Information Society

lechnologies

GridCOMP ¢

Effantive Componants for the Srids

Project no. FP6-034442

GridCOMP

Grid programming with COM Ponents : an advanced component platform
for an effectiveinvisiblegrid

STREP Project

Advanced Grid Technologies, Systems and Services

D.UC.04.A — Use cases: early documentation

Due date of deliverable: 1 June 2008
Actual submission date: 5 June 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this delble: GS

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination L evel
PU PUBLIC PU

Keyword List: use case, prototype, component, GCM
Responsible Partner: Gaston Freire, GS

i
. I

MODIFICATION CONTROL
Version Date Status Modifications made by
1.0 05-06-2008 Draft Fabio Tumiatti, Thomas Weig@aston Freirg
1.1 05-06-2008 Draft Gaston Freire
1.2 17-06-2008 Draft Fabio Tumiatti, Thomas Weig@aston Freirg
1.3 25-06-2008 Draft Gaston Freire
1.4 02-07-2008 Final Fabio Tumiatti

Deliver able manager
e Gaston Freire, GS

List of Contributors
* Thomas Weigold, IBM

* Fabio Tumiatti, ATOS

* Gaston Freire, GS
List of Evaluators
* Magdalena Escalas, GS

e Marco Danelutto, UNIPI

Summary

» This document describes the early prototypes of ube case applications. Their
current architectural design is explained in depilong with the configuration and
usage of the demonstrators. A summary of the Igestdeatures from GridCOMP
(and GCM) and the next planned actions for eactcase is also offered.

GridCOMP FP6-034442 page 2 of 54 D.UC.04.A

\1%4

1”4

x ‘{Cf@ g\ i‘
GridCOMP Y 6

falrl
G C /M\
i o = O

Table of Content
1 IINTRODUCT ION ..ottt e e e e e e e et e et e e et e et e e e eaeeeeeeeeeeeeeeeen e aaeeaaeeseeeseeeeeeennnnnanans 5

2 BIOMETRIC IDENTIFICATION SYSTEMccciii s 6

2.1 ARCHITECTURAL DESIGN ...ttuutttttttttttessteeeeeeeeteeeeeteetaeaaaeeasasasssssssass s sssnsasasasnssbbesbeeneeeeeeeeeeeens 6
2.1.1 Architecture of the appliCALION...........oiiiiiiiii e 6
2.11.1 GCM Component architecture and GCM Qd@PLEN ..ceeeeecuvvrieeeiiiiiieee et eeeerere e e e eeaeeees 6
2112 BUSINESS PIrOCESSESuviviieieiiieeee e s eseateee e e e s e eteeeeeeasttaaaesssssbeaaeeessteeeaaesssaeeaesassssseeesannsaaeeeensnsseees
2113 Demo Applicationcccceeeenneee.
2.1.2 GCM Components......ccccceceeeeeeeeeaees
2121 Components diagram.............
2122 Components description............
2.1.2.2.1 Application...........cccvvvreeerivvnenn.
W A A . - L (o3 1= o = o PSPPSR SOUPPRRY
N T A = 1 O RTTS USRS
2.1.2.2.4 Automan...
2.1.2.2.5 Matcher...
O T @Yo | =T (o R PPPUPRN
21.23 INEEITACES ..ot e e
2.1.23.1 Interface Il
2.1.2.3.2 Interface 12
2.1.2.3.3 Interface I3
2.1.2.3.4 Interface 14
2.1.24 Summary of the GCM features used ...

2.2 EARLY PROTOTYPE. ...ttt tuttteeeattteeaauteeasaueeeeaanaeeaaaseeaaasseeaeaateeeeaaaseesaaseeeeaseeeaanteeaanseeeannsaeeeasnneesans
2 R B 1= 1Yol o) (o] o FA U URTP PP
2.2.2 Configuration and usage
2.2.3 Examples.....ccccce..

2.3 NEXT ACTIONS

3 COMPUTING OF DSO VALUE ...ttt 17

31 ARCHITECTURAL DESIGN ...t euuttteeattetesatteee s st te sttt e s s beeasateteaasbeeeesbnseesanteeenanbeeeessnbeeennreeeninneeeans 17
3.1.1 Architecture of the appliCALION.iiuiiiiiie e 17
3.1.2 GCM Components

3.1.21 (@0] 30T o Yo aT=T a1 e3e 1= T | r= Vo o SRS
3.1.22 (0] aq] o o] T=T a1 eqe [=TTol] o] (T o I PP TRPUPPR
3.1.2.2.1 DSOProgram component............
3.1.2.2.2 Reader component..........cc.ccocuvvnee..
3.1.2.2.3 ComputeUnit component...............
3.1.2.2.4 Compute component
3.1.2.2.5 Writer componentc.......
3.1.2.2.6 CallPISgl component......
3.1.23 INterfaces......coooviiiiiiii e
3.1.24 Summary of the GridCOMP features used...
3.2 EARLY PROTOTYPE.....ciiiiiiiiiiiiiee e et eee s
1072 N B 1= 1ox 1 o] 1T o P
3.2.2 Configuration and usage.........ccccccuvvvvrmmennnnnns
B.2.3 EXAMIPIES .ttt e e e b e e e e n b aae e s
3.3 NEXT ACTIONS. ¢ttt te e ettt e ettt e et e e s e ee e e e e e b et e e e s s se bbb e e et e s senbe e e ee e e e aaatnrneneeenna

4 EDR PROCESSOR ... bbb b b e s s 26

4.1 ARCHITECTURAL DESIGN ...t tet et eeteeatite e e e e e ettt ettt e e e e e e e e e e eeebaaa aa e e e e e e eeeetbba s e e e eeaeeeeeannnnnnaaaeas
4.1.1 Architecture of the application.............ccccueeeernnns
4111 Extract, Transform and Load
4.1.1.1.1 EDR File Input
4.1.1.1.2 CountryPhoneCodes il INPULuuiiiiiieeeeeie e
0 R RS To 1 4 A oo o [PO OO PP PP PP PP PP P PPPRPPPRIN
4.1.1.1.4 CountryCode lookup......
4.1.1.1.5 CodeService Mapper
4.1.1.1.6 Ad CUITENCY COUEiveiiieeeiiitiee e ettt e e ettt e e e ettt e e e e s sttt e e e e s et eesssaateeeeeeanbneeeeesnsaneeaenannes
O A = = 1 (=30 {1 (<N 0] o 11 RO SOP PR
41.1.1.8 Sortrates..............
4.1.1.1.9 Rate lookup

GridCOMP FP6-034442 page 3 of 54 D.UC.04.A

5

6

2u
GridCOMP f 4

cnive Compao;

7
&

4.1.1.1.10 Normalize consumption
4.1.1.1.11 Apply rate
4.1.1.1.12 DiStriCt ODTAINMENTcoiutiiiiiiee ittt et e e e e et e e e sab e e e snee e anbeeesnneeeneaes

4.1.1.1.13 Add SYSEEM INTO ..eiiiiiiiiii e et ememe e e e e e sttt e e e e e e e s s bt e e e aanaaeaeesnbeeaeeennneaaeeeannaeees
4.1.1.1.14 Resultfile output.........
4.1.2 GCM Components................
4121 Components diagram
4.1.21.1 NON-autonomiC..........coeeervverinnenn
4.1.2.1.2 Autonomic
4122 (0] aq] ool T=T a1 eqe (=TT ol] o] 1T o I PP TRPUPRR
A.1.2.2. 1 EDRPIOCESSOI .. .ciiiiiiii ettt £+ bbbttt et ettt e a2 222222 e e 444 e et bbbttt ettt taaaaaaaaaeaaaaaaaans
4.1.2.2.2 EDRSlaveFarm....
4.1.2.2.3 EDRSlave.............
S = oY U1 £ @0 =Tox (o] PSR SOUPPRRY
S S 11T @ o 1T (o) RSP RR
4123 Interfaces........ccccvvviiinennnn.
4.1.2.3.1 EDRProcessor...................
4.1.2.3.2 EDRSlave..........
4.1.2.3.3 EDRSlaveMulticast...............
4.1.2.3.4 FileOperator........cccccccevvvurnnn.
4.1.2.3.5 ResultsCollector.........cccvvveeeivviireesmeeenn e
4124 Summary of the GridCOMP features used...
4.2 EARLY PROTOTYPE.uuutiuuiiiieinieeeneeeeeeeeeeeeeeeeeeeeans
N R B 1= ol ¢ o) o) TP RPN

4.2.2 Configuration and usage
4.2.21.1 Autonomic version

A T " - 1] o] (=
4.3 N EXT ACTIONS. ¢ttt ettt ee e e ettt e e e skttt e e e s aas bttt e e e 4 s b e ee e e e e e st be et e e e e s aa bbbt e e e e e eanbe e e eeeeeaannbbneeeeennans

WING DESIGN ... bbb s bbb e 42

51 ARCHITECTURAL DESIGN ...ttt eeteettite e e e e e e et eeeaatt s aa e e e aeaeeeeebaaa aa e e e e e e eeeeebba e e eeeeaeeaeeannnnnnaaaeas
5.1.1 Architecture of the application
5.1.2 GCM Components......ccccceeeeeeeeeeeenenne.

5121 Components diagram..........
5.1.2.1.1 Non-autonomic
5.1.21.2 AUtOnOMIC........covvverunenn.

5.1.2.2 Components description
5.1.2.2.1 WingDesign
5.1.2.2.2 ParameterSweeper..................
5.1.22.3 MerakFarm...........cccocevvvieininenns
5.1.2.24
5.1.2.2.5 RESUILSCOMPOSEN ..ccciivieieeeiiiittteessteamammmseeeeaeessttaeeaesssaseaaeasaseseeeasnnseaeassnsseaessansnseaeesansssees

5123 INEEITACES ..o e et
5.1.2.3.1
5.1.2.3.2
5.1.2.3.3
5.1.2.3.4 MEIaKMUILICASEcooiiiiiiiiiiii ettt
5.1.2.3.5 ResultsCOmposerccccecevvvvennn.

5.1.24 Summary of the GCM features used ...

5.2 EARLY PROTOTYPE

5.2.1 DeSCrptionccceiviiiiiiiieeiiiiiiiiie e eesieeee e

5.2.2 Configuration @nd USAQEuueiiiieiiiiiiiieee e s astiite e e et e e e s st et ee s sssabeee s e e s s beereaaessannnees
5.2.2.1.1 AULONOMIC VEISIONuiiiiiiiiie ittt e eteeae e et e ettt e ettt e s abe e e eabe e e e bt e e e s bt e enneeeabe e e e beeeanbeeeantneennnes

5.2.3 EXamples ...

5.3 NEXT ACTIONS
REFERENGCESco oottt ettt ettt e bt e te e s bt e e be e s at e s st e staeebesebeesbeeebseeatesasesabeenseenbeenbaebeennes 54

GridCOMP FP6-034442 page 4 of 54 D.UC.04.A

(I

hat

A AT
™ S /_/M"‘c‘!
Grideomp (681

1 Introduction

This document is part of the “D.UC.04 Use casesdy gaototypes and early documentation”
deliverable, due in M24 of the GridCOMP project.

Also, 4 compressed files (D.UC.04.B*.zip), contdaime code (binaries and/or source)
corresponding to the four use case early prototypes

The applications selected for the use cases affeltbeing:
1. Biometric Identification System
2. Computing of DSO Value
3. EDR Processor
4. Wing Design

Each one is covered in a separated section ofdbgsiment, all of which have a common
structure:

1. First, there is an update on the architecturalgmhediighlighting any aspects that have
changed or evolved since the primitive version [A]so, a description of the
infrastructure needed to run the application (t@ses, application servers, workflow
systems, third-party software components, etojfesed.

2. The current (early) prototype is described, exphgnits configuration and usage,
while providing some examples.

3. A summary of the planned actions for the next medbthe project is included.

GridCOMP FP6-034442 page 5 of 54 D.UC.04.A

I

SaWAE

2 Biometric Identification System
2.1 Architectural design

2.1.1 Architecture of the application

The high-level architectural design of the Bionetdentification System (BIS) as outlined in
D.UC.03 (Section 2.2.2) and shown in Figure 1 heenltretained for the prototype described
in this document. However, under the covers, tinenee been many changes in the way the
system is implemented. The parts of the systemithe¢ undergone significant changes are
the GCM component architecture and the GCM adafterbusiness processes (workflow
scripts) interacting with the GCM adapter, anddeeno application. The main reason for this
is the fact that we have now considered the us&R3 results, namely, we have implemented
and improved the BIS with the autonomic behaviosialetons. The details of changes in
these parts of the system are described in thewoly subsections.

Demo Biometric Identification System (BIS) \
Application
S—

BIS
Services Business Processes

|
) — System
DB [Identification J[e e
- Ve Access

Identities

DB

GCM Workflow Engine
Adapter

P Grid Infrastructure

Matching Matching
Component Component

Figurel: Biometric identification system high-level overwie

2.1.1.1 GCM Component architecture and GCM adapter

When looking for ways to take advantage of behadbiskeletons to implement the
distributed fingerprint matching required for théSBapplication, the so-called “task-parallel
farm” behavioural skeleton was available (c.f. DOW-01) from WP3. This skeleton assumes
that a stream of independent tasks is available thatthe tasks can be distributed (e.g.
round-robin) to a number of workers. Furthermoteisiassumed that the workers do not
maintain any state, which means that new workers siaply be allocated by cloning an
existing worker. Obviously, this does not fit widl the distributed identification strategy we
had implemented in the first primitive prototypéneTapproach there was to split the database
of known identities into the appropriate piecesjriiute them across the available workers,

GridCOMP FP6-034442 page 6 of 54 D.UC.04.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

) @C—/ o
-:;:;gf;"
and then broadcast the identification requestdltavarkers. Each worker could then search
its part of the database for the given identityfddtunately, this strategy did not produce
independent tasks and implied that the workers ta@ed their state, which contradicts with
the task-parallel farm requirements.

After providing this feedback to the WP3 partnemsl a@iscussing the situation, they focused
on the implementation of another skeleton, the ated “data-parallel skeleton”, which
satisfies the requirements of the BIS and simikaéarallel applications in general. In the
meantime, we decided to make use of the task-pariim by radically changing our
distributed identification strategy as follows:

® \We make use of the farm skeleton including an aaurtoa manager (AM) similar to
the example presented in D.NFCF.02, Section 5. AW measures the farm
performance with respect to a given service conti@esired performance in
tasks/sec.) and increases or decreases the numberkers if required.

® Instead of distributing parts of the database acrosdes, it is assumed that each
worker has access to the complete database. Mesely, each worker initially
loads the complete database into memory for fastsac

® Instead of broadcasting an identification requestall nodes, the GCM adapter
generates a number of tasks which it submits toféinen. Each task includes the
biometric information (fingerprints) of the perstmbe identified and the part of the
database (index and length) to be searched inotext of this task.

With this strategy, we have transformed the dataifg problem into a task-parallel problem
which can be solved with the available farm skelefbhis represents the approach used to
implement the current prototype described in thiefong subsections.

2.1.1.2 Business Processes

The business processes for BIS management ankdef@ctual identification functionality are
interacting with the Grid via the GCM adapter. Gamgently, the change in the strategy also
affects the logic implemented in the correspondivgykflow scripts. The “startup” (c.f.
D.UC.03) process, as illustrated in Figure 2, naewalates and submits the quality of service
(QoS) contract to the AM in activity 3 and therpahites the desired number of initial workers
within the farm in activity 4. In the previous dgsj the node performance was determined
and the database was distributed at this poiritarworkflow.

GridCOMP FP6-034442 page 7 of 54 D.UC.04.A

o
—x O
GridCOMP ¢ G5
S¥icctive Componenza for she Grids (L 7\52;,/

1.2
Connect
DB

1.1
Start Nodes

1.3
Generate DB

2
Deploy GCM
Components

J— —

Submit QoS
contract to
auton. manager

(4 \

allocate initial
number of
workers in farm

Figure 2: Business process “startup” activity-flow diagram

The identification process, named “identify”, hasanged as well. It now initiates the
generation and submission of tasks. The resultsa@ltected asynchronously until all tasks
have been processed. While doing this, the prosesds monitoring events to the workflow
monitor attached to the workflow engine. These &veaeport the current state of the
identification process (e.g. number of tasks preedsetc.), which is then visualized in the
command shell described below.

e

Pre-process
fingerprints

H

Submit tasks
to farm

3

Collect results

10
Retrieve identity
from DB

Figure3: Business process “identify” activity-flow diagram

GridCOMP FP6-034442 page 8 of 54 D.UC.04.A

GridCOMP © g5

2.1.1.3 Demo Application

The first version of the BIS as described in D.LBCWas static with respect to user
interaction. The system was started with fixed pegirs, only one person was identified, and
the application terminated afterwards. To providaeae flexible and interactive demo, it was
planed to implement a simple graphical user interfeo vary system parameters and initiate
identification requests interactively. However, doethe fact that the code base of the BIS
had been changing constantly while moving towalas gutonomic version, we decided to
postpone the GUI implementation. Instead, we implet®d a command shell which offers
the same level of interactivity as a GUI, but itmsich easier to adapt to the changing base
functionality. The GUI will be implemented in thask phase of the project to make the demo
visually more attractive.

2.1.2 GCM Components

This section describes the GCM component architect@aomponent description, and
interface description of the current BIS prototype.

2.1.2.1 Components diagram

The current BIS prototype, in contrast to the firstsion as described in D.UC.03, is now
based on the autonomic farm skeleton developedmitfP3. Figure 4 illustrates the GCM
component architecture used in the prototype addcates how it interacts with the non-
componentized part of the application.

At the heart of the component system, there is fren skeleton which consists of a
composite component namadatcherfarm It includes a custom controller, the autonomic
behaviour controller ABC), which implements the autonomic functionalityy fimstance,
increasing or decreasing the number of worker carapts within the farm. Furthermore, the
farm includes a default implementation of an autoitomanager component, here named
automan These three components represent the farm skelBtoapply the skeleton, we need
to parameterise it by adding a worker componente hamednatcher This is the component
which the ABC clones and adds to the farm as mamgst as required to increase parallelism.
By default, the farm starts with one matcher congmdinWhen the number of matchers is
increased the ABC automatically replaces the iaterfil of thanatcherfarmcomponent with

a collective (unicast) interface so that multiplataimers can be bound to it.

Besides the farm, the BIS architecture also in@uwatmllector component and aapplication
component. Theollector component collects the biometric matching restot®ing from the
farm and forwards them to the workflow engine coltittg the BIS. The dashed lines in
Figure 4 illustrate the interaction between the-nomponentized part of the BIS application,
namely the workflow engine, and the GCM componeygtesn. Furthermore, Figure 4
indicates that alinatchercomponents have access to a shared database sterindentities
known by the BIS.

As far as deployment is concerned, the idea is ¢mdy the matchercomponents, which
represent the workers, are to be distributed.

GridCOMP FP6-034442 page 9 of 54 D.UC.04.A

o
GridCOMP f’g;)

Effective Componsnsa for she Grids c

results

I I
I |
')
: application T :
1 I
1 I
i matcherfarm ABC |
1 I
v 4—* 1
4 :
QoS contract 1
----- F—-=---=------>+ automan !
- 1
I3 .
~ N 1
. !
1
tasks * DB
‘o | 1 11 S~ 2 2
H—+H > matcher ./ w4 > collector
o ,'1
® /) i
o f /

shared DB

Figure 4: GCM component architecture

Figure 5 shows how the component system has bephigally composed within the GIDE
to generate the required ADL files.

& Java - bisfsrefapplication.gidecomposition_diagram - Eclipse Platform
File Edt Diagram Navigate Search Project Run Window Help

s & Ba it B0 BHEG OO =) (@
[Tahoma ~s ¥IB I A-H- s Bi- g e E EHED v
[E Packa 524 Herar = Ol defau _diaqram) appiicati _diagram E1 = O Tasklist 53 i)
5| e~ — A | Palette v @ E
55 - |app||cat|on N seect A
&8 b @ 2o Findt | b oAl
® S com.ibm.bis (=3 Note - (% Uncategorized
- E2 org.ercim.gridcomp.col (- Component: *
4 i onent
@ appcatin gdecompo matcherfarm o
o2 § automan
1 e
-8 com Standerd Client B e =0
13 defaul. gidecompostion Tnterface R
) Mulkicast Interface o &[T
. | Gather Mukicast =
i

fa
collector { Carent]
Intetface. E
i Eveains || [4
. 2 InterfaceConnect...
| matcher '| |
I 7 Font and colors 52 T
| [Fant

Colars

o) [4]

b >
[2 Problems | @ Javador | [, Declaration | 3 Properties 52 | <=8
[Gomponent Type application
T Froperty
u Author
ppeatance b
Impl Class
Last Modified
Name
< > Virtual ode: =]

Figure 5. BIS component composition in GIDE

GridCOMP FP6-034442 page 10 of 54 D.UC.04.A

I

SaWAE

2.1.2.2 Components description

2.1.2.2.1 Application

The application component is a composite component enclosing timeptete component
system of the BIS application. As such it hidesiinal components and only offers one server
port to receive identification tasks via interfac@1).

2.1.2.2.2 Matcherfarm
Thematcherfarmcomponent represents the autonomic farm skeletgmavided by WP3.

2.1.2.2.3 ABC

To implement the behavioural skeleton the defamfhgonent controller of theatcherfarm
component has been replaced by an autonomic behasomtroller ABC). The ABCis part

of the farm skeleton. It offers autonomic operadigas defined in 14) which can be triggered
by the autonomic manageautomarn or any other external entity.

2.1.2.2.4 Automan

Theautomancomponent constantly monitors the behaviour offéinen and decides when it is
required to trigger an autonomic operation via A®C. The decision is based on the QoS
contract which has been previously committed via 13

The default implementation of the autonomic managguded in the farm skeleton monitors
the average service time of the tasks passing ghrtliematcherfarm(from 11 to 12). If the
average service time reaches the threshold definedhe QoS contract the autonomic
manager increases the parallel degree (number theracomponents in the farm) via the
ABC. Correspondingly, the parallel degree is decreakdlde average service time drops
significantly below the threshold. The QoS contrdefines the desired performance of the
farm in tasks/second. We have used the defaultemehtation of the autonomic manager
almost unchanged. We just modified some minor Betich as the number of tasks over
which the average service time is calculated.

2.1.2.25 Matcher

The matcher component includes the actual fingerprint matchfogctionality. When a
matcher component is created it accesses the stiatalase and loads it into RAM for faster
access. Afterwards, it receives tasks via its fater 11 and returns results via 12. While
processing a task, it matches the fingerprints gfvan person against a given part of the
database.

2.1.2.2.6 Collector

The collector component collects the results from the farm ats them back to the BIS,
more precisely, to the identification workflow whiéurther processes them.

2.1.2.3 Interfaces
This section describes the interfaces 11-14, a®tehin Figure 4 in more detail.

2.1.2.3.1 Interfacel 1

Interface I1 is used to transfer tasks from apelicationcomponent to thenatcherfarmand
from there to the matcher components. Thus, iamedIDInput and includes th&entify()
method as shown below. Apart from the live scara déihgerprints) of the person to be

GridCOMP FP6-034442 page 11 of 54 D.UC.04.A

the handle of the workflow the identification tas&longs to. Therefore, it is possible to use
the farm for processing multiple identification vegts concurrently.

2.1.2.3.2 Interfacel 2

Interface 12 is used to transfer the result of eni@tric matching task from theatcher
components to the farm and from there to the cmtecomponent. The interface, named
IDOutput, is shown below. As thiglentify() method in the interface 11, tmesult() method in

12 includes the workflow handle. Th®llectorcomponent uses this handle to return the result
to the corresponding instance of the identificatworkflow. Furthermore, it includes the
name of the node the task was processed on, thberurh DB records searched, and the ID
of the matching record, if a match was found.

2.1.2.3.3 Interfacel 3

Interface I3 is used by the BIS to initially defime update the QoS contract with the
autonomic manager.

GridCOMP FP6-034442 page 12 of 54 D.UC.04.A

GridCOMP © g5

2.1.2.3.4 Interfacel4

Interface 14 is used by the autonomic managerigger autonomic operations offered by the
ABC. The available operations ar&arm::ServiceTime", "Farm::IncreaseParallelDegree"
and "Farm::DecreaseParallelDegree" This allows the manager to retrieve the average
service time and to take appropriate action if nexgl

publ i c interface AutonomicController {

/** Lists available autonomic operations.

* Array of strings defining the available operations.
*/

publ i ¢ String]] listAutonomicOperations();

/** Execute the desired autonomic operation.

* op String defining the operation to execute

* params varialble argument list

* Result of the operation.

*/

publ i c GenericTypeWrapper execOperation(String op, Object ... params);

}

2.1.2.4 Summary of the GCM features used

During the second year of the project, the focus wa exploring the WP3 results and
integrating the autonomic functionality into theSBprototype. This implies the use of almost
all of the other features of the CFl such as cont@asomponents, collective interfaces,
deployment descriptors, etc. Furthermore, we haeethe GIDE for graphical component
architecture design, composition, ADL file genevatiand monitoring. Also, we have
published our experiences with the CFI and the GibR)].

2.2 Early prototype

2.2.1 Description

The prototype (V2) as described in the previoudices brings a number of improvements
over the first version (V1) delivered in D.UC.03pstly because it uses the autonomic farm
developed in WP3. However, due to the fact thattés&-parallel farm does not satisfy all

needs of the BIS, a few trade-offs had to be m&de.pros and cons of the current prototype
with respect to the first version and its overafidtionality can be summarized as follows.

« Thanks to the autonomic farm skeleton, the V2 pype dynamically scales
depending on system parameters to maintain theedegierformance. In V1 the
performance estimations were only made during syst@artup meaning that it was
completely static.

* In addition to performance, the V2 prototype alsales with respect to concurrent
identifications. In V1, all nodes where working one identification request at any
point in time. Consequently, people could only bentified sequentially. V2, in
contrast, can be used to work on an arbitrary nurobiglentifications concurrently.

 The use of the farm skeleton significantly redudbd development time, which
becomes clearly visible when comparing the code sf2/1 and V2. Both prototypes
required about the same amount of code to be writtbereas V2 provides much
more functionality. Adding all this functionalityp tV1 manually, without the use of
the skeleton, would have required significantly eneffort.

GridCOMP FP6-034442 page 13 of 54 D.UC.04.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

* The trade-off made is the fact that the workersehiaioad the complete database into
RAM. This limits the scalability of the solution tine amount of RAM available.
Also, loading the complete database requires goitee time such that the farm grows
relatively slow.

Although the current prototype does not represhat dptimal solution to the problem, it
works well and is a good demonstrator for both,ab®nomic farm skeleton and the CFl as a
whole. Furthermore, its development has generatag important feedback for the WP3
partners and significantly influenced the developtr@é the data-parallel farm skeleton.

2.2.2 Configuration and usage

The current prototype is available in the file D.0OGIBM.zip (available through BSCW).
For running the prototype the fifs.jar including Rhino 1.6R7 must be downloaded from
http://www.mozilla.org/rhino&and stored into the subdirectdity/ePVM/ This is required by
the workflow engine included in the BIS.

The prototype is configured to run on Grid5000nkkes use of two deployment descriptors.
Firstly, the file descriptor/BIS-Grid.xml defineee node on which the initial worker of the
farm is running on. The farm itself is running dretdefault node (the local JVM of the
application). Secondly, the file deployment/depl@ymadescriptor.xml defines all nodes
available to the farm for allocating additional wers. It assumes the file nodesBIS.properties
to be present including a list of machine nameeresl in Grid5000 (an example file is
included).

The application can be started via the includedscript. The application takes command line
arguments with the following syntax:<max-time> <db-size> <task-size> <additional-
workers> Max-time denotes the desired maximum identification timmétto search the
complete DB for a matching identity) in secondb;sizedefines the desired database size,
task-sizeindicates the number of identities matched pek, tasdadditional-workersdefines
the number of workers in addition to the initialnker the farm should start with.

When the application is started, it displays thgahparameters defined at the command line.
Then, the nodes are started by activating the gepat descriptors, the database is accessed
(and generated if required), and the GCM comporemrtsieployed. Finally, the QoS contract
is calculated based on the current parameters ahohiged to the autonomic manager.
Afterwards, the BIS application is ready and entessssommand shell mode displaying the
promptGridCOMP BIS>as shown below.

Starting BIS:
Max. identification time: 10 sec.
DB size : 50000
Task size : 50

Additional workers : 100

Starting nodes

Connecting to database

Deploying grid components

Submit QoS contract (100 tasks/sec.) and allocated additional workers
BIS startup successful (identities: 50000, QoS cont ract: 100 tasks/sec.,
additional workers: 100)

GridCOMP BIS>

GridCOMP FP6-034442 page 14 of 54 D.UC.04.A

=5 "

Once started, the BIS application can be usedaatieely via the command shell. Typing the
command?” lists the available commands offered by the skeeBhown below.

GridCOMP BIS> ?

identify [<id>]
id -> id (1-n) of the person to identify (0 means unknown person, no
id means randomly choosen)

time <max-time>

max-time -> desired max. identification time in se conds
task <task-size>
task-size -> number of matches per task sent to th e farm
Is
list the current application state (e.g. number no des in the farm)

quit

quit BIS application.

The shell commands allow modifying application pageters, retrieving the application state,
as well as triggering identification requests. Th&y, one can see how the farm automatically
increases/decreases the parallel degree while ggimgeidentification tasks to reach the given
performance goal.

2.2.3 Examples

The trace below shows how an identification requssprocessed by the BIS prototype.
Firstly, the commandientify is used to trigger the identification of a randprmhosen known
person. Here, the person with the ID 42147 iseeél from the database, and its fingerprints
are used for identification. Secondly, 1000 idecdifion tasks are generated and submitted to
the farm. Thirdly, the BIS prints the progress loé identification periodically. Finally, after
one of the nodes reported the matching ID to be442the person is retrieved from the
database, and it can be seen that the identificatas successful.

GridCOMP BIS> identify
Identify known person:

RID 142174

First Name :John

Last Name :Doe 42174

Adress 01 st Avenue, New York City, USA
1000 identification tasks submitted to farm
Outstanding tasks: 999
Number of nodes :1
Identities matched: 50
Outstanding tasks: 998
Number of nodes : 2
Identities matched: 100
Outstanding tasks: 989
Number of nodes : 11
Identities matched: 550
Outstanding tasks: 976
Number of nodes : 24
Identities matched: 1200

Outstanding tasks: 712

GridCOMP FP6-034442 page 15 of 54 D.UC.04.A

=5 "

Number of nodes : 96
Identities matched: 14400
Outstanding tasks: 621
Number of nodes : 96
Identities matched: 18950
Outstanding tasks: 529
Number of nodes : 96
Identities matched: 23550
Outstanding tasks: 378
Number of nodes : 96
Identities matched: 31100
Outstanding tasks: 355
Number of nodes : 96
Identities matched: 32250
Outstanding tasks: 231
Number of nodes : 96
Identities matched: 38450
Outstanding tasks: 32
Number of nodes : 101
Identities matched: 48400
Outstanding tasks: 0
Number of nodes : 101
Identities matched: 49974

Person successfully identified, rid: 42174, retriev ing identity from DB...
Identification successful:

First Name : John

Last Name : Doe 42174

Adress 01 st Avenue, New York City, USA
GridCOMP BIS>

2.3 Next actions

Together with this deliverable, a new version of farm skeleton will become available.

Also, a first version of the new data-parallel fawill be finished. Depending on the time

constraints, we envision to either migrate to thevwersion of the task-parallel farm or even
switch to the data-parallel skeleton. The latteuldanore significantly improve the prototype

but requires substantial change to the workflowddack to the concept of distributing parts
of the database across workers).

Furthermore, we will replace the command shell withtava GUI to make the user interaction
with the prototype more appealing.

Finally, we will continue to make use of the GIDidaprovide feedback on its functionality
in technical meetings as carried out during thesdgear.

GridCOMP FP6-034442 page 16 of 54 D.UC.04.A

=5 "

3 Computing of DSO Value

3.1 Architectural design

You can find the complete description of this ussecand its background in the D.UC.03
deliverable. This section will only include a sunmnaf the architectural design and an
update from the previous deliverable.

3.1.1 Architecture of the application

The application selected by Atos to be used by s case was the “Computing of DSO
value”. The DSO (Days Sales Outstanding) is themti@ae needed for an invoice to be paid.
The application is based on PL/SQL code and neels tun the following infrastructure and
programs:

* One main server where the master database witidialied
» Install the database on the main server: Oraclergnse Edition or Oracle Standard
Edition *
» Several nodes computers (server, desktops, laptiobe) used as workers
» Install the database in each node: Oracle Exprés®i (free of charge) *
* Install the Java runtime environment 1.6 in athpoiters/servers
* If you are using Windows operating system, you rteddstall the following
applications to enable ssh connections:
* Cygwin
» SSH server for Cygwin

The following picture illustrates the infrastructuneeded to run the Computing of DSO
Value application:

Manager

a

Office worl

SE

Office worker

ST

Office worker

Grid -.04.A

Main Nodes
|n';l::;ce Database Database
Oracle EE Cracle XE

I

SaWAE

* The database information (PL/SQL code, tables) etill not be described and distributed with tecumentation because the DB code is
confidential.

3.1.2 GCM Components

3.1.2.1 Components diagram

The following picture illustrates the componentagitam proposed to use with the Computing
of DSO Values use case:

DSO
Feader
- l
DSOProgram { |
- |
[ComputeUnit_1
| II_Vriter
= Compute ! i
: L]
b Fa||P|Sq|
|
Wi
SR

The application workflow used with this diagram is:

1. The client user interface makes a request to th@®¥8gram component to start the
application

2. The DSOProgram component obtains the list of dielids to be processed from the
Reader component

3. The DSOProgram component breaks the list of cliébDsinto chunks

4. These chunks are sent to the ComputeUnits comparerthe remote nodes to be
processed

5. The Compute component receives the chunks fron€tmputeUnit and inserts it on
the slave database using the Writer component

6. After that, the Compute component calls the stgmedtedure to execute the PL/SQL
code using the CallPISgl component

3.1.2.2 Components description

3.1.2.2.1 DSOProgram component

GridCOMP FP6-034442 page 18 of 54 D.UC.04.A

I

¥
) {
0

SOProgram |
& |
| 5

The DSOProgram is the master component of the @gifun, and it is responsible of the
program workflow. It offers aunnable server interface and 2 client interfaces, calead
andourTaskMulticast

3.1.2.2.2 Reader component

Reader

The Reader component offers the functionality tonaxt to the master database and gets the
list of clients’ IDs that will be processed by thgplication.

3.1.2.2.3 ComputeUnit component

ComputeUnit 1

lNriter
._

Fompute f

The ComputeUnit component is a composite compongtit 3 sub-components. It is
responsible of the execution of tasks on the renmmdes and offers aaurTask server
interface.

3.1.2.2.4 Compute component

The Compute component offers the functionalitydoeive the tasks from the ComputeUnit
and execute them. The component receives theflidiamts’ IDs and sends it to the Writer
component that will insert it in the node databai#er that, the component starts the
CallPISgl component to execute the PL/SQL code.

GridCOMP FP6-034442 page 19 of 54 D.UC.04.A

o
—x O
GridCOMP ¢ G5
S¥icctive Componenza for she Grids (L 7\52;,/

3.1.2.2.5 Writer component

INriter

The Writer component offers the functionality toteron the node database the list of clients’
IDs to be processed by the PL/SQL code.

Fa PISql

3.1.2.2.6 CallPISgl component

The CallPISgl component offers the functionalityobpping PL/SQL code. This component
calls an Oracle stored procedure stored in the miadabase that will execute the PL/SQL
code.

3.1.2.3 Interfaces

The following codes illustrate the interfaces useduild the components listed above.

The first interface called is the Reader interfdte.responsible for connecting to the master
database and getting the list of clients’ IDs fribra clients table.

public interface Reader {

/**
* Gets the list of client's Ids from the database.
*
* clientld Id from the specific client to be processed
* groupld Id from the group of clients to be processed
s list of clients’ IDs
*/

String[] getClients(String clientld, String groupld);

The DSOProgram component implements a multicasintlinterface, OurTaskMulticast,
which sends the task to several ComputeUnit compusneThis interface implements a
method calleccomputewith two parameters, one using the parameter tlispaode to be

ROUND_ROBIN and the other using the parameter dispanode to be BROADCAST.

publ i c interface OurTaskMulticast ext ends Serializable {
/**
* A multicast client interface to send the tasks to the nodes
*
* clients the list of the list of clients’ IDs
* dates the period to be processed
* success or failure

*/
publ i c List<BooleanWrapper> compute(
@aramDispatchMetadata(mode=ParamDispatchMode. ROUND_ROBI N) List<List<String>>

GridCOMP FP6-034442 page 20 of 54 D.UC.04.A

Gridcome

The OurTask interface is responsible for startivgprocess in the remote nodes.

The Writer interface is responsible for connectionghe node database and inserts the list of
clients” IDs on the temporary table to be execbiethe PL/SQL code.

The CallPISql interface if responsible for execgtihe PL/SQL code stored inside the Oracle
Stored Procedure on the node database.

3.1.2.4 Summary of the GridCOMP features used
The following GridCOMP features are used in the @ata of DSO Value implementation:

Primitive components defined via ADL files (XML fttal files).

Composite components including the bindings ofghie-components are defined via
the ADL.

Use of deployment descriptors and Virtual Nodeddbne the Grid infrastructure and

component deployment. The support of network patstandards such as SSH is
used in the deployment descriptor.

Server and client interfaces including one multicasver interface are defined.

Use of different parameters of dispatch mode: BRGAST and ROUND_ROBIN.

GridCOMP FP6-034442 page 21 of 54 D.UC.04.A

GridCoOMP

3.2 Early prototype

3.2.1 Description
The main differences between this prototype implaat@n and the primitive one are:

1. Current implementation is based on componentsegime primitive one was based on
Active Objects.

2. Scheduler implemented inside the DSOProgram compon&he temporary
Master/Slave API is not used any more.

3. Implementation of a graphical user interface touinparameters and view the
execution logs.

4. Implementation of the original DSO PL/SQL code:atien of the original tables,
packages and functions.

Some effort was spent in analyzing the differenysvip distribute the PL/SQL code with a

grid solution. After some research and analysisjdeatified 4 different ways to distribute a

PL/SQL code. The following images show the datalstisecture and our analysis/comments
about each possibility.

Master DB Nodes DB

DBLink

— .
PL/SQL start procedure

The first analysis was to have the following datsbatructure: all tables and PL/SQL code
are inside the master database and a part of theisanside the node database. The code put
inside the node DB is only to start the PL/SQL pisscand to do the first calculation without
data access. This code will start the original B)l/Scode stored inside the master DB
through DBLink (direct connection between the data#s). This option can be used when the
PL/SQL code does a lot of calculations without #ipedata access.

Master DB Nodes DB

DBLink
——
selects / insert PL/SQL

GridCOMP FP6-034442 page 22 of 54 D.UC.04.A

The second database structure is to have all taidete the master database and a full copy
of the PL/SQL code inside the node database. Tlkeuton of the PL/SQL code will be
inside the node DB and all data access will be dbreugh DBLink to the master DB. This
option was discarded because require too much meetthooughput, making the execution
slow.

Master DB Nodes DB

DBLink
—

selects

The third database structure is to have all PL/SQtde and main tables inside the node
database. At the beginning of the process, the Dilavill select from the master DB the
main data needed to execute the PL/SQL code anel istm the node tables. If the process
needs more data, it will take it from the master thB®ugh DBLink. This option can be used
when the PL/SQL code does a lot of calculation& sfiecific data access.

This database structure was selected to be usadivetComputing of DSO Values use case
because the application PL/SQL code use specificrimation stored in specific tables to do

the calculations. The PL/SQL code will use the infation stored inside the node tables to do
the calculation and if needs more date, it willetak from the master database through
DBIink.

Master DB Nodes DB

DBLink
D s

selects

The fourth database structure is to have all PL/SQte and all tables inside the node
database. All processes will be executed insidentitee DB without access to the master DB
and requiring database replication. This method wiissarded because Oracle Express
Edition, which will be installed in the nodes, hiasitation on disk space.

3.2.2 Configuration and usage

The first thing to do before executing this propmyis to install the required software listed in
section 3.1.1. After installing, testing and ruriall required software you can start to
configure the prototype.

You can find the binary code inside the file “D.0O&. - DSO early prototype.zip”.
Uncompress the zip file and add the following liiera to the lib directory:

GridCOMP FP6-034442 page 23 of 54 D.UC.04.A

oy
x dﬁf W)
GridCOMP t g0

* ProActive 3.9 (ProActive binaries and related Iri@g)
» classesl12.jar (JDBC library)

The following files need to be changed to configuwed run the prototype on your
environment:

e \classes\com\atosorigin\usercase\dso\deployment open the deployment file and
rewrite it with the nodes information

e \classes\com\atosorigin\usercase\dso\comp\CallRiggfractal - open the fractal file
and change the attributesl, userandpwd with the node database information. It is
necessary to have one fractal file for each node

e \classes\com\atosorigin\usercase\dso\comp\X8@al — open the fractal file and
rewrite it with the virtual nodes information arftetbinding connections

e \classes\com\atosorigin\usercase\dso\comp\DSOPmdpactal — open the fractal file
and change the attribute numTasks value with tmebew of nodes used

e \classes\com\atosorigin\usercase\dso\comp\Readdrbmofal - open the fractal file
and change the attributed, userandpwd with the master database information

e \classes\com\atosorigin\usercase\dso\comp\Writefhagtal - open the fractal file
and change the attributesl, userandpwd with the node database information. It is
necessary to have one fractal file for each node

Start the main application “DSOProgram,” and thepgiical user interface will start.

E3 Computing of DSO value Q@@

Origin '
|

Client ID: I
Client group: | |
Initial date: [abril = 2008
Final date: [mayo [=H 2008
2008-05-20 17:33:08 592 INFO DSOLauncher - *** Starting D50 Components

[I

2008-05-20 17:33:12,033 INFO proactive deployment log -

2008-05-20 17:33:12,033 INFO proactive deployment|og - --- SEHC Nt -----mmmmmmmmme oo

2008-05-20 17:33:21 866 INFO proactive deployment log - =* Starting jvm on 172.24.43.59

2008-05-20 17:33:23 498 INFO proactive deploymentlog - —= This ClassFileServer is listening on port 2026

2008-05-20 17:33:23,802 INFO proactive deploymentlog - Created a new registry on port 1083

2008-05-20 17:33:29,940 INFO proactive deploymentlog - Generating class @ pa.stub.org.objectweb proactive.core runtime. _StubProActiveRuntime
2008-056-20 17:33:27 064 INFO proactive deploymentlog - Generating class : pa.stub.org objectweb proactive.core body._ StublniversalBody
2008-05-20 17:33:28125 INFO proactive deployment log - Generating class : pa.stub.org.objectweb proactive.core.component type._StubComposite
2008-05-20 17:33:28 BA7 INFO DSOLauncher -

0l iil | D

|5mrt=

The first thing that the application will do is ¢toeate the remote nodes. After that, 8tart
button will be enabled. Set the parameters and fheshutton.

3.2.3 Examples
To test the application you can use the followiagameters:

* Client ID: <leave empty>

GridCOMP FP6-034442 page 24 of 54 D.UC.04.A

I

SaWAE

» Client group: <leave empty>
* [nitial date: enero 2007
* Final date: febrero 2007

When the executions finish, you can check the t@suhe result table.
3.3 Next actions

The early prototype is a sample of the “tuned” lfiprtotype that will be presented at the end
of the project. Some actions need to be done toeehis prototype and make it more
powerful and useful, turning it an example to bedus real industrial world application.

To make this happen, some enhancements need tad®on the next period:

® Refine the user interface, showing the resulteenGUI (data from the result table)

® Integrate the autonomic controller (FARM code) vitte DSO code, providing a way
to add or remove a specific worker at executioretim

® Test the application with the real database, sameuat of data, to check the
performance against the original application (withGRID)

® Refine the code documentation

GridCOMP FP6-034442 page 25 of 54 D.UC.04.A

=5 "

4 EDR Processor

4.1 Architectural design

A complete description of this use case and itsk¢pamuind can be found in D.UC.03
deliverable [1]. This section will only include amsmary of the architectural design and an
update from the previous deliverable.

4.1.1 Architecture of the application

An actual EDR Processor application will work upatted, inside a nightly batch process,
taking information from a sequential file (previbugenerated from some source database)
and storing the results into another sequential(@ventually imported to a target database).
For the purposes of this project, the source anpgttalatabases will be ignored.

Input -
EDR File

Qutput -
Transformed EDR

EDR
Process

N v

Rules and [. . ‘
configuration ~—
Data Warehouse

Being an embarrassingly parallel process, the ED&tgssing can be easily distributed
among a set of (likely heterogeneous) computingue®s. In order to do that, the input EDR
file must be split into fragments. Each fragment b processed by a grid resource, and the
results will later be joined.

The following picture shows the conceptual behavafithe application:

Input -
EDR File

Scatter File }

= Output -
% Transformed EDR
Join Files)

Al
If“*]

R

I* l

Rules and
configuration

Data Warehouse

GridCOMP FP6-034442 page 26 of 54 D.UC.04.A

=5 "

The scattering and joining of the files is perfodri®y a “master” resource (the one running
the application). The processing of the fragmestdoine by the “EDR slaves”, which transfer
the result files back to the “master”.

As explained in previous deliverable documents pregentations, the processing of an EDR
is a rather simple case of an Extract, Transforthlaovad (ETL) process.

41.1.1 Extract, Transform and Load

The Extract Transform and Load processing is dosiaguPentaho Data Integration, also
known as Kettle Project [3]. Kettle is an open seuETL library that includes a very user-
friendly integrated development environment. Udingt IDE the user can easily design the
ETL process and save it to a metafile. That metafdn later be used to execute the ETL
process through the Java API of the Kettle libsarie

The following picture shows the design of the ETdrresponding to the processing of an
EDR file:

EDR file input

A} 53] | —

Add CurrencyCode CodeService Mapper CountryCode lookup Sort Codes CountryPhoneCodes file input

- B

Rate lookup Sort Rates Rates file input

MNormalize Consumption Apply Rate District obtainment

Add System Infe (Date + Hostname)

=]

Result file output

Each one of the steps of the transformation isriest in the following sections.

4.1.1.1.1 EDR FileInput

In this step, the EDR input file is read, parsing different fixed length fields.
The following table shows the format of the EDRunfle:

Format Positior
ID BigNumber 0 13
State String 16 1

GridCOMP FP6-034442 page 27 of 54 D.UC.04.A

3 Distributor String 17 4
4 CountryDialingCode Integer ##0 21 3
5 Phone String 24 12
6 SStart Date yyyYyMMddHHMmMssSSS 36 17
7 Duration String 53

8 ProgConv String 57

9 ProgElem String 61 2
10 | CodeSelection String 63 2
11 IndexKey String 65 5
12 AreaCode String 70 5
13 TypecCall Integer #0 75 2
14 TypelSDNFlux String 77 3
15 TypeCodeFlux String 80 3
16 DataCodePage String 83 19
17 | TotalConsumption Number 102 6
18 TotalTax Integer 108 6
19 TotalNetUse Integer 114 6
20 | SingleConsumption Number 120 6
21 SingleTax Integer 126 6
22 | SingleNetUse Integer 132 6
23 | StdMtpn String 138 6
24 UseRecalc String 144 6
25 UM String 150 2
26 CauseTaxation String 152 4
27 | CodeAnomaly String 156 3
28 DataCEM Date yyyyMMdd 159 8

4.1.1.1.2 CountryPhoneCodes file input

This step reads the file containing the mappingvbeh phone prefix and ISO country codes.
This is a CSV (Character Separated Values) fileh wie following format:

H# INETN Type Formal Lengtt
PhoneCode Integer 3
CountryCode String 2

4.1.1.1.3 Sort codes

This step sorts the contents of the file read apttevious step, biyhoneCode, and prepares
them to perform a lookup.

GridCOMP FP6-034442 page 28 of 54 D.UC.04.A

220y
GridCOMP 4(% »@@

4.1.1.1.4 CountryCode lookup

This step adds a new fiel€€guntryCode) to the output of the processing. This field is
populated with the ISO country code correspondmghte phone prefix matching the one
contained in the EDR.

4.1.1.1.5 CodeService Mapper

It maps theTypeCall field from the EDR to a new target fiel@odeService , using a
pre-defined mapping table:
Source value Target value

Voice
SMS
MMS
GPRS
WAP
3G
ISDN
ADSL

N o ok~ W NN -k O

4.1.1.1.6 Add currency code
This step adds a ne@urrencyCode field, containing “EUR” (all prices are in EURO).

4.1.1.1.7 Ratesfileinput

It reads the file containing the rates to applpmoEDR to compute its price. This file contains
the following fields (in CSV format):

H Name Type Format Lengtt
CountryCode String 2
ServiceCode String 5
Rate Number #,##0.00 6

4.1.1.1.8 Sort rates

It sorts the file from the previous step IountryCode and ServiceCode fields,
preparing its contents to be looked up.

4.1.1.1.9 Rate lookup

For each EDR, and using th@ountryCode and ServiceCode fields, it obtains the
correspondindrate from the Rates file. It adds this as a new fieldhe result.

4.1.1.1.10 Normalize consumption

It normalizes de contents of the fiel@talConsumption , expressed in milliseconds, to
seconds (rates are per second). A new fiétalConsumptionNorm is added to the
results.

GridCOMP FP6-034442 page 29 of 54 D.UC.04.A

GridCOMP &)

4.1.1.1.11 Applyrate

It adds a new field, Total , as the result of the multiplication of
TotalConsumptionNorm andRate , obtained from previous steps.

41.1.1.12 District obtainment
It adds a new fieldDistrict , containing the first 3 digits of tfthone number.

4.1.1.1.13 Add systeminfo

It adds two new fieldRecordDate andHostname , when and where each record has been
processed, respectively, for debugging purposes.

4.1.1.1.14 Result file output

It writes the results of the process to a filengsCSV format. Each line contains the fields
from the original EDR plus the new fields addedrirprevious steps.

4.1.2 GCM Components

The architectural design of the prototype has seffesome changes from its primitive
version. The FileSupplier component has been rethaued two new components have been
introduced, one of them only for the autonomic \@r®f the architecture.

All the logic related to the generation of randoomtent for the EDR files has been moved to
an auxiliary tool and will not be commented anyttier in this document.

4.1.2.1 Components diagram

4.1.2.1.1 Non-autonomic

The non-autonomic components diagram (made usiegaGid IDE) corresponding to the
early prototype is the following:

Roct

IEDRSIaveS

., slave

resultsCollector { |
]

FDRProcessor rDRSIaveZ

|
slave ..

B stave FesultsCollector

. . edrProcessor

resu!tsCoHecror-l ! resu[tsCoHector-l 5 .resu[tsCoHector

| |
fileOperator § | fDRSIavel | fileOperator] |
|

]
. slave

resultsCollector { |
]

ileOperator

. fileOperator

Note: Although three EDRSlave components are deghithe exact number depends on the deploymehedafgplication.

Summarizing, the architectural design is as foltows

GridCOMP FP6-034442 page 30 of 54 D.UC.04.A

GridCOMP © g5

The EDRProcessor receives the request to procdsBRrfile

Using the FileOperator, the EDR file is split ifitagments.

Using a multicast interface, the fragments are ggsed by the EDRSlave components
The partial results are sent to the ResultsColiecto

When all fragments have been processed, the R€slkstor, using the FileOperator,
merges the partial results, obtaining the finaliltes

Comparing this architectural design to the one ftbm primitive prototype, we can see that
the EDRSlave components are now connected to tweResultsCollector component. This
way, they can inform the latter when they havesheid processing one of the fragments of
the EDR file. This information will allow the RessCollector to know the progress achieved,
and thus, it can be displayed in the user interfabés new component will be described in
depth in the following sections of this document.

4.1.2.1.2 Autonomic

The current state of the autonomic version of ttragonents diagram is the following:

Foot

FDRSlaveFarm

DRSlave

FDRProcessor |

slave { | B save

| esultsCollector
B8 edrProcessor
resultsCollector § | resultsCollector . . §l resultsCollector

fileOperatord |

fileOperator 4 |
|

ileOperator

Bl fileOperator

In this version, the multicast interface betweer HEDRProcessorand the EDRSlave
components has been replaced byTaskFarm component, theEDRSlaveFarm This
component will take care of deploying as maBPRSlavesas needed, controlling the
parallelism degree. This degree can vary duringettexution of the application, in order to
adapt the performance to the requirements of tee us

Only the EDRProcessols affected by this change, the rest of the cormptsiremain the
same. This fact shows the easiness in turning eantonomic architecture into an autonomic
one.

GridCOMP FP6-034442 page 31 of 54 D.UC.04.A

BridCOMP ¢

{)
0 G H
ReO XY

4.1.2.2 Components description

4.1.2.2.1 EDRProcessor

The EDRProcessoracts as the master component, offering a homongres interface.
Through this interface, the GUI can submit progessiequests to the components. The
behavior of this component is the following:

» Scatters the file using the fileOperator clieneiface.

» Initializes theResultsCollectocomponent through its interface, telling it hownpa
fragments must be processed.

* Processes the fragments using the slave clientante The non-autonomic version of
the component uses the multi-cast interface andatlienomic one the single-cast
interface (connected to tHeDRSlaveFarm The more slaves bound to the interface
(or the farm), the higher level of parallelizatiachieved.

4.1.2.2.2 EDRSlaveFarm

This component is only present in the autonomisivoer of the application. This composite
component extends thdonitorBalanceFarmControllefrom the NFCF, offering &arm of
EDRSIlavecomponents. Using the non functional interfaceshif component, the user can
modify the parallelism degree of the application.

4.1.2.2.3 EDRSlave

This is the component in charge of applying the Epfacess implemented using Kettle and
described in a previous section of this documertelvreceiving the first request, the Kettle
library will be initialized with all the needed diguration files. Subsequent requests will be
processed faster, as no initialization has to wfpaed again.

When Kettle initialization is done, the componeansfers the corresponding fragment of the
EDR file from the node where thEDRProcessorcomponent is deployed. Then, the
transformation is applied to the file using the tielibrary. The result is transferred back and
the ResultsCollectois invoked to notify another fragment has beercgssed.

4.1.2.2.4 ResultsCollector

This component collects the intermediate resu#tat 'om theEDRProcessocomponents.
When all results are collected, they are joinethgitheFileOperator
Also, this component offers information about thegoess of the processing.

4.1.2.2.5 FileOperator

The FileOperatorcomponent offers the functionality to scatter gnd files. Those files must
reside in the local file system.

4.1.2.3 Interfaces

In this section, the interfaces from the differeatponents are presented.

4.1.2.3.1 EDRProcessor
This is the server interface offered by ElBRProcessocomponent:

publ i c interface EDRProcessor {

/**

\ |
| * Processes the given EDRinput file. |
I |

GridCOMP FP6-034442 page 32 of 54 D.UC.04.A

Gridcome

It contains a single, straight-forward method.

4.1.2.3.2 EDRSlave
This is the server interface offered by EiBRSlavecomponents:

An EDRRequest contains the path to one of the fragments of th& Enput file, the node
where it is stored, the path to store the par&aults to, and whether to compress those files
when transferring them.

4.1.2.3.3 EDRSlaveMulticast

This is the multi-cast client interface used by lo@-autonomic version of tHEDRProcessor
component to invoke tHEDRSlavecomponents.

4.1.2.3.4 FileOperator
This interface contains the needed operations filér scatter() andjoin()

GridCOMP FP6-034442 page 33 of 54 D.UC.04.A

Gridcome

4.1.2.3.5 ResultsCollector
The server interface offered by the new Resultg€tll component is the following:

The init() method is invoked from th&DRProcessorcomponent, thecollect()
method from the EDRSlave components, and thgetResultFilesCount() and
getResultFilesToCollect() from the Graphical User Interface, in order tovile
feedback about the progress of the processing.

4.1.2.4 Summary of the GridCOMP features used

The EDR Processor use case is making good use ébltbwing GridCOMP features:

* Primitive components: as seen previously, the pypto features several primitive
components (EDRProcessor, FileOperator, EDRSlave).

GridCOMP FP6-034442 page 34 of 54 D.UC.04.A

AR

Gridcome (e

» Composition: the whole prototype is a composite tqgigpe (Root). Also, the
EDRSlaveFarm is a composite component, containinigjpie instances of EDRSlave
components.

» Collective interfaces: a multi-cast interface isingeused by the non-autonomic
version of the architectural design to connect Bi¥RProcessor component to the
EDRSIlave components and carry out the processitigediragments of the EDR input
file.

* Autonomic features: a task farm (from WP3) takese caf EDRSlave components
replication in the autonomic version of the arattiteal design.

* Grid Integrated Development Environment: the asgtiitiral designs have been done
using the GIDE prototype from WP4.

GridCOMP FP6-034442 page 35 of 54 D.UC.04.A

o
—x O
GridCOMP ¢ G5
S¥icctive Componenza for she Grids (L 7\52;,/

4.2 Early prototype

4.2.1 Description

The early prototype of the EDR Processor use gaglkcation fixes most of the limitations
the primitive one had:
e Includes a graphical user interface, letting ther gelect all the invocation parameters.
e Progress information is displayed through the urgterface, as a progress bar.
e The implementation of the EDR processing has beempteted, using Kettle.
e Dynamic deployment without editing the architectursing task farm autonomic
controller or a programmatic approach.

4.2.2 Configuration and usage

Both the source code and the binaries of the gadiotype are included in the file “D.UC.04
— EDR Processor early prototype.zip”. The latessioa of this prototype is also publicly
available at INRIA's GForggridcompwp5gs project [9].
These are the system requirements in order tcheiapplication:

e Java 1.6 [4]

e Ant[5]

e ProActive 3.90 [6]

After uncompressing the aforementioned zip filed assuming that both java and ant are in
the path, just typent processor to invoke the EDR Processor. The application will
request to enter the path to the distribution folde ProActive 3.90. After that, the user

interface will appear:

GridCOMP FP6-034442 page 36 of 54 D.UC.04.A

EDRErocessar,

GridCOMP Ic.umls:\rsJTEMls

Effactse Components for che Grids c

fDeplnvmem | Options | Execution |

[] Use autonomic features

descriptors/g5k-24nodes.xml
descriptors/g5k-nodesList.xml
escriptors/ local.xmi

Deployment descripton

Deployment log:

| Deploy || Undeplay |

This first “tab” contains the deployment detailsed2nding on your infrastructure, select one
of the included deployment descriptors and pressEeploy” button.
The “Deployment log” text box will show the log é&output during the deployment:

 EDRETOCEss0r,

A
L

GRIDSYSTEMS

GridCoMmP

Effsusra Components for sne Grids

([Deployment | Options [Execution |

[J Use autonomic features

descriprors/ g5k-24nodes.xml
descriptors/gSk-nodesLisLxml
deszriplors/localxmi
Deployment descriptor

Deployment log:

[FFO - Cenerating class | pa.stub. org.objectweb. proactive. core. jrx util, StubJMXMotificationlistener -
IMFO - **** Mapping VirtualMode master-node with Mode: rmi://iluska. local: 1099 /master-node2 009341329
IMFO - [MFO - **** Starting jvm on iluska.local

IMFO - INFO = --3= This ClassFileServer is listening on part 2027
IMNFO - INFO - Detectad an existing RMI Registry on port 10939 =
(IMFO - **** Mapping VirtualMode slave-node with Mode: rmi; /filuska. local 10939/ slave-node468111265 don
IIMFO - Cenerating class | pa.stub.org.aridcomp.usecasas.adrprocessor. _StubEDRProcassorMulticastimpl

INFO - Generating class | pa.stub. org.objectweb. proactive. core. component. _StubProActivelnterfacelmpl

IMNFO - Cenerating class | pa.stub.org.gridcomp.usecases. edrprocessor. _StubFileOpearatorimpl

IMFO - Cenerating class | pa.stub.org. gridcomp.usecasas. adrprocessor. _StubReasultsCollectorimpl

INFO - Cenerating class | pa.stub.org.gridcomp.usecasas. adrprocessor. _StubEDRSlavelmpl

IMFO - [MNFO - Generating class | pa. stubb.org. gridcomp. usecases, edrprocessor. _StubEDRSIavelmpl

INFO - EDRSlave compaonent O created, and bound to EDRProcessaor

-

7l 1 | |

| Deploy || Undeploy |

After the deployment is done, the “Options” talemabled:

GridCOMP FP6-034442 page 37 of 54 D.UC.04.A

GridCOMP @ 55
Effactwe Components For che Brids L2
rDeployment i Options rExel:u'linn |
Input file: |[/home/gfreire/Crid COMP /projects/EDRProcessor/test3 2K adr | II'
Partition size: 1,000 records
[C] Transmit compressed data
Output file: [[home/gfraire/Deskiop/test32K rasult | III
| Start

The “options” tab contains the controls to selbetdesired input parameters:
@ Input file: path to the file containing the EDRshte processed.
@ Partition size: number of EDRs each fragment filit @ontain.
® Transmit compressed data: whether to compresgdlgenénts of the input file before
transferring them. This may reduce the time neddeansfer the data through the

network.
® Output file: path to the file where the resultgtu processing will be stored.

When all of the above fields have been complimenttesl “Start” button can be pushed. The
request will be submitted to the components, arel “txecution” tab will be enabled,
showing the log trace of the execution and a psxbar.

GridCOMP FP6-034442 page 38 of 54 D.UC.04.A

Effective Components for the Grias

Gridcomp (el .

[Deployment | Options [Execution

AFLE=TMD = EO T2 MO O = Oerig e, ,.lHI[J,.'E'UH"[:LIL.Eb MO 3O Tesl 3 ZF. AT _ I)
IMFO — INFQ - CountryPhoneCodes file input. 0 - Opening file: /imp/edrProcessing2292 3.dir/CountryPhoneCodes—
IMFO - INFO - Addd System Info (Date + Hostname). O - Stanting to run...

IMFO = INFO - Easult file output. 0 - Starting to run...

IMNFO - INFO - Apply Rate.Q - Starting to run..,

IMFO - INFO - District obtainment. O - Starting to run...

IMFO - INFO - CodeService Mapper 0 - Starting to run...

IMFO - IMFO - Rates file input.Q - Starting to run..,

IMFO - INFO - Sort Rates. 0 - Starting to run...

IMFO - IMFO - Fates file input.0 - Opening file: ftmp/edrProcessing3 2923 dir/Rates. csv

IMFO - IMFQ - Rate lookup.Q - Starting to run...

IMFO - INFO - Rate lookup. O - Raading lookup waluas fram step [Sort Rates]

IMFO - IMFQ - Mormalize Consumption. 0 - Starting to run...

IMFO - INFO - Add CurrencyCode.Q - Starting to run..,

INFO - INFO - CounttyPhoneCades file input.Q - Finished processing (=218, 0=0, R=0, W=218, U=0, E=0)
IMFO - IMFO - Sort Codes. O - Finished processing (1=0, 0=0, R=218, W=218, U=0, E=0)

INFO — INFO — Rates file input.Q - Finished processing (|=1744, 0=0, R=0, W=1744, U=0, E=Q)

IMFO - INFO - Sort Rates. O - Finished processing (=0, 0=0, R=1744, W=1744, U=0, E=0)

IMFO - IMFO - EDR file input.0 - Finished processing (|=1000, 0=0, R=0, W=1000, U=0, E=0)

IMFQ - INFO — CountryCode |ookup. 2 - Finished processing (=0, 0=0, R=1218, W=1000, U=0, E=1)
IMNFO - INFO - CodeService Mapper. O - Finished processing (=0, 0=0, R=1000, W=1000, U=0, E=0)
IMFO - INFO - Add CurrencyCode. 0 - Finished processing (I=0, 0=0, R=1000, W=1000, U=0, E=0)
IMFO - INFO — Rate lookup.0 - Finished processing (=0, O0=0, R=2744, W=1000Q, U=0, E=0Q)

INFO - INFO - Mormalize Consumption. 0 - Finished processing (I=0, 0=0, R=1000, W=1000, U=0, E=0)
IMNFO - INFO - Apply Rate. O - Finished precaessing (=0, 0=0, R=1000, W=1000, U=0, E=0)

IMFQ — INFO - District obtainment.Q - Finished processing (=0, 0=0, R=1000, W=1000, U=0, E=0)

[ERIT]

4] i | [»

When the progress bar reaches 100%, the execstidonie (all fragments from the EDR file
have been processed and their results joined)newdequests can be submitted.

4.2.2.1.1 Autonomic version

In order to test the autonomic version of the aggpion, the “Use autonomic features” check
box must be checked in the “Deployment” tab, anel ohthe specific deployment descriptors
must be selected (at the time of this writing camlpcal deployment descriptor is offered).

GridCOMP FP6-034442 page 39 of 54 D.UC.04.A

GridCOMP

Effective Componsnsa for she Grids

EDRProcessor:

Effsctive Components for the Grids

GridCOMP { aF ”'DSIY%- TEMS

_(Depln],rment rOplions rE\'ecuLion |

Use autonomic features

descriptors/ autonomic/ local.xml

Deployment descriptor:

Deployment log:

| Deploy || Undeploy |

While running a request, a set of controls willdigplayed in the “Options” tab. Using these
controls, the autonomic behaviour of the applicatan be monitored and/or altered, adding
or removing workers.

EDRProcessor.

£

A) Y -
x {5 L
GridCOMP ¢ @ M GRIDSYSTEMS
Effective Components for the Grios Sy e —
[Deployment | options | Execution |
Input file: [[home/ofraire/CridCOMP/projects/EDRProcessor/tast/lestG4k.adr | E

Partition size: 1,000 records

[[] Transmit compressed data

Output file: [fhome/gfraire/Daskiop/iaste4K. rasults |

‘ w1 | ?‘

GridCOMP FP6-034442 page 40 of 54 D.UC.04.A

I

SaWAE

4.2.3 Examples

The /test folder contains several sample inpus fieenerated using the script provided on the
same folder), ranging from one thousand EDRs toroilon EDRs. If needed, more files
can be generated, invoking the EDRGenerator @l generator in the main folder).
Generating random EDR files is a time consuming &5 in order to create a new file, it is
advised to use one of the included ones to repgeaapgend it to the new one.

4.3 Next actions

For this use case, the planned actions in ordduno the early prototype into the final,
“tuned”, one are:
® Finish the integration with the autonomic contrgllproviding a way for the user to
specify QoS (Quality of Service) requirements for €xecution of the experiments.
® Measure the performance of the application, runmngdifferent deployments and
with different parameters.
® Clean up and document in depth the source code.

GridCOMP FP6-034442 page 41 of 54 D.UC.04.A

BridCOMP ¢

{)
0 G H
ReO XY

5 Wing Design
5.1 Architectural design

A complete description of this use case and itsk¢pamuind can be found in D.UC.03
deliverable [1]. This section will only include amsmary of the architectural design and an
update from the previous deliverable.

5.1.1 Architecture of the application

Although not changed from previous versions ofghaotype, for clarity, a depiction of the
operation of the Wing Design application is offerekt:

Wing Geometry

Compose .
Results

Graph

p
h
(o D)

1. The user provides a set of wing geometry filesiapdt parameters for the
experiment.

2. The legacy application binaries (Merak) are prarisid to the resources on the grid,
as new components.

3. The complete set of parameter combinations is nétbby the Parameter Sweeper
component.

4. Each parameter combination is sent to a Merak coeo which performs its
simulation.

5. Results are collected, composed and a graph isgjede

Merak
Legacy
Executables

Legacy executable files are only available for Wiwd, Linux and Solaris, so resources
running these operating systems are needed. Adsaojtrgraph is generated using gnuplot,
which must be installed in the computer runningahgplication.

In order to provide a better user experience, taractive graph is built during the execution
(per wing geometry involved). The user can chamhgepint of view; zoom in and out, etc.
These interactive graphs are generated using Vifaahich is based on Java3D[8] that must
be present in the computer running the application.

GridCOMP FP6-034442 page 42 of 54 D.UC.04.A

5.1.2 GCM Components

5.1.2.1 Components diagram

5.1.2.1.1 Non-autonomic

GridCOMP © g5

The non-autonomic components diagram (made usieg&tid IDE) corresponding to the

early prototype is the following:

Root

tNingDesign
B vvingDesign
| merak .
{ \composer
q{ lsweeper
|
I:’arameterSweeper
B vveeper

erakl

B merak

composer { |

] ResultsComposer

lvlerak2

. merak

. composer

composer |

[\Aerak3

. merak

composerd |
|

Note: Although three Merak components are depidtezlexact number depends on the deployment afghkcation.

A brief explanation of this architectural designhe following:

TheWingDesigrreceives the request to perform a simulation,gaveet of wing
configurations and input parameters.

Using theParameterSweepgethe complete list of parameter combinations taleate

is obtained.

The above information is also passed toRlesultsComposer

Each one of the parameter combinations is deliveredVerakcomponent, using the

multicast interface.

Results are delivered to tResultsComposeWhen all results are received, the graph
showing the comparison of the results is made.

The only change in the architectural design fros preliminary version is the direct
connection betweeklerak components and thHeesultsComposeNow, theResultsComposer
is also in charge of providing information aboue throgress of the computations and of
gathering the results in order to show in-progggsphs for each wing geometry.

GridCOMP FP6-034442

page 43 of 54 D.UC.04.A

GridCOMP © g5

5.1.2.1.2 Autonomic
The current state of the autonomic version of ttragonents diagram is the following:

Roct
MerakFarm
INingDesign
I\)Ierak
. . wingDesign
merak { | B ek
| composer { 4 .
composer { . |
sweeper | . FesultsComposer
|
. composer
rarameterSweeper
B sweeper
l

This autonomic architectural design makes use dfaem controller (theMerakFarm),
replacing the multicast interface between WegDesignand theMerak components. The
MerakFarm controls the parallelism degree of the applicatideploying as manyerak
components as needed.

As in the previous use case, only one componwgimgDesignis affected by this change, the
rest of the components remain the same.

5.1.2.2 Components description

5.1.2.2.1 WingDesign

This is the main component, and offers a serverfiaate, named wingDesign, which is used
by the graphical user interface. Through this faisF the user can submit simulation requests,
providing one or more wing geometry files and teeded input parameters.
The behaviour of this component is quite simple:
e Initializes the ResultComposer component with tiput parameters.
e Initializes the Merak components, with the apprafarilegacy application binaries for
their platform.
e Obtains the list of all the parameter combinatithrag must be processed, calling the
ParameterSweeper component.
e Processes the list of parameter combinations, ingothe Merak components
(whether through the multicast interface or thenfaontroller).

5.1.2.2.2 Parameter Sweeper

This component computes the complete list of patarm@mbinations to be processed. This
is simply the Cartesian product of:

GridCOMP FP6-034442 page 44 of 54 D.UC.04.A

GridCOMP © g5

* The range of incidence angles

* The range of Reynolds numbers

« The range of wing configurations
This component must be co-allocated with\WiegDesignone, as it needs local access to the
wing geometry files.

5.1.2.2.3 MerakFarm

As in the previous use case, this component is prdgent in the autonomic version of the
application. This composite component extendsMbeitorBalanceFarmControllefrom the
NFCF, offering afarm of Merak components. Using the non functional interfaceghas
component, the user can modify the parallelismekegf the application.

5.1.2.2.4 Merak
The Merak component wraps the legacy application:
» Downloads the proper executable files from the erasode on initialization (this is
only done once).
» Processes each received request for executionanmgpthe input parameters,
invoking the executable, transferring the resist fi
» Deletes temporary files after finishing the exemuiti

5.1.2.2.5 ResultsComposer

The ResultsComposeagathers the result files from the simulations,agating a graph where
the different wing geometries are compared. It @fers information about the progress of
the process and temporary results, allowing thphgcal user interface to display that results
live.

5.1.2.3 Interfaces

In this section, the interfaces from the differeatponents are presented.

5.1.2.3.1 WingDesign

This is the interface offered by the WingDesign poment. Its only method is the starting
point of the whole process:

public interface WingDesign {
/**
* Performs a simulation, processing the given parameter specification.
*
* spec contains the wing geometries, incidence angles, reynolds and iteration
* numbers to perform the simulation
* a graph comparing the different wing geometries.
*
/
File process(SweepSpecification spec);
}
A SweepSpecification is a java class that contains a list of geometeg fthe initial

and final values for the incidence angle and themaokls number ranges, the number of
samples to take from each range, and a numbegratiiins to perform the simulation.

5.1.2.3.2 Parameter Sweeper

This interface contains the method to generatéighef parameter combinations to be used
when invoking the legacy application (merak):

GridCOMP FP6-034442 page 45 of 54 D.UC.04.A

5.1.2.3.3 Merak
The interface of the component offering accesbedegacy application is the following:

5.1.2.3.4 MerakMulticast

This is the multi-cast client interface used by tle®-autonomic version of th&ingDesign
component to invoke thiderakcomponents:

GridCOMP FP6-034442 page 46 of 54 D.UC.04.A

—X ‘{;{7_/”\\‘\]

The only method offering a multicast behaviourus . This is dispatched in a round robin
fashion among th&lerak components.

5.1.2.3.5 ResultsComposer
The server interface offered by tResultsComposaomponent is the following:

public interface ResultsComposer {

Vi

* Initializes the component.
*
* spec the input parameters to be processed
* resultsDir the path to the directory where temporary results will be stored
*/
voi d init(SweepSpecification spec, File resultsDir);
/**
* Adds a new result (a point in the graph for a certain wing geometry) to the composer.
* When all results are added, the graph comparing the different wing geometries is
* made.
*
* geoPoint a point in the graph for a certain wing geometry

*/
voi d addResult(GeometryPoint geoPoint);

/-k*

* Gets the percentage of results received since the component was initialized.

*

* the percentage of results received since the component was initialized
*/

Integer getResultsPercent();

/-k*

* Gets a list with all the results added since the last call to this method.
*

* a list with all the results added since the last call to this method
)

List<GeometryPoint> getPendingResults();

Theinit method is invoked by th@/ingDesigncomponent at the start of the process. The
addResult method is invoked by thderak components each time a new result is obtained.
Last, getResultsPercent and getPendingResults are invoked from the GUI in
order to implement a progress bar and the intemalitie graphs, respectively.

5.1.2.4 Summary of the GCM features used

The following GridCOMP features are used:

* Primitive components: for exampligingDesignMerak ResultsComposgetc.

» Composition:MerakFarmis a composite component, containing multipleanses of
Merakcomponents.

» Collective interfaces: the non-autonomic versiontted architectural design uses a
multicast interface to connect th@&/ingDesign component to the Merak ones,
distributing the simulation effort among them.

* Autonomic features: a task farm (from WP3) takesecaf Merak components
replication in the autonomic version of the arattiteal design.

* Grid Integrated Development Environment: the agdiiire has been designed using
the GIDE prototype from WP4.

GridCOMP FP6-034442 page 47 of 54 D.UC.04.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

) ¢ C/

5.2 Early prototype

5.2.1 Description

Very similar to the EDR Processor, the early psgietof the Wing Design use case fixes
most of the limitations the primitive one had:
e Includes a graphical user interface, letting ther gelect all the invocation parameters.
e Progress information is displayed through the urgerface, as a progress bar.
e The output of the results has been improved, dygpidive interactive graphs for
each wing geometry.
e Dynamic deployment without editing the architectureing task farm autonomic
controller or a programmatic approach.

5.2.2 Configuration and usage

The file “D.UC.04 — Wing Design early prototype.zipontains both the source and the
binaries of the early prototype. The latest vergibthis prototype is also publicly available at
INRIA's GForgegridcompwp5gs project [9].
These are the system requirements in order tcheiapplication:

® Java 1.6 [4]

® Java3D [8]

® Ant|[5]

® ProActive 3.90 [6]

Run ant WingDesign to invoke the Wing Design. The application willgtest you to
enter the path to the distribution folder of Praret3.90. After that, the user interface will
appear:

GridCOMP FP6-034442 page 48 of 54 D.UC.04.A

sign

wWinghDe

GridCOMP .

Effecsive Compenants for e Grids

SYSTEMS

[Deployment | Options | Execution ['Results |

[[] Use autonomic features

|d escriptors/ g5k-24nodes.xml
descriptors/local-2-cores.xml
descriptors/g5k-nodesListxml
Dreployment descriptor: (gescriptors/local.xml

Deployment log:

| Deploy || Undeploy |

This first “tab” contains the deployment detailsed2nding on your infrastructure, select one
of the included deployment descriptors and pressEeploy” button.

The “Deployment log” text box will show the log é&output during the deployment:

GridCOMP FP6-034442 page 49 of 54 D.UC.04.A

GridCOMP

Effective Componsnsa for she Grids

GridComP <

Effective Components for the Grids

Deployment I Options |/E‘=<ecution |’Results |

[J Use autonomic features

descriptorsfg5Sk- 24nodes.xml
descriptors/local-2- cores.xml
descriptorsfgSk- nodesListxml
Deployment descriptor: |gescriptors/local.xml

Deployment log:

[T = PR Ty Wi iU aimyuure=E TaVE=TTULIE WILTT TN T F s kd. Tl LU STdavVE=TIUUS S US o Ua TS
IMFO - INFO - —-2 This ClassFileServer is listening on port 2028 —
INFO — INFO - Detected an existing RM| Reqistry on port 1029

INFO - *** Mapping VirtualMode slave-noda with MNode: rmi://iluska. local: 1099 /slave-node3 6705317
IMFO - Cenerating class @ pa.stub.org.gridcomp.usecases. wingdesign. _StubWingDesignMulticastimpl
INFO — Generating class : pa.stub.org.objectweb. proactive. core.component. _StubProActivelnterfacelmpl
INFO — Cenerating class : pa.stub.org.gridcomp.usecases wingdesign. _StubParametersweapearimpl L
INFO - Generating class © pa.stubb.org. gridcomp.usecases wingdesign. _StubResultsComposerimpl
INFO — Generating class : pa.stub.org.gridcomp.usecases. wingdesign. _stubMerakimpl

INFO — INFO - Cenerating class - pastub.org.gridcomp.usecasas. wingdesign. _StubM eraklmpl i
INFO - Merak component @ created, and bound to WingDesign

INFO — INFO - Generating €lass : pa.stub.org.gridcomp.usecases.wingdesign. _StubM eraklimpl
INFO — Marak component 1 created, and bound to WingDesign

-

1] 1i | Dl

| Deploy || Undeploy |

After the deployment is done, the “Options” tabeisabled. This tab includes controls to
select the input parameters:
e Wing geometries: all .geo files found in the geaiestfolder are listed; one or more
can be selected (Ctrl + click).
e Range of incidence angle: from, to, and numbernofdes
Range of Reynolds number: from, to, and numberofdes
e Number of iterations

GridCOMP FP6-034442 page 50 of 54 D.UC.04.A

GridCOMP

Effective Componsnsa for she Grids

WingDesign
=g

L -
GRIDSYSTEMS

GridCOMP ¢

Effeotive Components for the Grids

=y
Deployment | Options [’Execution [’Resulls |
geometries/hilifL.geo -

geometries/hilift2.geo
geometries/lowlift2.geo
geometries/lowliftgeo

Wing geometries:

Incidence angle: from: 15|+
o] 0

samples;| 10

Reynolds number: from:| 3,l:ll]l]|+
1o 6,000

samples;| 10

A . =]

The “start” button submits the request, when prsshe “Execution” and “Results” tabs are
enabled. The former shows log messages and a psogae:

L
'L.J

GPFdCDMp G H GRIDSYSTEMS

Effective Components for the Grids

fDeDId&-‘ment rt)ptions rExel:ution rResuIts |
| 8%

INFO - INFO - Reynolds number = 4665 666666566667

INFOQ - IMFO - Wing geemetry = midlift.geo

INFO - INFO - Iterations = 20

IMFO - INFO — merak execution finishad. Exitcode = 0

INFOQ - IMFQ - Transferring results file to Mode rmi://filuska.local 10929 /master-node2 015170185 and pay
INFO - INFO - Results file transferred

IMFO - INFO - Mew point about to be added: {reynolds: &000.0, angle: 16 6867, lift: 2.07752}
INFO - INFQ - Result added to composer

INFO - INFO - Creating ftmp/meraks=3075 dir/merak.run

INFO - INFO - About to run merak at ftmp/merak53075 dir

INFOQ - INFQ - Incidence angle = 20.000000000000004

INFO - INFO - Reynolds number = 3666 666666666667

IMFO - INFO — Wing geometry = hilift. geo

INFO - INFQ - [terations = 20

INFO = INFO = marak execution finishad. Exitcode = 0

INFO - INFO - Transferring results file to MNede epid db-dradesol 1300 2g o, aod D AEAZNI AR ~nd nad
IMNFO - INFO — Results file transferred

INFO = INFO = Mew point about to be adde.dir/merak. run

INFO - INFO - Result added to composer /merakE2630.dir

IMFO - INFO - Creating /tmp/merak586933333333343

IMFO = INFO = Reynolds number = 3333.3333333333335

IMFO - INFO — Wing geometry = hilift. geo

IMNFO - INFO - Iterations = 20

INFO = INFO = marak execution finishad. Exitcode = 0

INFO - INFO - Itarations = 20

[T]

|« I Ir

GridCOMP FP6-034442 page 51 of 54 D.UC.04.A

GridCOMP € 5%

The “Results” tab displays the interactive graghgrogress bar and the gnuplot comparison
graph (only when finished):

v/ Enable scale Texture mapping

v| Enable scale Point mode Texture mapping Point mode

j gnupiot comparison

In order to control the interactive graphs:

Dragging the mouse will rotate the point of view

Pressing caps while dragging the mouse up or doiza@om in or out.

Pressing ctrl while dragging the mouse will move pioint of view

The controls at the bottom of each window will chanthe appearance of the
corresponding graph.

5.2.2.1.1 Autonomic version

In order to test the autonomic version of the ayaion, the “Use autonomic features” check
box must be checked in the “Deployment” tab, anel ohthe specific deployment descriptors
must be selected (at the time of this writing oalyocal deployment descriptor is offered).
While running a request, a set of controls willdigplayed in the “Options” tab. While using

these controls, the autonomic behaviour of theiegipbn can be monitored and or altered,
adding or removing workers.

GridCOMP FP6-034442 page 52 of 54 D.UC.04.A

2 Wingbresig

x M
GridCOMP © 65
Effective Componants for the Grids
Deployment |“Options | txecution | Resuits |

geometries/ hilifLgeo
geometries/hilift2.geo
geometries/lowlift2.geo
geometries/lowlifLgeo

Wing geometries:

L w

Incidence angle: from; 15
o] 30

sampl 10—

Reynolds number: from:| 3,000
o] 6,000

samples: 10—

i . =]
herations: [301

H
=
=
==}
]

balance

Farm Controller

5.2.3 Examples

The early prototype includes a few wing geometigsfito be used for testing (under the
geometries folder). The more files that are inctlde the more samples that are selected for
the incidence angle or Reynolds number, the higleramount of invocations to the legacy
application. Changing the amount of iterations &i#io increase or decrease the time needed
to accomplish each invocation (the higher, the éshgDefault values should take a few
minutes to complete for a local deployment if oalwing geometry is selected.

5.3 Next actions

These are the next actions in order to turn theeatiprototype into the final one:

Make use of the methods and techniques for legamye cwrapping as Grid
Components. Currently, the wrapping is ad hoc alildws no standard.

Finish the integration with the autonomic contmgllproviding a way for the user to
specify QoS (Quality of Service) requirements far €xecution of the experiments.
Measure the performance of the application, runmingdifferent deployments and
with different parameters.

Clean up and document in depth the source code.

GridCOMP FP6-034442 page 53 of 54 D.UC.04.A

=5 "

6 References
[1] T. Weigold, F. Tumiatti, E. Prunés, J. Santatint, G Freire. D.UC.03 Use cases

description: preliminary architectural design amighitive prototypes.
https://bscw.ercim.org/bscw/bscw.cqi/d315688/D. B=fifal. pdf

[2] T. Weigold, P. Buhler, J. Thiyagalingam, A. Basski, V. Getov. Advanced Grid
Programming with Components: A Biometric Identifioa Case Study. Proceedings of
COMPSAC 2008, IEEE Digital Library (to appear).

[3] Pentaho Data Integratiohttp://kettle.pentaho.org/

[4] Java 1.6http://java.sun.com/

[5] Apache Anthttp://ant.apache.org/

[6] ProActive 3.90http://proactive.inria.fr/

[7] Visad: http://www.ssec.wisc.edu/~billh/visad.html

[8] Java3D:https://java3d.dev.java.net/

[9] gridcompwp5 project at INRIA's GForgettp://gforge.inria.fr/projects/gridcompwp5gs/

GridCOMP FP6-034442 page 54 of 54 D.UC.04.A

