSOProgram.fractal – open the fractal file
and change the attribute numTasks value with the number of nodes used

� \classes\com\atosorigin\usercase\dso\comp\ReaderImp.fractal - open the fractal file
and change the attributes url, user and pwd with the master database information

� \classes\com\atosorigin\usercase\dso\comp\WriterImp.fractal - open the fractal file
and change the attributes url, user and pwd with the node database information. It is
necessary to have one fractal file for each node

Start the main application “DSOProgram,” and the graphical user interface will start.

The first thing that the application will do is to create the remote nodes. After that, the Start
button will be enabled. Set the parameters and push the button.

3.2.3 Examples
To test the application you can use the following parameters:

• Client ID: <leave empty>

GridCOMP FP6-034442 page 25 of 54 D.UC.04.A

• Client group: <leave empty>
• Initial date: enero 2007
• Final date: febrero 2007

When the executions finish, you can check the result in the result table.

3.3 Next actions

The early prototype is a sample of the “tuned” final prototype that will be presented at the end
of the project. Some actions need to be done to refine this prototype and make it more
powerful and useful, turning it an example to be used in real industrial world application.

To make this happen, some enhancements need to be made on the next period:

� Refine the user interface, showing the results in the GUI (data from the result table)
� Integrate the autonomic controller (FARM code) with the DSO code, providing a way

to add or remove a specific worker at execution time.
� Test the application with the real database, same amount of data, to check the

performance against the original application (without GRID)
� Refine the code documentation

GridCOMP FP6-034442 page 26 of 54 D.UC.04.A

4 EDR Processor

4.1 Architectural design

A complete description of this use case and its background can be found in D.UC.03
deliverable [1]. This section will only include a summary of the architectural design and an
update from the previous deliverable.

4.1.1 Architecture of the application
An actual EDR Processor application will work unattended, inside a nightly batch process,
taking information from a sequential file (previously generated from some source database)
and storing the results into another sequential file (eventually imported to a target database).
For the purposes of this project, the source and target databases will be ignored.

Being an embarrassingly parallel process, the EDR processing can be easily distributed
among a set of (likely heterogeneous) computing resources. In order to do that, the input EDR
file must be split into fragments. Each fragment will be processed by a grid resource, and the
results will later be joined.
The following picture shows the conceptual behaviour of the application:

GridCOMP FP6-034442 page 27 of 54 D.UC.04.A

The scattering and joining of the files is performed by a “master” resource (the one running
the application). The processing of the fragments is done by the “EDR slaves”, which transfer
the result files back to the “master”.
As explained in previous deliverable documents and presentations, the processing of an EDR
is a rather simple case of an Extract, Transform and Load (ETL) process.

4.1.1.1 Extract, Transform and Load

The Extract Transform and Load processing is done using Pentaho Data Integration, also
known as Kettle Project [3]. Kettle is an open source ETL library that includes a very user-
friendly integrated development environment. Using that IDE the user can easily design the
ETL process and save it to a metafile. That metafile can later be used to execute the ETL
process through the Java API of the Kettle libraries.
The following picture shows the design of the ETL corresponding to the processing of an
EDR file:

Each one of the steps of the transformation is described in the following sections.

4.1.1.1.1 EDR File Input
In this step, the EDR input file is read, parsing the different fixed length fields.
The following table shows the format of the EDR input file:

Name Type Format Position Length

1 ID BigNumber 0 13

2 State String 16 1

GridCOMP FP6-034442 page 28 of 54 D.UC.04.A

3 Distributor String 17 4

4 CountryDialingCode Integer ##0 21 3

5 Phone String 24 12

6 SStart Date yyyyMMddHHmmssSSS 36 17

7 Duration String 53 4

8 ProgConv String 57 4

9 ProgElem String 61 2

10 CodeSelection String 63 2

11 IndexKey String 65 5

12 AreaCode String 70 5

13 TypeCall Integer #0 75 2

14 TypeISDNFlux String 77 3

15 TypeCodeFlux String 80 3

16 DataCodePage String 83 19

17 TotalConsumption Number 102 6

18 TotalTax Integer 108 6

19 TotalNetUse Integer 114 6

20 SingleConsumption Number 120 6

21 SingleTax Integer 126 6

22 SingleNetUse Integer 132 6

23 StdMtpn String 138 6

24 UseRecalc String 144 6

25 UM String 150 2

26 CauseTaxation String 152 4

27 CodeAnomaly String 156 3

28 DataCEM Date yyyyMMdd 159 8

4.1.1.1.2 CountryPhoneCodes file input
This step reads the file containing the mapping between phone prefix and ISO country codes.
This is a CSV (Character Separated Values) file, with the following format:

Name Type Format Length
1 PhoneCode Integer 3

2 CountryCode String 2

4.1.1.1.3 Sort codes
This step sorts the contents of the file read at the previous step, by PhoneCode , and prepares
them to perform a lookup.

GridCOMP FP6-034442 page 29 of 54 D.UC.04.A

4.1.1.1.4 CountryCode lookup
This step adds a new field (CountryCode) to the output of the processing. This field is
populated with the ISO country code corresponding to the phone prefix matching the one
contained in the EDR.

4.1.1.1.5 CodeService Mapper
It maps the TypeCall field from the EDR to a new target field, CodeService , using a
pre-defined mapping table:

Source value Target value
0 Voice

1 SMS

2 MMS

3 GPRS

4 WAP

5 3G

6 ISDN

7 ADSL

4.1.1.1.6 Add currency code
This step adds a new CurrencyCode field, containing “EUR” (all prices are in EURO).

4.1.1.1.7 Rates file input
It reads the file containing the rates to apply to an EDR to compute its price. This file contains
the following fields (in CSV format):

Name Type Format Length
1 CountryCode String 2

2 ServiceCode String 5

3 Rate Number #,##0.00 6

4.1.1.1.8 Sort rates
It sorts the file from the previous step by CountryCode and ServiceCode fields,
preparing its contents to be looked up.

4.1.1.1.9 Rate lookup
For each EDR, and using the CountryCode and ServiceCode fields, it obtains the
corresponding Rate from the Rates file. It adds this as a new field to the result.

4.1.1.1.10 Normalize consumption
It normalizes de contents of the field TotalConsumption , expressed in milliseconds, to
seconds (rates are per second). A new field, TotalConsumptionNorm is added to the
results.

GridCOMP FP6-034442 page 30 of 54 D.UC.04.A

4.1.1.1.11 Apply rate
It adds a new field, Total , as the result of the multiplication of
TotalConsumptionNorm and Rate , obtained from previous steps.

4.1.1.1.12 District obtainment
It adds a new field, District , containing the first 3 digits of the Phone number.

4.1.1.1.13 Add system info
It adds two new fields, RecordDate and Hostname , when and where each record has been
processed, respectively, for debugging purposes.

4.1.1.1.14 Result file output
It writes the results of the process to a file, using CSV format. Each line contains the fields
from the original EDR plus the new fields added from previous steps.

4.1.2 GCM Components
The architectural design of the prototype has suffered some changes from its primitive
version. The FileSupplier component has been removed, and two new components have been
introduced, one of them only for the autonomic version of the architecture.
All the logic related to the generation of random content for the EDR files has been moved to
an auxiliary tool and will not be commented any further in this document.

4.1.2.1 Components diagram

4.1.2.1.1 Non-autonomic

The non-autonomic components diagram (made using the Grid IDE) corresponding to the
early prototype is the following:

Note: Although three EDRSlave components are depicted, the exact number depends on the deployment of the application.

Summarizing, the architectural design is as follows:

GridCOMP FP6-034442 page 31 of 54 D.UC.04.A

� The EDRProcessor receives the request to process an EDR file
� Using the FileOperator, the EDR file is split into fragments.
� Using a multicast interface, the fragments are processed by the EDRSlave components
� The partial results are sent to the ResultsCollector.
� When all fragments have been processed, the ResultsCollector, using the FileOperator,

merges the partial results, obtaining the final result.

Comparing this architectural design to the one from the primitive prototype, we can see that
the EDRSlave components are now connected to the new ResultsCollector component. This
way, they can inform the latter when they have finished processing one of the fragments of
the EDR file. This information will allow the ResultsCollector to know the progress achieved,
and thus, it can be displayed in the user interface. This new component will be described in
depth in the following sections of this document.

4.1.2.1.2 Autonomic

The current state of the autonomic version of the components diagram is the following:

In this version, the multicast interface between the EDRProcessor and the EDRSlave
components has been replaced by a TaskFarm component, the EDRSlaveFarm. This
component will take care of deploying as many EDRSlaves as needed, controlling the
parallelism degree. This degree can vary during the execution of the application, in order to
adapt the performance to the requirements of the user.
Only the EDRProcessor is affected by this change, the rest of the components remain the
same. This fact shows the easiness in turning a non-autonomic architecture into an autonomic
one.

GridCOMP FP6-034442 page 32 of 54 D.UC.04.A

4.1.2.2 Components description

4.1.2.2.1 EDRProcessor
The EDRProcessor acts as the master component, offering a homonym server interface.
Through this interface, the GUI can submit processing requests to the components. The
behavior of this component is the following:

• Scatters the file using the fileOperator client interface.
• Initializes the ResultsCollector component through its interface, telling it how many

fragments must be processed.
• Processes the fragments using the slave client interface. The non-autonomic version of

the component uses the multi-cast interface and the autonomic one the single-cast
interface (connected to the EDRSlaveFarm). The more slaves bound to the interface
(or the farm), the higher level of parallelization achieved.

4.1.2.2.2 EDRSlaveFarm
This component is only present in the autonomic version of the application. This composite
component extends the MonitorBalanceFarmController from the NFCF, offering a farm of
EDRSlave components. Using the non functional interfaces of this component, the user can
modify the parallelism degree of the application.

4.1.2.2.3 EDRSlave
This is the component in charge of applying the ETL process implemented using Kettle and
described in a previous section of this document. When receiving the first request, the Kettle
library will be initialized with all the needed configuration files. Subsequent requests will be
processed faster, as no initialization has to be performed again.
When Kettle initialization is done, the component transfers the corresponding fragment of the
EDR file from the node where the EDRProcessor component is deployed. Then, the
transformation is applied to the file using the Kettle library. The result is transferred back and
the ResultsCollector is invoked to notify another fragment has been processed.

4.1.2.2.4 ResultsCollector
This component collects the intermediate results, sent from the EDRProcessor components.
When all results are collected, they are joined, using the FileOperator.
Also, this component offers information about the progress of the processing.

4.1.2.2.5 FileOperator
The FileOperator component offers the functionality to scatter and join files. Those files must
reside in the local file system.

4.1.2.3 Interfaces

In this section, the interfaces from the different components are presented.

4.1.2.3.1 EDRProcessor
This is the server interface offered by the EDRProcessor component:

public interface EDRProcessor {

 /**
 * Processes the given EDR input file.
 *

GridCOMP FP6-034442 page 33 of 54 D.UC.04.A

 * @param inputFilePath path to the EDR input file
 * @param outputFilePath path to store the results file to
 * @param recordsPerFragment number of EDR to include on each fragment of the input file
 * @param gzipFiles whether to compress fragment files when transferring them
 */
 void process(String inputFilePath, String outputFilePat h, int recordsPerFragment,
 boolean gzipFiles);
}

It contains a single, straight-forward method.

4.1.2.3.2 EDRSlave
This is the server interface offered by the EDRSlave components:

public interface EDRSlave {

 /**
 * Processes an EDRRequest.
 * <p>
 * This means:
 *
 * Downloading the given fragment of the EDR file from source node
 * Processing all the contained EDRs, generating a partial results file
 * Uploading the partial results file to the source node
 * Calling the ResultsCollector component to let it know processing is finished
 *
 *
 * @param request the EDRRequest to be processed
 */
 void process(EDRRequest request);
}

An EDRRequest contains the path to one of the fragments of the EDR input file, the node
where it is stored, the path to store the partial results to, and whether to compress those files
when transferring them.

4.1.2.3.3 EDRSlaveMulticast
This is the multi-cast client interface used by the non-autonomic version of the EDRProcessor
component to invoke the EDRSlave components.

public interface EDRSlaveMulticast {

 /**
 * Processes a list of EDRRequests, using Round Robin parameter dispatch mode.
 * <p>
 * This means:
 *
 * Downloading EDR fragment files from source node
 * Processing all the contained EDRs, generating partial results files
 * Uploading the partial results files to the source node
 * Calling the ResultsCollector component to let it know processing is finished
 *
 *
 * @param requests the list of EDRRequest to be processed
 */
 @MethodDispatchMetadata (mode = @ParamDispatchMetadata (mode = ParamDispatchMode. ROUND_ROBIN))
 void process(List<EDRRequest> requests);
}

4.1.2.3.4 FileOperator
This interface contains the needed operations with files: scatter() and join() .

public interface FileOperator {

 /**

GridCOMP FP6-034442 page 34 of 54 D.UC.04.A

 * Scatters the given file into fragments of the given size (expressed in number of
 * lines/Extended Data Records).
 * <p>
 *
 * @param source the file to be scattered
 * @param linesPerFile size of the fragments
 * @param gzipFiles whether to gzip fragments
 * @return List of the resulting Files
 */
 List<File> scatter(File source, int linesPerFile, boolean gzipFiles);

 /**
 * Joins the given source files into the given output one.
 *
 * @param sources list of files to be joined
 * @param outputFile where to save the resulting file
 * @param gzipFiles whether the source files are gzipped
 */
 void join(List<File> sources, File outputFile, boolean gzipFiles);
}

4.1.2.3.5 ResultsCollector
The server interface offered by the new ResultsCollector component is the following:
public interface ResultsCollector {

 /**
 * Initializes the ResultsCollector component.
 *
 * @param numOfResultFilesToCollect number of partial results to be collected
 * @param resultsFile path to the results file
 * @param gzipFiles whether the files are compressed
 */
 void init(int numOfResultFilesToCollect, File resultsFile, boolean gzipFiles);

 /**
 * Informs the collector a new partial result is available, providing its location.
 * <p>
 * If the number of results files to be collected has been reached, this triggers the
 * joining of the partial results files into the final result, using the FileOperator.
 *
 * @param remoteFile path to the new partial result.
 */
 void collect(File remoteFile);

 /**
 * Gets the number of partial result files already collected.
 *
 * @return the number of partial result files already collected.
 */
 IntWrapper getResultFilesCount();

 /**
 * Gets the number of partial result files to be collected.
 *
 * @return the number of partial result files to be collected.
 */
 IntWrapper getResultFilesToCollect();
}

The init() method is invoked from the EDRProcessor component, the collect()
method from the EDRSlave components, and the getResultFilesCount() and
getResultFilesToCollect() from the Graphical User Interface, in order to provide
feedback about the progress of the processing.

4.1.2.4 Summary of the GridCOMP features used

The EDR Processor use case is making good use of the following GridCOMP features:
• Primitive components: as seen previously, the prototype features several primitive

components (EDRProcessor, FileOperator, EDRSlave).

GridCOMP FP6-034442 page 35 of 54 D.UC.04.A

• Composition: the whole prototype is a composite prototype (Root). Also, the
EDRSlaveFarm is a composite component, containing multiple instances of EDRSlave
components.

• Collective interfaces: a multi-cast interface is being used by the non-autonomic
version of the architectural design to connect the EDRProcessor component to the
EDRSlave components and carry out the processing of the fragments of the EDR input
file.

• Autonomic features: a task farm (from WP3) takes care of EDRSlave components
replication in the autonomic version of the architectural design.

• Grid Integrated Development Environment: the architectural designs have been done
using the GIDE prototype from WP4.

GridCOMP FP6-034442 page 36 of 54 D.UC.04.A

4.2 Early prototype

4.2.1 Description
The early prototype of the EDR Processor use case application fixes most of the limitations
the primitive one had:

� Includes a graphical user interface, letting the user select all the invocation parameters.
� Progress information is displayed through the user interface, as a progress bar.
� The implementation of the EDR processing has been completed, using Kettle.
� Dynamic deployment without editing the architecture, using task farm autonomic

controller or a programmatic approach.

4.2.2 Configuration and usage
Both the source code and the binaries of the early prototype are included in the file “D.UC.04
– EDR Processor early prototype.zip”. The latest version of this prototype is also publicly
available at INRIA's GForge gridcompwp5gs project [9].
These are the system requirements in order to run the application:

� Java 1.6 [4]
� Ant [5]
� ProActive 3.90 [6]

After uncompressing the aforementioned zip file, and assuming that both java and ant are in
the path, just type ant processor to invoke the EDR Processor. The application will
request to enter the path to the distribution folder of ProActive 3.90. After that, the user
interface will appear:

GridCOMP FP6-034442 page 37 of 54 D.UC.04.A

This first “tab” contains the deployment details. Depending on your infrastructure, select one
of the included deployment descriptors and press the “Deploy” button.
The “Deployment log” text box will show the log trace output during the deployment:

After the deployment is done, the “Options” tab is enabled:

GridCOMP FP6-034442 page 38 of 54 D.UC.04.A

The “options” tab contains the controls to select the desired input parameters:

� Input file: path to the file containing the EDRs to be processed.
� Partition size: number of EDRs each fragment file will contain.
� Transmit compressed data: whether to compress the fragments of the input file before

transferring them. This may reduce the time needed to transfer the data through the
network.

� Output file: path to the file where the results of the processing will be stored.

When all of the above fields have been complimented, the “Start” button can be pushed. The
request will be submitted to the components, and the “Execution” tab will be enabled,
showing the log trace of the execution and a progress bar.

GridCOMP FP6-034442 page 39 of 54 D.UC.04.A

When the progress bar reaches 100%, the execution is done (all fragments from the EDR file
have been processed and their results joined), and new requests can be submitted.

4.2.2.1.1 Autonomic version
In order to test the autonomic version of the application, the “Use autonomic features” check
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors
must be selected (at the time of this writing only a local deployment descriptor is offered).

GridCOMP FP6-034442 page 40 of 54 D.UC.04.A

While running a request, a set of controls will be displayed in the “Options” tab. Using these
controls, the autonomic behaviour of the application can be monitored and/or altered, adding
or removing workers.

GridCOMP FP6-034442 page 41 of 54 D.UC.04.A

4.2.3 Examples
The /test folder contains several sample input files (generated using the script provided on the
same folder), ranging from one thousand EDRs to one million EDRs. If needed, more files
can be generated, invoking the EDRGenerator tool (ant generator in the main folder).
Generating random EDR files is a time consuming task so, in order to create a new file, it is
advised to use one of the included ones to repeatedly append it to the new one.

4.3 Next actions

For this use case, the planned actions in order to turn the early prototype into the final,
“tuned”, one are:

� Finish the integration with the autonomic controller, providing a way for the user to
specify QoS (Quality of Service) requirements for the execution of the experiments.

� Measure the performance of the application, running on different deployments and
with different parameters.

� Clean up and document in depth the source code.

GridCOMP FP6-034442 page 42 of 54 D.UC.04.A

5 Wing Design

5.1 Architectural design

A complete description of this use case and its background can be found in D.UC.03
deliverable [1]. This section will only include a summary of the architectural design and an
update from the previous deliverable.

5.1.1 Architecture of the application
Although not changed from previous versions of the prototype, for clarity, a depiction of the
operation of the Wing Design application is offered next:

1. The user provides a set of wing geometry files and input parameters for the

experiment.
2. The legacy application binaries (Merak) are provisioned to the resources on the grid,

as new components.
3. The complete set of parameter combinations is obtained by the Parameter Sweeper

component.
4. Each parameter combination is sent to a Merak component, which performs its

simulation.
5. Results are collected, composed and a graph is generated.

Legacy executable files are only available for Windows, Linux and Solaris, so resources
running these operating systems are needed. Also, result graph is generated using gnuplot,
which must be installed in the computer running the application.
In order to provide a better user experience, an interactive graph is built during the execution
(per wing geometry involved). The user can change the point of view; zoom in and out, etc.
These interactive graphs are generated using Visad[7], which is based on Java3D[8] that must
be present in the computer running the application.

GridCOMP FP6-034442 page 43 of 54 D.UC.04.A

5.1.2 GCM Components

5.1.2.1 Components diagram

5.1.2.1.1 Non-autonomic

The non-autonomic components diagram (made using the Grid IDE) corresponding to the
early prototype is the following:

Note: Although three Merak components are depicted, the exact number depends on the deployment of the application.

A brief explanation of this architectural design is the following:

� The WingDesign receives the request to perform a simulation, given a set of wing
configurations and input parameters.

� Using the ParameterSweeper, the complete list of parameter combinations to evaluate
is obtained.

� The above information is also passed to the ResultsComposer.

� Each one of the parameter combinations is delivered to a Merak component, using the
multicast interface.

� Results are delivered to the ResultsComposer. When all results are received, the graph
showing the comparison of the results is made.

The only change in the architectural design from its preliminary version is the direct
connection between Merak components and the ResultsComposer. Now, the ResultsComposer
is also in charge of providing information about the progress of the computations and of
gathering the results in order to show in-progress graphs for each wing geometry.

GridCOMP FP6-034442 page 44 of 54 D.UC.04.A

5.1.2.1.2 Autonomic
The current state of the autonomic version of the components diagram is the following:

This autonomic architectural design makes use of a Farm controller (the MerakFarm),
replacing the multicast interface between the WingDesign and the Merak components. The
MerakFarm controls the parallelism degree of the application, deploying as many Merak
components as needed.

As in the previous use case, only one component, WingDesign, is affected by this change, the
rest of the components remain the same.

5.1.2.2 Components description

5.1.2.2.1 WingDesign
This is the main component, and offers a server interface, named wingDesign, which is used
by the graphical user interface. Through this interface the user can submit simulation requests,
providing one or more wing geometry files and the needed input parameters.
The behaviour of this component is quite simple:

� Initializes the ResultComposer component with the input parameters.
� Initializes the Merak components, with the appropriate legacy application binaries for

their platform.
� Obtains the list of all the parameter combinations that must be processed, calling the

ParameterSweeper component.
� Processes the list of parameter combinations, invoking the Merak components

(whether through the multicast interface or the farm controller).

5.1.2.2.2 ParameterSweeper
This component computes the complete list of parameter combinations to be processed. This
is simply the Cartesian product of:

GridCOMP FP6-034442 page 45 of 54 D.UC.04.A

• The range of incidence angles
• The range of Reynolds numbers
• The range of wing configurations

This component must be co-allocated with the WingDesign one, as it needs local access to the
wing geometry files.

5.1.2.2.3 MerakFarm
As in the previous use case, this component is only present in the autonomic version of the
application. This composite component extends the MonitorBalanceFarmController from the
NFCF, offering a farm of Merak components. Using the non functional interfaces of this
component, the user can modify the parallelism degree of the application.

5.1.2.2.4 Merak
The Merak component wraps the legacy application:

• Downloads the proper executable files from the master node on initialization (this is
only done once).

• Processes each received request for execution, preparing the input parameters,
invoking the executable, transferring the result file

• Deletes temporary files after finishing the execution.

5.1.2.2.5 ResultsComposer
The ResultsComposer gathers the result files from the simulations, generating a graph where
the different wing geometries are compared. It also offers information about the progress of
the process and temporary results, allowing the graphical user interface to display that results
live.

5.1.2.3 Interfaces

In this section, the interfaces from the different components are presented.

5.1.2.3.1 WingDesign
This is the interface offered by the WingDesign component. Its only method is the starting
point of the whole process:

public interface WingDesign {
 /**
 * Performs a simulation, processing the given parameter specification.
 *
 * @param spec contains the wing geometries, incidence angles, reynolds and iteration
 * numbers to perform the simulation
 * @return a graph comparing the different wing geometries.
 */
 File process(SweepSpecification spec);
}

A SweepSpecification is a java class that contains a list of geometry files, the initial
and final values for the incidence angle and the reynolds number ranges, the number of
samples to take from each range, and a number of iterations to perform the simulation.

5.1.2.3.2 ParameterSweeper
This interface contains the method to generate the list of parameter combinations to be used
when invoking the legacy application (merak):

GridCOMP FP6-034442 page 46 of 54 D.UC.04.A

public interface ParameterSweeper {
 /**
 * Generates the combination of parameters to be submitted to merak.
 * <p>
 * This is the Cartesian product of the ranges contained in the sweep specification
 *
 * @param spec the specification of the ranges of values to be swept
 * @return a list of Merak Parameters
 */
 List<MerakParameters> sweep(SweepSpecification spec);
}

5.1.2.3.3 Merak
The interface of the component offering access to the legacy application is the following:

public interface Merak {

 /**
 * Prepares the component for the execution of the Merak legacy application.
 *
 * @param supplier the node to download the executable files from
 * @param platformFiles map with the executable files per platform.
 * @param resultsDir path on the supplier node where result files must be stored
 */
 void prepare(Node supplier, Map platformFiles, File resultsDir);

 /**
 * Runs the Merak legacy application, using the given parameters.
 *
 * @param params parameters to pass to the legacy application
 */
 void run(MerakParameters params);

 /**
 * Deletes all temporary files stored in the local file system during preparation or
 * execution.
 */
 void cleanUp();

}

5.1.2.3.4 MerakMulticast
This is the multi-cast client interface used by the non-autonomic version of the WingDesign
component to invoke the Merak components:

public interface MerakMulticast {

 /**
 * Prepares the component for the execution of the Merak legacy application.
 *
 * @param supplier the node to download the executable files from
 * @param platformFiles map with the executable files per platform.
 * @param resultsDir path on the supplier node where result files must be stored
 */
 void prepare(Node supplier, Map platformFiles, File resultsDir);

 /**
 * Runs the Merak legacy application, using the given list of parameters, using Round
 * Robin parameter dispatch mode.
 *
 * @param params the list of parameters to pass to the legacy application
 */
 @MethodDispatchMetadata (mode = @ParamDispatchMetadata (mode = ParamDispatchMode. ROUND_ROBIN))
 void run(List<MerakParameters> params);

 /**
 * Deletes all temporary files stored in the local file system during preparation or
 * execution.
 */
 void cleanUp();
}

GridCOMP FP6-034442 page 47 of 54 D.UC.04.A

The only method offering a multicast behaviour is run . This is dispatched in a round robin
fashion among the Merak components.

5.1.2.3.5 ResultsComposer
The server interface offered by the ResultsComposer component is the following:

public interface ResultsComposer {

 /**
 * Initializes the component.
 *
 * @param spec the input parameters to be processed
 * @param resultsDir the path to the directory where temporary results will be stored
 */
 void init(SweepSpecification spec, File resultsDir);

 /**
 * Adds a new result (a point in the graph for a certain wing geometry) to the composer.
 * When all results are added, the graph comparing the different wing geometries is
 * made.
 *
 * @param geoPoint a point in the graph for a certain wing geometry
 */
 void addResult(GeometryPoint geoPoint);

 /**
 * Gets the percentage of results received since the component was initialized.
 *
 * @return the percentage of results received since the component was initialized
 */
 Integer getResultsPercent();

 /**
 * Gets a list with all the results added since the last call to this method.
 *
 * @return a list with all the results added since the last call to this method
 */
 List<GeometryPoint> getPendingResults();
}

The init method is invoked by the WingDesign component at the start of the process. The
addResult method is invoked by the Merak components each time a new result is obtained.
Last, getResultsPercent and getPendingResults are invoked from the GUI in
order to implement a progress bar and the interactive live graphs, respectively.

5.1.2.4 Summary of the GCM features used

The following GridCOMP features are used:

• Primitive components: for example WingDesign, Merak, ResultsComposer, etc.
• Composition: MerakFarm is a composite component, containing multiple instances of

Merak components.
• Collective interfaces: the non-autonomic version of the architectural design uses a

multicast interface to connect the WingDesign component to the Merak ones,
distributing the simulation effort among them.

• Autonomic features: a task farm (from WP3) takes care of Merak components
replication in the autonomic version of the architectural design.

• Grid Integrated Development Environment: the architecture has been designed using
the GIDE prototype from WP4.

GridCOMP FP6-034442 page 48 of 54 D.UC.04.A

5.2 Early prototype

5.2.1 Description
Very similar to the EDR Processor, the early prototype of the Wing Design use case fixes
most of the limitations the primitive one had:

� Includes a graphical user interface, letting the user select all the invocation parameters.
� Progress information is displayed through the user interface, as a progress bar.
� The output of the results has been improved, displaying live interactive graphs for

each wing geometry.
� Dynamic deployment without editing the architecture, using task farm autonomic

controller or a programmatic approach.

5.2.2 Configuration and usage
The file “D.UC.04 – Wing Design early prototype.zip” contains both the source and the
binaries of the early prototype. The latest version of this prototype is also publicly available at
INRIA's GForge gridcompwp5gs project [9].
These are the system requirements in order to run the application:

� Java 1.6 [4]
� Java3D [8]
� Ant [5]
� ProActive 3.90 [6]

Run ant WingDesign to invoke the Wing Design. The application will request you to
enter the path to the distribution folder of ProActive 3.90. After that, the user interface will
appear:

GridCOMP FP6-034442 page 49 of 54 D.UC.04.A

This first “tab” contains the deployment details. Depending on your infrastructure, select one
of the included deployment descriptors and press the “Deploy” button.

The “Deployment log” text box will show the log trace output during the deployment:

GridCOMP FP6-034442 page 50 of 54 D.UC.04.A

After the deployment is done, the “Options” tab is enabled. This tab includes controls to
select the input parameters:

� Wing geometries: all .geo files found in the geometries folder are listed; one or more
can be selected (Ctrl + click).

� Range of incidence angle: from, to, and number of samples
� Range of Reynolds number: from, to, and number of samples
� Number of iterations

GridCOMP FP6-034442 page 51 of 54 D.UC.04.A

The “start” button submits the request, when pressed. The “Execution” and “Results” tabs are
enabled. The former shows log messages and a progress bar:

GridCOMP FP6-034442 page 52 of 54 D.UC.04.A

The “Results” tab displays the interactive graphs, a progress bar and the gnuplot comparison
graph (only when finished):

In order to control the interactive graphs:

� Dragging the mouse will rotate the point of view
� Pressing caps while dragging the mouse up or down will zoom in or out.
� Pressing ctrl while dragging the mouse will move the point of view
� The controls at the bottom of each window will change the appearance of the

corresponding graph.

5.2.2.1.1 Autonomic version
In order to test the autonomic version of the application, the “Use autonomic features” check
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors
must be selected (at the time of this writing only a local deployment descriptor is offered).
While running a request, a set of controls will be displayed in the “Options” tab. While using
these controls, the autonomic behaviour of the application can be monitored and or altered,
adding or removing workers.

GridCOMP FP6-034442 page 53 of 54 D.UC.04.A

5.2.3 Examples
The early prototype includes a few wing geometry files to be used for testing (under the
geometries folder). The more files that are included or the more samples that are selected for
the incidence angle or Reynolds number, the higher the amount of invocations to the legacy
application. Changing the amount of iterations will also increase or decrease the time needed
to accomplish each invocation (the higher, the longer). Default values should take a few
minutes to complete for a local deployment if only a wing geometry is selected.

5.3 Next actions

These are the next actions in order to turn the current prototype into the final one:
� Make use of the methods and techniques for legacy code wrapping as Grid

Components. Currently, the wrapping is ad hoc and follows no standard.
� Finish the integration with the autonomic controller, providing a way for the user to

specify QoS (Quality of Service) requirements for the execution of the experiments.
� Measure the performance of the application, running on different deployments and

with different parameters.
� Clean up and document in depth the source code.

GridCOMP FP6-034442 page 54 of 54 D.UC.04.A

6 References

[1] T. Weigold, F. Tumiatti, E. Prunés, J. Santacatalina, G Freire. D.UC.03 Use cases
description: preliminary architectural design and primitive prototypes.
https://bscw.ercim.org/bscw/bscw.cgi/d315688/D.UC.03-final.pdf

[2] T. Weigold, P. Buhler, J. Thiyagalingam, A. Basukoski, V. Getov. Advanced Grid
Programming with Components: A Biometric Identification Case Study. Proceedings of
COMPSAC 2008, IEEE Digital Library (to appear).

[3] Pentaho Data Integration: http://kettle.pentaho.org/

[4] Java 1.6: http://java.sun.com/

[5] Apache Ant: http://ant.apache.org/

[6] ProActive 3.90: http://proactive.inria.fr/

[7] Visad: http://www.ssec.wisc.edu/~billh/visad.html

[8] Java3D: https://java3d.dev.java.net/

[9] gridcompwp5 project at INRIA's GForge: http://gforge.inria.fr/projects/gridcompwp5gs/

