

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents: an advanced component platform
for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.UC.05.A – Use cases: final documentation

(Manual and detailed architectural design)

Due date of deliverable: 1 December 2008

Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this deliverable: GS

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU PUBLIC PU

Keyword List: use case, prototype, component, GCM
Responsible Partner: Gastón Freire, GS

GridCOMP FP6-034442 page 2 of 58 D.UC.05.A

MODIFICATION CONTROL
Version Date Status Modifications made by

1.0 01-12-2008 Draft Fabio Tumiatti, Irati R. Sáez de Urabain,
Thomas Weigold, Gastón Freire

1.1 17-12-2008 Draft Fabio Tumiatti, Irati R. Sáez de Urabain,
Thomas Weigold, Gastón Freire

1.2 12-01-2009 Final Gastón Freire

Deliverable manager

• Gastón Freire, GS

List of Contributors

• Thomas Weigold, IBM

• Fabio Tumiatti, ATOS

• Irati R. Sáez de Urabain, ATOS

• Gastón Freire, GS

List of Evaluators

• Magdalena Escalas, GS

• Marco Danelutto, UNIPI

Summary

• This document describes the final prototypes of the use case applications. For each use
case, its architectural design is explained in depth, offering complete details about the
components (both primitive and composite) and their interfaces. Also, a
comprehensive user manual is offered, including installation and running instructions,
along with screenshots of the final prototype applications. Finally, the impact of
GridCOMP and the Grid Component Model (GCM) on the different use cases is
summarized in the conclusions.

GridCOMP FP6-034442 page 3 of 58 D.UC.05.A

Table of Content
1 INTRODUCTION ... 5

2 BIOMETRIC IDENTIFICATION SYSTEM ... 6

2.1 DETAILED ARCHITECTURAL DESIGN... 6
2.1.1 High-level architecture of the application .. 6
2.1.2 Business Processes.. 7
2.1.3 Workflow adapters .. 9
2.1.4 GCM Components ... 9

2.1.4.1 Components diagram... 9
2.1.4.2 Components description .. 11

2.1.4.2.1 Application... 11
2.1.4.2.2 IDMatcher .. 11
2.1.4.2.3 Data-Parallel BeSke ... 12
2.1.4.2.4 Autonomic Behaviour Controller (ABC) ... 12
2.1.4.2.5 Autonomic Manager (AM)... 12

2.1.4.3 Interfaces... 12
2.1.4.3.1 Interface I1 ... 12
2.1.4.3.2 Interface I2 ... 13
2.1.4.3.3 Interface I3 ... 13
2.1.4.3.4 Interface I4 ... 13
2.1.4.3.5 Interface I5 ... 14

2.1.5 Demo Application...14
2.2 MANUAL ..14

2.2.1 Final prototype description..14
2.2.2 Configuration and usage ..15

3 COMPUTING OF DSO VALUE ..18

3.1 DETAILED ARCHITECTURAL DESIGN..18
3.1.1 Architecture of the application...18
3.1.2 GCM Components ..19

3.1.2.1 Components diagram... 20
3.1.2.2 Components description .. 21

3.1.2.2.1 DSOProgram Component .. 21
3.1.2.2.2 Reader Component... 21
3.1.2.2.3 ComputeFarm Component ... 22
3.1.2.2.4 Compute Component ... 22
3.1.2.2.5 Collector Component ... 22

3.1.2.3 Interfaces... 23
3.1.2.3.1 RunDSO... 23
3.1.2.3.2 Reader .. 23
3.1.2.3.3 OurTask.. 24
3.1.2.3.4 Collector... 24
3.1.2.3.5 Result ... 25

3.2 MANUAL ..25
3.2.1 Final prototype description..25
3.2.2 Configuration and usage ..26
3.2.3 Examples ..30

4 EDR PROCESSOR ..31

4.1 DETAILED ARCHITECTURAL DESIGN..31
4.1.1 Architecture of the application...31
4.1.2 GCM Components ..33

4.1.2.1 Components diagram... 33
4.1.2.1.1 Plain CFI version ... 33
4.1.2.1.2 Autonomic version... 34

4.1.2.2 Components description .. 35
4.1.2.2.1 EDRProcessor and EDRProcessorAutonomic ... 35
4.1.2.2.2 EDRMaster and EDRMasterAutonomic .. 35
4.1.2.2.3 EDRSlaveFarm .. 35
4.1.2.2.4 EDRSlave and EDRSlaveAutonomic... 36
4.1.2.2.5 ResultsCollector ... 36
4.1.2.2.6 FileOperator ... 36

GridCOMP FP6-034442 page 4 of 58 D.UC.05.A

4.1.2.3 Interfaces... 36
4.1.2.3.1 EDRProcessor .. 36
4.1.2.3.2 EDRSlave... 36
4.1.2.3.3 EDRSlaveMulticast.. 37
4.1.2.3.4 FileOperator ... 37
4.1.2.3.5 ResultsCollector ... 38

4.2 MANUAL ..38
4.2.1 Final prototype description..38
4.2.2 Configuration and usage ..39

4.2.2.1.1 Autonomic version... 41
4.2.3 Examples ..43

5 WING DESIGN ..44

5.1 DETAILED ARCHITECTURAL DESIGN..44
5.1.1 Architecture of the application...44
5.1.2 GCM Components ..45

5.1.2.1 Components diagram... 45
5.1.2.1.1 Plain CFI version ... 45
5.1.2.1.2 Autonomic version... 46

5.1.2.2 Components description .. 47
5.1.2.2.1 WingDesign and WingDesignAutonomic .. 47
5.1.2.2.2 Master and MasterAutonomic.. 47
5.1.2.2.3 ParameterSweeper.. 47
5.1.2.2.4 MerakFarm... 47
5.1.2.2.5 MerakAutonomic ... 47
5.1.2.2.6 Merak... 48
5.1.2.2.7 MerakController... 48
5.1.2.2.8 MerakWrapper ... 48
5.1.2.2.9 ResultsComposer ... 48

5.1.2.3 Interfaces... 48
5.1.2.3.1 WingDesign ... 48
5.1.2.3.2 ParameterSweeper.. 49
5.1.2.3.3 Merak... 49
5.1.2.3.4 MerakMulticast .. 49
5.1.2.3.5 ResultsComposer ... 50

5.2 MANUAL ..50
5.2.1 Final prototype description..50
5.2.2 Configuration and usage ..51

5.2.2.1.1 Autonomic version... 54
5.2.3 Examples ..55

6 CONCLUSIONS...56

7 REFERENCES ...58

GridCOMP FP6-034442 page 5 of 58 D.UC.05.A

1 Introduction

This document describes the final prototypes of the use cases for the GridCOMP project.
These use cases are not only a presentation of the technical functionalities developed within
the project, but they have also been selected because of their exploitation potential. They will
be used to showcase the project results in front of both the industrial and the academic worlds.
The selection of use-cases pursued the following criteria in order to obtain a comprehensible,
varied and truly representative list of examples and their potential:

• Use-cases selected had to cover multiple industrial sectors and scientific research
areas, such as management, security, engineering, or telecommunications, in order to
appeal to a large audience, and proving that the framework developed can be applied
to different industrial environments.

• Use-cases selected had to prove the flexibility and interoperability of GridCOMP,
interacting with services generally deployed in these areas, such as database servers,
workflow systems, etc.

• Use-cases selected had to demonstrate legacy application integration. The possibility
of seamlessly integrating these applications to build more advanced ones with
optimized performance (thanks in part to the distribution of the processing effort).

• Use-cases selected had to show the effectiveness of the solution for both computing
and data intensive processes.

• Use-cases selected had to address and tackle issues with both embarrassingly parallel
processes and stateful distributed applications, in such a way that the solutions can be
redeployed to solve more complex situations

• Use-cases selected had to attest the autonomic resource management features, in order
to achieve different objectives: better performance (throughput) or a reduced response
time.

Taken as a whole, the use-cases selected in GridCOMP meet the above criteria and the
partners responsible for each selected use-case proved their reliability and ensured high-
quality and performance in the project. The applications selected for the use cases are the
following:

1. Biometric Identification System, by IBM Zurich Research Labs.
2. Computing of DSO Value, by Atos Origin.
3. EDR Processor, by GridSystems.
4. Wing Design, by GridSystems.

Each one is covered in a separated section of this document, all of which have a common
structure:

1. A detailed description of the architectural design and the infrastructure needed to run
the application (data bases, application servers, workflow systems, third-party
software components, etc.). All the components (both primitive and composite) and
their interfaces are explained in detail.

2. Manual of the final prototype, including instructions on how to install or deploy the
application. Several screenshots of the applications in action are included, and a set of
examples is provided.

Along with this document, a set of 4 compressed files (D.UC.05.B*.zip) is provided,
containing the code (binaries and/or source) of the four use case final prototypes. In order to
run them, a common set of tools is required: Java [5], Apache Ant [6] and ProActive 3.90 [7].

GridCOMP FP6-034442 page 6 of 58 D.UC.05.A

2 Biometric Identification System

The IBM use case application is a biometric identification system (BIS) based on fingerprint
biometrics, which works on a large user population. The core problem is to identify a given
person solely on his biometric information by comparing its fingerprints against a large
database of enrolled (known) identities. This requires massive computing power because
biometric matching algorithms are non trivial and must be applied may times. Therefore, the
identification system takes advantage of a Grid infrastructure and an appropriate GCM
component system. The identification problem is distributed across the nodes in the Grid and
this way real-time identification performance can be achieved even when working on a very
large user population. Additionally, the system scales independently in accordance with a
given quality of service (QoS) contract thanks to the autonomic reconfiguration functionality
provided by the GridCOMP GCM framework.

2.1 Detailed architectural design

2.1.1 High-level architecture of the application
The high-level architectural design of the BIS as outlined in D.UC.03/04 ([1], [2]) and shown
in Figure 1 has been retained for the final prototype described in this document. However,
under the covers, there have been many changes in the way the system is implemented. The
parts of the system that have undergone significant changes are the GCM component
architecture and the GCM adapter, the business processes (workflow scripts) interacting with
the GCM adapter, and the demo application. The main reason for this is the fact that, during
the second and third year of the project, we have considered the use of various WP3 results,
namely, we have implemented and improved the BIS by using autonomic behavioural
skeletons. In a first iteration we used the task-parallel farm skeleton as documented in
D.UC.04 [2]. For the final prototype we moved to the data-parallel skeleton, which has been
developed by the WP3 partners to specifically support data-parallel applications such as the
BIS use case. The details of the final BIS prototype based on the data-parallel skeleton are
described in the following subsections.

GridCOMP FP6-034442 page 7 of 58 D.UC.05.A

Figure1: Biometric identification system high-level overview

Figure 1 outlines the high-level system design of the BIS. It is built around a workflow
execution engine acting as the central control unit of the system. A number of business
processes are implemented as workflow scripts running within the engine. The processes
comprise functionality accessible from the demo application via the BIS services (e.g.
identification, QoS definition) as well as internal system management logic required to
control the distributed biometric matching. Furthermore, the BIS provides a number of
adapters to the workflow engine such that the business processes can interact with other
external entities, namely, the identity database storing information about enrolled identities,
and the interface to the Grid infrastructure.

2.1.2 Business Processes
The business processes for BIS management and for the actual identification functionality are
interacting with the Grid via the GCM adapter. Consequently, the change in the component
architecture, where we now make use of the data-parallel skeleton, also affects the logic
implemented in the corresponding workflow scripts. The “startup” process, as illustrated in
Figure 2, no longer allocates the desired initial number of workers. This has to do with the
way the skeleton works. To be able to define the initial number of workers the ADL definition
of the skeleton must be adapted before it is deployed. This functionality has been
implemented as part of activity 2. Another modification is that, in contrast to the task parallel
approach used in D.UC.04 [2], now the database must be initially distributed to all workers.
This is done in activity 4.

GridCOMP FP6-034442 page 8 of 58 D.UC.05.A

Figure 2: Business process “startup” activity-flow diagram

The identification process, named “identify”, has changed as well. As the data-parallel
skeleton fits much better to the problem than the task farm, the identification process became
much simpler. Instead of generating tasks for the farm and collecting asynchronous results it
now just submits the identification request including the fingerprints of the person to be
identified to the skeleton and receives the result synchronously in activity 8. Figure 3
illustrates the control flow within the identification process.

Figure3: Business process “identify” activity-flow diagram

GridCOMP FP6-034442 page 9 of 58 D.UC.05.A

2.1.3 Workflow adapters
The workflow adapters, as indicated in Figure 1, have already been defined in D.UC.03 [1].
As the services they provide to the workflow scripts have not changed substantially, not all of
them are described again at this point. In particular, the implementation of the DB adapter and
the BIS services API remained unchanged. However, the implementation of the GCM adapter
has changed significantly as the architecture of the GCM component system changed through
the use of skeletons. The details on how the GCM adapter of the final prototype implements
the distributed biometric matching via GCM components is presented in the following
Section.

2.1.4 GCM Components
This section describes the GCM component architecture, component description, and
interface description of the final BIS prototype.

2.1.4.1 Components diagram

The final BIS prototype, in contrast to the previous version described in D.UC.04 [2], is now
based on the data-parallel autonomic farm skeleton developed within WP3. Figure 4
illustrates the GCM component architecture used in the prototype and indicates how it
interacts with the non-componentized part of the application.

At the heart of the component system, there is the data-parallel behavioural skeleton (BeSke),
as defined in D.NFCF.04 [3], which consists of the composite component highlighted in
yellow. It includes a custom controller, the autonomic behaviour controller (ABC), which
implements the mechanisms supporting autonomic functionality, for instance, increasing or
decreasing the number of worker components and data redistribution. Furthermore, the farm
includes a default implementation of an autonomic manager (AM) component, the component
actually implementing autonomic control of the BeSke. These three components represent the
data-parallel skeleton. To apply the skeleton, we need to parameterise it by adding a worker
component, here named IDMatcher. This is the component which the ABC clones and adds to
the farm as many times as required to increase parallelism. By default, the skeleton starts with
the number of matcher components defined in the skeletons ADL. Therefore, the ADL is
adapted accordingly before it is deployed. Since the data-parallel skeleton fits very well to the
biometric matching problem we have to solve, there is no need to develop any additional
custom components. We only wrap the skeleton into an Application component to hide it
from the non-componentized part of the BIS application. The dashed lines in Figure 4
illustrate the interaction between the non-componentized part of the BIS application, namely
the GCM adapter, and the GCM component system. Furthermore, Figure 4 indicates that all
IDMatcher components have access to a shared database storing the identities known by the
BIS. As far as deployment is concerned, the idea is that only the IDMatcher components,
which represent the workers, are to be distributed.

When the BIS application is started, it submits a QoS contract to the AM which defines the
conditions under which the AM should increase or decrease the number of workers. In the
prototype, the AM enforces this QoS contract every two seconds. Furthermore, the prototype
allows updating the QoS contract at runtime to be able to trigger reconfiguration during the
demos.

GridCOMP FP6-034442 page 10 of 58 D.UC.05.A

Before identification requests can be processed, the identity database must be initially
distributed across the worker components. The identity DB holds information such as name,
address, and fingerprints of all enrolled (known) people. For distributing the DB, the skeleton
offers a multicast port, also called the scatter (c.f. Figure 4) or initialization port, which takes
a list of tasks as input parameter. In case of the BIS, each task defines a part (defined by index
and length) of the identity DB. The skeleton distributes these tasks equally among the workers
and the workers load the parts from the shared DB. As a result, each worker can be
considered to have one partition of the DB loaded into transient memory as indicated in
Figure 4. In other words, a partition is the fragment of the DB (a number of records) each
worker has loaded.
Once the skeleton has been initialized, identification requests can be submitted to the second
multicast port provided by the skeleton, the so-called broadcast port. Fingerprints of the
person to be identified are broadcasted via this port to all worker components and each
worker matches them against its partition of the DB. Results are, in contrast to the task
parallel farm used in D.UC.04, returned synchronously via method return values.
If the AM triggers reconfiguration via the ABC, for example, to increase the number of
worker components, the ABC retrieves all tasks from all workers, modifies the number of
workers, and finally redistributes the tasks. This way the DB is redistributed during each
reconfiguration operation.

Figure 4: GCM component architecture

Figure 5 shows how the component system has been graphically composed within the Grid
Integrated Development Environment (GIDE) [14].

GridCOMP FP6-034442 page 11 of 58 D.UC.05.A

Figure 5: BIS component composition in GIDE

2.1.4.2 Components description

The availability of the data-parallel skeleton has significantly reduced the number of custom
components to be developed compared to previous versions of the BIS use case. Only the
primitive component IDMatcher and the Application composite have been designed from
scratch. Compared to earlier use case versions, not making use of behavioural skeletons, the
code size has been reduced by approximately 35%. All components used, including the
skeleton components, are briefly introduced in this sub-section.

2.1.4.2.1 Application
The Application component is a composite component enclosing the complete component
system of the BIS application. As such it hides internal components and only offers two
server ports, one to initially distribute the DB via interface I1 (c.f. Figure 4), and one to
broadcast identification requests via interface I2.

2.1.4.2.2 IDMatcher
The IDMatcher component is a primitive component, which includes the actual fingerprint
matching functionality. When a matcher component is initialized it receives a number of tasks
which together define a partition of the identity DB. The matcher then accesses the shared
database and loads the partition into RAM for faster access. Initialization happens either via
interface I3 while the DB is initially distributed or during a reconfiguration operation via
interface I5. Afterwards, it receives identification requests via interface I4 and returns results
via method return values. While processing an identification request, it matches the
fingerprints of a given person against its part (partition) of the database.

GridCOMP FP6-034442 page 12 of 58 D.UC.05.A

2.1.4.2.3 Data-Parallel BeSke
The Data-Parallel BeSke component represents the autonomic data-parallel skeleton as
provided by WP3 (c.f. D.NFCF.04) [3].

2.1.4.2.4 Autonomic Behaviour Controller (ABC)
To implement the behavioural skeleton the default component controller has been replaced by
an autonomic behaviour controller (ABC). The ABC is part of the data-parallel skeleton. It
offers autonomic operations such as increasing or decreasing the parallel degree which are
triggered by the autonomic manager if required by the QoS contract.

2.1.4.2.5 Autonomic Manager (AM)
The AM component regularly enforces the QoS contract and triggers an autonomic operation
via the ABC if required. The QoS contract consists of a JBoss Drools rule file as listed below.
The BIS application allows defining the desired average target partition size as a performance
contract, for example, say 1700 identities per IDMatcher component. Based on this value,
defined by the BIS administrator, a rule file is generated which defines an upper bound and a
lower bound for the partition size. The upper bound is defined as the target partition size plus
10% and the lower bound is defined as the target partition size minus 10%. If the upper bound
is reached, the rule triggers the AM operation ADD_EXECUTOR to instruct the AM to trigger
increasing the parallel degree via the ABC. Similarly, the operation REMOVE_EXECUTOR is
triggered if the lower bound is reached as can be seen in the listing. Whenever the target
partition size is modified by the BIS administrator, a new rule file is generated and submitted
to the AM to update the QoS contract.

[methodMonitor="searchMatch"]
rule "CheckHigherBound"
 when
 $arrivalBean : PartitionSizeBean(value > 1870)
 then
 $arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR);
 end
[methodMonitor="searchMatch"]
rule "CheckLowerBound"
 when
 $arrivalBean : PartitionSizeBean(value < 1530)
 then
 $arrivalBean.fireOperation(ManagerOperation.REMOVE_EXECUTOR);
 end

2.1.4.3 Interfaces

This section describes the interfaces I1-I5, as denoted in Figure 4 in more detail.

2.1.4.3.1 Interface I1
The multicast interface I1 is used to transfer tasks, generated by the GCM adapter, from the
Application component to the Data-Parallel BeSke and from there to the IDMatcher
components. It includes the getService() method as shown in the listing below. The purpose of
this interface is to initially distribute the identity DB across the IDMatcher components. It
takes a list of tasks as a parameter whereas each task represents a part of the DB described by
an index and the number of records. In the prototype each task represents up to 100 identities
in the DB. When the list of tasks arrives at the multicast interface of the Data-Parallel BeSke
component, the tasks are distributed via a custom dispatch mode as indicated in the method
annotation. This dispatch mode distributes the tasks equally across the bound IDMatcher
components.

GridCOMP FP6-034442 page 13 of 58 D.UC.05.A

public interface MulticastTestItf1 {

/** Initially distribute the identity DB.
 *
 * @param list List of tasks to be distributed across matcher components.
 * @return RFU.
 */
 @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.CUSTOM,
 customMode = MapDispatch.class))
 public List<Task> getService(List<Task> list);
}

2.1.4.3.2 Interface I2
The multicast interface I2 is used to broadcast identification requests to all bound IDMatcher
components. Thus, the distribution mode BROADCAST is indicated in the method annotation
of the searchMatch() method as shown in the listing below. An identification request is
represented by a task object which holds the fingerprints. The resulting list of tasks represents
the matching results from all IDMatcher components. Each result task includes the ID of the
matching DB record, if any, and the name of the node which found the match.

public interface MulticastTestItf2 extends MulticastTestItf1 {

/** Broadcast an identification request.
 *
 * @param list List including one task which holds the fingerprints of the person to be
 * identified.
 * @return List of tasks holding the matching results from all IDMatcher components.
 */
 @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.BROADCAST))
 public List<Task> searchMatch(List<Task> list);
}

2.1.4.3.3 Interface I3
Interface I3 allows IDMatcher components to be bound to the multicast interface I1. The
matcher components receive their tasks via this interface and automatically load the
corresponding partition of the DB into RAM upon arrival of the tasks. The task parameter can
represent one or more tasks (the Task object is a generic container).

public interface IDDistribute {

/** Receive tasks representing the DB partition to match against.
 *
 * @param t One or more tasks representing a part of the DB.
 * @return RFU.
 */
 public Task getService(Task t);
}

2.1.4.3.4 Interface I4
Interface I4 allows IDMatcher components to be bound to the multicast interface I2. The
matcher components receive an identification request via this interface. In response, each
matcher component matches the given fingerprints against its DB partition and returns a task
object including the ID of the matching DB record, if any, and the name of the node the
component is running on.

public interface IDMatch extends IDDistribute {

GridCOMP FP6-034442 page 14 of 58 D.UC.05.A

/** Receive an identification request.
 *
 * @param list List including one task which holds the fingerprints of the person to be
 * identified.
 * @return Tasks holding the matching result.
 */
 public Task searchMatch(List<Task> list);
}

2.1.4.3.5 Interface I5
Interface I5 is used by the ABC during reconfiguration operations. If the ABC modifies the
parallel degree within the skeleton (by adding or removing an IDMatcher component), then it
firstly retrieves all tasks from all current components via the method provideStatus(),
secondly it adds or removes a component, and lastly it redistributes the tasks via the
setStatus() method. This way the DB is redistributed during every reconfiguration operation.

public interface ReconfigSupport {
 public void setStatus(List<Task> tsl);
 public List<Task> provideStatus();
}

2.1.5 Demo Application
The previous version of the BIS demo application only provided a command line interface to
interactively work with the application. This was the case because the command line interface
is easier to adapt to the changing base functionality during development. For the final
prototype, a graphical user interface (GUI) has been developed which allows configuring the
application and interactively triggering identification operations. Furthermore, the GUI not
only visualizes the identification process but also allows monitoring and manipulating the
autonomic functionality of the data-parallel skeleton at runtime. More details about the
configuration and usage including some screen shots can be found in the following section.

2.2 Manual

2.2.1 Final prototype description
The final prototype as described in the previous sections includes a number of improvements
over the previous versions delivered in D.UC.03/04 ([1], [2]), mostly because it uses the
autonomic data-parallel skeleton developed in WP3. Its overall functionality can be
summarized as follows:

• It represents a biometric identification system which can work on a large user
population in real-time.

• The system scales independently thanks to the autonomic reconfiguration functionality
provided by the behavioural skeleton.

• The QoS contract which controls the autonomic functionality can be conveniently
defined in a rule file. Furthermore, the QoS contract can be updated at runtime.

• The graphical user interface supports triggering identification requests and updating
the QoS contract interactively. Furthermore, it visualizes the autonomic management
functionality to monitor the state of the component system.

GridCOMP FP6-034442 page 15 of 58 D.UC.05.A

• The BIS application can be deployed on arbitrary hardware infrastructures without
code changes.

• As the data-parallel skeleton supports the distribution and redistribution of the DB, the
system can now, in contrast to the version described in D.UC.04 [2], be scaled to any
number of nodes.

• The code size and thus the development time are reduced due to the availability of
advanced features such as behavioural skeletons and the GIDE.

More details about the functionality provided by the GUI and its usage are provided in the
next Section.

2.2.2 Configuration and usage
The final prototype is available in the file D.UC.05B-IBM.zip. The prototype is configured to
run on Grid5000. It makes use of the deployment descriptor file descriptor/BIS-Grid.xml,
which defines all nodes reserved in Grid5000. The skeleton uses these nodes for allocating
IDMatcher components. All other components are running on the default node (the local JVM
of the application). Since all nodes in the descriptor should ideally be available solely for
IDMatcher components, the application should be started from a dedicated node not listed in
the descriptor.

The application can be started via the included run script. The application takes command line
arguments with the following syntax: <target-partition-size> <db-size> <number-workers>.
Target-partition-size denotes the desired number of biometric matches per IDMatcher
component and thus per node, db-size defines the desired database size, and number-workers
defines the initial number of workers the skeleton should start with. The command line
parameters can also be changed in the GUI later on as described below.

When the application is started, it displays the initial parameters defined at the command line
in the startup dialog as shown in Figure 6.

Figure 6: BIS startup dialog

The user can further modify the parameters and finally press the start button to trigger the BIS
application initialization phase.

GridCOMP FP6-034442 page 16 of 58 D.UC.05.A

Figure 7: BIS initialization window

During the BIS initialization phase, the information window as shown Figure 7 is visible. It
allows the user to monitor the initialization steps such as GCM component deployment or DB
distribution carried out during the initialization phase. Once all steps have been completed
successfully, as can be seen in Figure 7, the continue button becomes active and the user
arrives in the main GUI upon pressing it.

Figure 8: BIS main GUI

Once successfully started, the BIS application can be used interactively via the main GUI as
shown in Figure 8. The GUI is split into two main parts, the biometric identification part on
the left side, and the autonomic management part on the right side.

The biometric identification part allows initiating identification of either an unknown person
or a known person. In the latter case, a person to be identified is randomly chosen from the
database of known identities and her details are shown in the upper left area of the GUI. Then,
the distributed identification is initiated, and the fingerprint image starts changing to visually

GridCOMP FP6-034442 page 17 of 58 D.UC.05.A

indicate progress as long as the nodes are searching for a matching identity. Once a match is
found, the identification time is shown beside the fingerprint image and the details of the
matching identity are printed below. In the case, where an unknown person is to be identified,
fingerprints, not in the identity DB and thus an unknown identity, are submitted to the
distributed identification process.

The autonomic management part of the GUI serves two main purposes. Firstly, it visualizes
the autonomic functionality such that it can be monitored in real time. Secondly, it allows
updating the QoS contract at runtime to trigger reconfiguration operations during the demo. In
the top right area of the GUI the activity of the autonomic manager is indicated. Here, it can
be seen that the autonomic manager leaves idle state every two seconds to enforce the QoS
contract. Below, the current number of CPU cores used, which corresponds to the number of
IDMatcher components, can be monitored. The lower right area of the GUI shows the current
QoS contract represented by the target partition size. The input field below allows updating
the target partition size while the component system is running. When the target partition size
is updated, the user can monitor the resulting reconfigurations operations. For example, the
autonomic manager indicates that the parallel degree must be increased, the number of cores
changes, and the current partition size is updated as soon as the DB has been redistributed.

GridCOMP FP6-034442 page 18 of 58 D.UC.05.A

3 Computing of DSO Value

“Computing of DSO Value” is the use case selected by Atos for the development of this
project. The DSO (Days Sales Outstanding) is an application used by Atos Origin to calculate
the mean time that their clients delay to pay an invoice to Atos.

The information is needed by several internal departments, so it must be calculated from
several points of view (by client, by group, by month, etc.).

The amount of data needed to compute the payments information is over 6.000 clients, and
the process lasts about 4 hours to complete. The objective is to achieve the utilization of spare
resources via Grid computing to reduce the computing time.

3.1 Detailed architectural design

The previous deliverable documents from WP5 show how the architectural design of the use
case called “Computing of DSO value” has changed over the project. This section includes
the final architectural design of the application.

3.1.1 Architecture of the application
The DSO application is based on a client / server infrastructure with heavy processes
implemented in PL/SQL procedures to make all the calculations needed to get the final
results.

The architecture of the application is divided into two different parts, or it could be also said
that there are two different types of nodes: The master node and worker nodes.

• The master node is the one which controls the running of the application. It divides the
process into different tasks, and after that it, sends them to the different worker nodes.
Here is where the application starts the workflow, and the main database is installed.
The master database normally is the same database used by the initial application, the
one that we want to grid-enable. With that, the company doesn’t need to change or
recreate their existing application database infrastructure. Usually the database
management system used in the companies to execute their PL-SQL code is Oracle
Enterprise Edition or Oracle Standard Edition.

• The worker nodes receive the tasks to process them. When this work is done, the
results of the operation are sent back to the master node. So, worker nodes are the ones
doing the application calculations. Then, the results of those calculations are sent back
to the master node. It is important to know that any computer (server, desktops, and
laptops) could be used as a worker node, as long as it has Oracle management system
installed. If the worker node doesn’t have Oracle installed, we recommend installing
Oracle Express Edition because it is free of charge.

An important requirement is to have Java runtime environment 1.6 installed in all the nodes,
as Java is the language used to develop the application. It is essential to take into account the
operating system of each node. It is necessary to have a ssh server installed, so if the node
works with Linux operating system, there is no problem because Linux has a ssh server

GridCOMP FP6-034442 page 19 of 58 D.UC.05.A

incorporated. However, if the node uses Windows, it is necessary to install Cygwin
[11](creating a Linux-like environment for Windows) and SSH server for Cygwin [11].

In summary, the infrastructure requirements needed to run the application are:

� A Master Node with:
� Main database : Oracle Enterprise Edition or Oracle Standard Edition
� Java runtime environment 1.6 [5]

� Several Worker Nodes, each with.
� Node database: Oracle Express Edition
� Java runtime environment 1.6 [5]
� If Windows operating system is used: Cygwin [11] and SSH server for Cygwin

[11].

The next image shows the application architecture implementation:

3.1.2 GCM Components
The following sections explain the GCM components architecture used in this use case.

GridCOMP FP6-034442 page 20 of 58 D.UC.05.A

3.1.2.1 Components diagram

The following screenshot from the GIDE [14] illustrates the components diagram used in the
final version of the Computing of DSO Value use case:

This components diagram is different from the last one of the previous document version
(D.UC.04 [2]) because the final UC version is using the Farm component developed by WP3.

In the lines below there is an explanation of the application workflow, which describes step
by step the UC diagram:

• The client user interface makes a request to the DSOProgram component to start the
process.

• The DSOProgram component obtains the list of clients’ IDs to be processed from the
Reader component.

• The DSOProgram component breaks the list of clients’ IDs into chunks (tasks). The
number of tasks that the application generates is specified in the file called
DSOProgram.fractal.

• These tasks are sent to the ComputeFarm component, which distribute the tasks
between the remote nodes to be processed. At the same time the number of tasks is
sent to the Collector component. This way it knows the total number of tasks that will
be processed by the nodes.

GridCOMP FP6-034442 page 21 of 58 D.UC.05.A

• The Compute component receives the tasks from the ComputeFarm and inserts the
information on the slave database. After that, the Compute component calls the stored
procedure situated inside the slave database to execute the PL/SQL code. When the
Compute component finishes each task, it sends a notification to the Collector
component informing that the task is done.

• When the Collector receives all notifications from the Compute components, it sends a
notification to the DSOProgram component telling that the execution of the
application is done.

3.1.2.2 Components description

3.1.2.2.1 DSOProgram Component

The DSOProgram is the master component of the application, and it is responsible of the
program workflow. It offers some server and client interfaces:

� RunDSO: It is a server interface used to start the execution of the application using the
parameters needed.

� Result: It is a server interface used to receive the notification from the Collector when
the application ends the execution.

� Reader: It is a client interface used to get the information of the clients from the
Reader component.

� OurTask: It is a client interface used to start the process in the remote nodes.
� Collector: It is a client interface used to initiate the collector component with the

number of tasks that will be sent to the workers.

3.1.2.2.2 Reader Component

GridCOMP FP6-034442 page 22 of 58 D.UC.05.A

The Reader component offers the functionality to connect to the master database and gets the
list of clients’ IDs that will be processed by the application. It offers a server interface:

� Reader: It is a server interface to get the information of the clients from the database.

3.1.2.2.3 ComputeFarm Component

The ComputeFarm component is responsible for distributing and controlling the worker
nodes. Using Farm component we can manage the workers of the application, adding or
removing them when it is necessary. The interfaces used in ComputeFarm component are
explained in the lines below:

� OurTask: It is a server interface that starts the process in the node.
� Collector: It is a client interface to notify the Collector component that the task is

finished

3.1.2.2.4 Compute Component

The Compute component offers the functionality to execute the tasks received by the
ComputeFarm and execute them. The component receives the task with the list of clients to be
inserted in the node database. After that, the component calls an Oracle stored procedure
stored in the node database to execute the PL/SQL code. The Compute component offers the
same server and client interfaces as the ComputeFarm component: OurTask and Collector.

3.1.2.2.5 Collector Component

GridCOMP FP6-034442 page 23 of 58 D.UC.05.A

When a worker node ends a task it sends a notification to the Collector component saying that
the task is finished. This way, this component can know how many tasks are still pending to
process, how many tasks are already finished and the moment when all tasks are finished. The
interfaces used to develop this component are explained in the lines below:

� Collector: It is a server interface used to receive the notifications from the worker
nodes.

� Result: It is a client interface used to notify the DSOProgram that the process has
finished.

3.1.2.3 Interfaces

As is mentioned above, there are some interfaces to build the components. Those interfaces
are explained in the following lines:

3.1.2.3.1 RunDSO
When the user starts the application execution, the first interface called is RunDSO. This
interface takes the parameters imputed by the user (client id, group id or initial and final
dates) and begins the execution.

public interface RunDSO {

 public final static String ITF_NAME = "runnable";

 /**
 * Starts the execution of the application. It gets some of the
 * parameters needed for the application
 *
 * @param startDate The initial date of the period to be processed.
 * @param endDate The final date of the period to be processed.
 * @param clientID Id from the specific client to be processed
 * @param groupId Id from the group of clients to be processed
 *
 * @return void
 */
 public void run(String startDate, String endDate, String clientId,
 String groupId);
}

3.1.2.3.2 Reader
As it could be guessed, the Reader interface is the one who connects to the master database
and gets the list of the clients from the master database.

GridCOMP FP6-034442 page 24 of 58 D.UC.05.A

public interface Reader {

 public final static String ITF_NAME = "read";

 /**
 * Gets the list of the client's Ids from the master database.
 *
 * @param clientId Id from the specific client to be processed
 * @param groupId Id from the group of clients to be processed
 *
 * @return list of client's Ids
 */
 String[] getClients(String clientId, String groupId);
}

3.1.2.3.3 OurTask
The OurTask interface is responsible for starting the process in the remote nodes. The
information needed for this operation is the list of the clients and the list of dates. The list of
dates is composed by the initial and final dates that the user enters at the beginning of the
execution. Those parameters are used to specify the interval of dates, in short, to specify the
time spot we need to evaluate by the PL/SQL code.

public interface OurTask {

 public final static String ITF_NAME = "work";

 /**
 * A server interface to receive the tasks on the worker nodes
 *
 * @param clients The list of client's ids
 * @param dates The period to be processed
 *
 * @return void
 */
 public void compute(List<String> clients, List<String> dates);
}

3.1.2.3.4 Collector
The Collector interface is an important new one included in the final version of this use case.
It is used to control when the tasks sent to the different worker nodes are finished. This
interface implements four different methods. The first one is called init and it is used to
initiate the Collector with the total number of tasks. The second one, called collect, is used by
the worker nodes to notify the Collector when a task is finished. There are also other two
methods to control the number of tasks which are finished and the number of task which are
not finished. Those methods are called getResultFilesCount and getResultFilesToCollect.

public interface Collector {

 public final static String ITF_NAME = "collect";

GridCOMP FP6-034442 page 25 of 58 D.UC.05.A

 /**
 * This method is to initiate the Collector storing the total number of tasks.
 *
 * @param numOfResultsToCollect The total number of tasks.
 *
 * @return void
 */
 void init(int numOfResultsToCollect);

 /**
 * When a worker ends its task this is the method which is executed
 * @return void
 */
 void collect();

 /**
 * This method indicates the number of tasks finished.
 *
 * @return IntWrapper
 */
 IntWrapper getResultFilesCount();

 /**
 * This method indicates the number of tasks unfinished.
 *
 * @return IntWrapper
 */
 IntWrapper getResultFilesToCollect();
}

3.1.2.3.5 Result
The last interface is called Result and it is used to send the notification of the end of the
execution to the DSOProgram.

public interface Result {

 public final static String ITF_NAME = "result";

 /**
 * This method is used to send the results of the execution to the DSOProgram.
 *
 * @return void
 */
 public void result();
}

3.2 Manual

This section describes how to configure and execute the use case application.

3.2.1 Final prototype description
The main differences between the final prototype implementation and the primitive one are:

GridCOMP FP6-034442 page 26 of 58 D.UC.05.A

� The application progress information is displayed through the user interface, as a progress
bar.

� The number of workers used and the time that the application will finish depending on
the number of workers are graphically displayed.

� The task farm behavioral skeleton was integrated with the DSO program, providing a
way to add or remove workers at execution time.

� A time controller was implemented to manage automatically the time that the
application should finish.

� The computation result is shown at the graphical user interface.

During the development of this project, we analyzed different ways to distribute the PL/SQL
code between the master node and worker nodes with a Grid solution. In the last document,
four different distributions were explained. Now, after the performance tests, we came to the
conclusion that only two of them were really suitable to get good, fast and satisfactory results.
In the following lines, we give a short explanation of those two possibilities.

The first possibility is to store a part of the PL/SQL code in the databases installed in the
worker nodes, and the other part of the PL/SQL code and all the tables in the master database
located in the master node. This method is used when the information is distributed between
many tables and it is necessary to use all of them when executing the PL/SQL code.

The second possibility is to store all the code and empty main tables in the worker nodes
databases, and the main tables in the master database. The information stored in the worker
database only belongs to the specific clients whom are going to be processed in each node.
Then, this method is suitable when the database is big. This option can be used when the
PL/SQL code does a lot of calculations with specific data access. This database structure was
selected to be used with the Computing of DSO Values use case because the application
PL/SQL code use specific information stored in specific tables to do the calculations. When
we did the performance tests, we could see that in this case the process time decreased when
this kind of distribution was used. The PL/SQL code will use the information stored inside the
node tables to do the calculation, and if it needs more data, it will take it from the master
database.

It is possible to find more information about the distribution of the databases in the previous
document D.UC.04 [2].

The final version of the application is using the active Farm skeleton. This component is used
to manage the worker nodes by adding or removing them when necessary. Furthermore, it
provides a manager module that automatically adds or removes worker nodes when
necessary. To use this module some parameters must be set to complete the criterion needed
to determinate when the nodes should be added or removed. Those specifications are written
in the rules.drl file. In this use case the manager module is used to start the initial worker
nodes of the application.

3.2.2 Configuration and usage
The first thing to do before executing this prototype is to install the required software listed in
section 3.1.1. After installing, testing and running all required software, you can start
configuring the prototype. To configure the application is essential to add the following
libraries to the lib directory:

GridCOMP FP6-034442 page 27 of 58 D.UC.05.A

� ProActive 3.9 (ProActive binaries and related libraries)
� classes12.jar (JDBC library)
� Task farm behavioural skeleton binaries and related libraries

The following files need to be changed to configure and run the prototype on your
environment:

� \classes\com\atosorigin\usercase\dso\deployment.xml - open the deployment file and
rewrite it with the nodes information.

� \classes\com\atosorigin\usercase\dso\adl\DSOProgram.fractal - open the fractal file
and change the attribute numTasks value, specifying the number of tasks that are
going to be executed in the worker nodes. To specify this number we have to take into
account that we need enough tasks to distribute the process between the nodes, but this
number should not be too large to avoid having too many accesses in the worker nodes
databases.

� \classes\com\atosorigin\usercase\dso\adl\ReaderImp.fractal - open the fractal file and
change the attributes url, user and pwd with the master database information

� \classes\com\atosorigin\usercase\dso\adl\Compute.fractal - open the fractal file and
change the attributes url, user and pwd with the master node database information. It
is a worker node located inside the master node, specifically the first worker node the
application initializes.

� \classes\com\atosorigin\usercase\dso\adl\ComputeSlaves.fractal - open the fractal file
and change the attributes url, user and pwd with the worker database information.

� \classes\com\atosorigin\usercase\dso\adl\rules.drl - open the FARM rules file to set
the number of workers that the application needs to start when the application begins
the execution.

After changing all the files listed above, you can start the application running the command:
…\GRIDCOMP-FARM-ACTIVE\scripts\unix\dso.sh

When the main application called “DSOProgram” begins running the graphical user interface
appears.

GridCOMP FP6-034442 page 28 of 58 D.UC.05.A

At this time, the farm manager starts running and initializes the number of nodes specified in
the rules file. As explained before, this file specifies the rules that the farm manager will use
to manage the application, adding or removing workers automatically depending on the rules
that you define. The final prototype uses the manager only to start the initial workers that the
application will use. The new feature called time controller is being used to manage the
number of workers needed (adding and removing them). This new feature was implemented
because the farm manager doesn't work based on time, only with the task throughput.

The application log is located in the box on the bottom of the first window. There, it is also
possible to see what is happening with the worker nodes.

When the initial worker nodes are initiated, the Start button will be enabled. At this moment it
is possible for the user to enter some parameters in order to filter the output information.
These parameters are: Client ID, Group ID, initial and final dates, or the maximum duration
of the process. Only two of those parameters are obligatory: the initial and final dates.

The maximum duration parameter is used to start the time controller feature developed by
ATOS. This feature is used in the final version of the use case to give to the user the
possibility to set the time that the application must finish. This controller will add or remove
workers automatically depending on the time specified in the maximum duration parameters.

When the Start button is pushed, all the tasks are distributed between the different workers,
and the window with the graphics appears (two possibilities).

1- The user sets the maximum duration parameters

If the user has set the maximum duration parameters, the time controller starts running. The
window the user is going see is the one showed in the picture bellow:

GridCOMP FP6-034442 page 29 of 58 D.UC.05.A

In this window you can see some graphics and a progress bar that shows the execution state
belong the time. The progress bar on the top is used to show the percentage of tasks that was
already executed.

The graphic on the left shows the time that the application is going to take to finish (based on
the task executions throughput), and it is updated every 5 seconds. If the time controller is
running, the graphic will show two lines: the blue line represents the maximum time that the
application should finish and the green line represents the minimum time. If the red line is
under the green line, the time controller is going to remove a worker to increase the execution
time, making the red line return inside the two lines. However, if it is over the blue line, the
time controller is going to add a worker to decrease the execution time. This is the way this
tool works to meet the time specified by the user.

The graphic on the right shows the number of workers the application is using during the
execution time. In this case, it shows that the application starts the process with three workers.
At the beginning, there is a transition period when the average throughput is calculated and
this makes an initial peak showed in the graphic on the left. The time controller doesn’t take
into account this initial event.

2- The user doesn’t set the maximum duration parameters

If the user has not set the maximum duration parameter, the time controller is not started. The
window the user is going see is the one showed in the picture bellow:

Using this way the Add and Remove buttons will be enabled to execute the corresponding
operations manually when the user considers properly. If the user press the add button, the
application will add a new worker, and the execution will be faster. If the user press remove
button the result will be the opposite, the application will remove a worker and the execution
will be slower.

GridCOMP FP6-034442 page 30 of 58 D.UC.05.A

When the application finishes the execution of all tasks, a new window will appear showing
the calculation results. The following picture shows the final window:

3.2.3 Examples
To test the application you can use the following parameters:

� Client ID: <leave empty>
� Client group: <leave empty>
� Initial date: September 2008
� Final date: October 2008
� Maximum Time of process: <don’t change>

After that, insert the parameters you need and press the start button to start the application.
The second window will appear and them you can see the execution process. When all tasks
are done, the result window will appear with the calculation results.

GridCOMP FP6-034442 page 31 of 58 D.UC.05.A

4 EDR Processor

This use case, taken from the Telecommunications world, is an embarrassingly parallel1
application that deals with huge amounts of data. This special feature will serve to assess and
test whether the GCM is prepared to deal with real world applications.
Record processing is a common computing problem that enterprises have to deal with,
especially in the Telco world. Basically, the objective is to transform a big set of data records
into another, which is in the end an essential part for the business. This transformation usually
takes a lot of time to be performed and requires a considerable amount of computing
resources.
Because real-world EDR processing is time constrained and critical to the company’s
objectives, the objective in this use case is to provide a high performance computing solution,
based on a Grid Component version of the EDR Processor application, thus improving the
quality of the processing by offering redundancy, fault-tolerance, scalability, load balancing,
and reduced computing times.

4.1 Detailed architectural design

4.1.1 Architecture of the application
An actual EDR Processor application will work unattended, inside a nightly batch process,
taking information from a sequential file (previously generated from some source database)
and storing the results into another sequential file (eventually imported to a target database).
For the purposes of this project, the source and target databases will be ignored.

Being an embarrassingly parallel process, the EDR processing can be easily distributed
among a set of (likely heterogeneous) computing resources. In order to do that, the input EDR
file must be split into fragments. Each fragment will be processed by a grid resource, and the
results will later be joined.
The scattering and joining of the files is performed by a “master” resource (the one running
the application). The processing of the fragments is done by the “EDR slaves”, which transfer
the result files back to the “master”. As we will see later, this fits perfectly one of the
behavioural skeletons from WP 3 (the task farm).
The following picture shows the conceptual behaviour of the application:

1 http://en.wikipedia.org/wiki/Embarrassingly_parallel

GridCOMP FP6-034442 page 32 of 58 D.UC.05.A

As explained in previous deliverable documents and presentations ([1], [2]), the processing of
an EDR is a rather simple case of an Extract, Transform and Load (ETL) process.
The following picture shows the design of the ETL corresponding to the processing of an
EDR file:

The Extract Transform and Load processing is done using Pentaho Data Integration, also
known as Kettle Project [4]. Kettle is an open source ETL library that includes a very user-
friendly integrated development environment. Using that IDE the user can easily design the

GridCOMP FP6-034442 page 33 of 58 D.UC.05.A

ETL process and save it to a metafile. That metafile can later be used to execute the ETL
process through the Java API of the Kettle libraries.
Each one of the steps of the transformation is described in depth in D.UC.04.A [2].

4.1.2 GCM Components
Both this and the Wing Design use-cases have two distinct architectural designs: one using
autonomic features, and the other not. The latter was developed first, as autonomic features
were made available later during the project. The non-autonomic design is based on collective
interfaces that take care of the distribution of the computations. The autonomic design, based
on Behavioural Skeletons, adds quality of service (QoS) features along with the distribution
of the computations, offering a higher level of integration with the application. Although not
based on the same features, these two versions can be seen as a “before and after”, showing
the evolution of features within the project.

4.1.2.1 Components diagram

4.1.2.1.1 Plain CFI version
This version of the architectural design uses only features from the Component Framework
Infrastructure (developed in Work Package 2). In this case, a multicast interface is used in
order to distribute the processing effort among the nodes of the grid.

Summarizing, the architectural design is as follows:

� The EDRProcessor, the composite component containing everything else, receives the
request to process an EDR file, and redirects it to the enclosed EDRMaster
component.

� Using the FileOperator, the EDR file is split into fragments.
� Using a multicast interface, the fragments are processed by the EDRSlave

components

GridCOMP FP6-034442 page 34 of 58 D.UC.05.A

� The partial results are sent to the ResultsCollector.
� When all fragments have been processed, the ResultsCollector, using the FileOperator,

merges the partial results, obtaining the final result.

The above composition diagram, made using the Grid IDE [14], includes a single EDRSlave.
The ADL cannot express the dynamic deployment of a given component; it is a known
limitation, which can be circumvented using Behavioural Skeletons (as in the other version of
the architectural design) or a programmatic solution.
Making use of the programmatic solution allows us to use the multicast interface (the main
objective of the Plain CFI version of the use case). In order to adapt better to the underlying
deployment, a helper class will instantiate and bind as many EDRSlave components as nodes
available. The following fragment of code is responsible for doing that:

 Factory factory = FactoryFactory.getFactory();
 edrProcessor = (Component) factory.newComponent("EDRProcessor", context);

 // Looks for well-known subcomponents
 ContentController cc = (ContentController) edrProcessor
 .getFcInterface(Constants.CONTENT_CONTROLLER);
 Component comps[] = cc.getFcSubComponents();
 for (Component c : comps) {
 if (Fractal.getNameController(c).getFcName().equals("EDRMaster")) {
 edrMaster = c;
 } else if (Fractal.getNameController(c).getFcName().equals("ResultsCollector")) {
 resultsCollector = c;
 }
 }

 // create EDRSlave components for all nodes
 // First node should already have an EDRSlave deployed in
 slaves = new Component[nodes.length - 1];
 for (int i = 0; i < slaves.length; i++) {
 slaves[i] = (Component) factory.newComponent("EDRSlave", context);
 Fractal.getBindingController(slaves[i]).bindFc("resultsCollector",
 resultsCollector.getFcInterface("resultsCollector"));
 Fractal.getBindingController(edrMaster).bindFc("slave",
 slaves[i].getFcInterface("slave"));
 // start slave component
 Fractal.getLifeCycleController(slaves[i]).startFc();
 logger.info("EDRSlave component " + i
 + " created, and bound to EDRMaster and ResultsCollector");
 }
 // start EDRProcessor component
 Fractal.getLifeCycleController(edrProcessor).startFc();

4.1.2.1.2 Autonomic version
The autonomic version of the architectural design is focused in testing and assessing the
Behavioural Skeleton developed in Work Package 3. This use case features a Task Farm, as it
is the Behavioural Skeleton which fits better its needs.

GridCOMP FP6-034442 page 35 of 58 D.UC.05.A

In this version, made using the Grid IDE [14], the multicast interface between the EDRMaster
and the EDRSlave components has been replaced by a Task Farm component, the
EDRSlaveFarm. This component will take care of deploying as many EDRSlave components
as needed, controlling the parallelism degree. This degree can vary during the execution of the
application, in order to adapt the performance to the requirements of the user.

4.1.2.2 Components description

4.1.2.2.1 EDRProcessor and EDRProcessorAutonomic
These are the higher level components from its corresponding architectural designs, the Plain
CFI and the autonomic one. They contain the rest of the components from the architecture and
offer a single edrProcessor server interface. The GUI of the application makes use of this
interface to submit EDR processing requests.

4.1.2.2.2 EDRMaster and EDRMasterAutonomic
The EDRMaster and the EDRMasterAutonomic act as the master component of their
corresponding architectures, offering an edrProcessor server interface. The main difference
between them is their slave client interface: the former uses a multicast interface, while the
latter uses a singlecast one, but bound to a Task Farm BeSke. Otherwise, the behavior of
these components is identical:

• Scatter the file using the fileOperator client interface.
• Initialize the ResultsCollector component through its interface, telling it how many

fragments must be processed.
• Process the fragments using the slave client interface.

4.1.2.2.3 EDRSlaveFarm
This component is only present in the autonomic version of the application. This composite
component extends the gridcomp.manager.farm.adl.farm from the NFCF, offering a farm of

GridCOMP FP6-034442 page 36 of 58 D.UC.05.A

EDRSlaveAutonomic components. Using the non functional interfaces of this component, the
user can modify the parallelism degree of the application.

4.1.2.2.4 EDRSlave and EDRSlaveAutonomic
These components only differ slightly in their ADL specification, in order to adapt them to
their respective architectures. Otherwise, they are identical and have the same behavior.
These are the components in charge of applying the ETL process implemented using Kettle
and described in a previous section of this document. When receiving the first request, the
Kettle library will be initialized with all the needed configuration files. Subsequent requests
will be processed faster, as no initialization has to be performed again.
When Kettle initialization is done, the component transfers the corresponding fragment of the
EDR file from the node where the EDRMaster component is deployed. Then, the
transformation is applied to the file using the Kettle library. The result is transferred back and
the ResultsCollector is invoked to notify another fragment has been processed.

4.1.2.2.5 ResultsCollector
This component collects the intermediate results, sent from the EDRSlave or EDRSlaveFarm
components. When all results are collected, they are joined, using the FileOperator.
Also, this component offers information about the progress of the processing (how many
fragments have already been processed).

4.1.2.2.6 FileOperator
The FileOperator component offers the functionality to scatter and join files. Those files must
reside in the local file system.

4.1.2.3 Interfaces

In this section, the interfaces from the different components are presented.

4.1.2.3.1 EDRProcessor
This is the server interface offered by the EDRProcessor, EDRProcessorAutonomic,
EDRMaster and EDRMasterAutonomic components:

public interface EDRProcessor {

 /**
 * Processes the given EDR input file.
 *
 * @param inputFilePath path to the EDR input file
 * @param outputFilePath path to store the results file to
 * @param recordsPerFragment number of EDR to include on each fragment of the input file
 * @param gzipFiles whether to compress fragment files when transferring them
 */
 void process(String inputFilePath, String outputFilePath, int recordsPerFragment,
 boolean gzipFiles);
}

It contains a single, straight-forward method.

4.1.2.3.2 EDRSlave
This is the server interface offered by the EDRSlave and EDRSlaveAutonomic components:

public interface EDRSlave {

GridCOMP FP6-034442 page 37 of 58 D.UC.05.A

 /**
 * Processes an EDRRequest.
 * <p>
 * This means:
 *
 * Downloading the given fragment of the EDR file from source node
 * Processing all the contained EDRs, generating a partial results file
 * Uploading the partial results file to the source node
 * Calling the ResultsCollector component to let it know processing is finished
 *
 *
 * @param request the EDRRequest to be processed
 */
 void process(EDRRequest request);
}

An EDRRequest contains the path to one of the fragments of the EDR input file, the node
where it is stored, the path to store the partial results, and a flag that states whether to
compress those files when transferring them.

4.1.2.3.3 EDRSlaveMulticast
This is the multicast client interface used by the plain CFI version of the EDRMaster
component to invoke the EDRSlave components.

public interface EDRSlaveMulticast {

 /**
 * Processes a list of EDRRequests, using Round Robin parameter dispatch mode.
 * <p>
 * This means:
 *
 * Downloading EDR fragment files from source node
 * Processing all the contained EDRs, generating partial results files
 * Uploading the partial results files to the source node
 * Calling the ResultsCollector component to let it know processing is finished
 *
 *
 * @param requests the list of EDRRequest to be processed
 */
 @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode = ParamDispatchMode.ROUND_ROBIN))
 void process(List<EDRRequest> requests);
}

4.1.2.3.4 FileOperator
This interface contains the needed operations with files: scatter() and join().

public interface FileOperator {

 /**
 * Scatters the given file into fragments of the given size (expressed in number of
 * lines/Extended Data Records).
 * <p>
 *
 * @param source the file to be scattered
 * @param linesPerFile size of the fragments
 * @param gzipFiles whether to gzip fragments
 * @return List of the resulting Files
 */
 List<File> scatter(File source, int linesPerFile, boolean gzipFiles);

 /**
 * Joins the given source files into the given output one.
 *
 * @param sources list of files to be joined
 * @param outputFile where to save the resulting file
 * @param gzipFiles whether the source files are gzipped
 */
 void join(List<File> sources, File outputFile, boolean gzipFiles);
}

GridCOMP FP6-034442 page 38 of 58 D.UC.05.A

4.1.2.3.5 ResultsCollector
The server interface offered by the ResultsCollector component is the following:

public interface ResultsCollector {

 /**
 * Initializes the ResultsCollector component.
 *
 * @param numOfResultFilesToCollect number of partial results to be collected
 * @param resultsFile path to the results file
 * @param gzipFiles whether the files are compressed
 */
 void init(int numOfResultFilesToCollect, File resultsFile, boolean gzipFiles);

 /**
 * Informs the collector a new partial result is available, providing its location.
 * <p>
 * If the number of results files to be collected has been reached, this triggers the
 * joining of the partial results files into the final result, using the FileOperator.
 *
 * @param remoteFile path to the new partial result.
 */
 void collect(File remoteFile);

 /**
 * Gets the number of partial result files already collected.
 *
 * @return the number of partial result files already collected.
 */
 IntWrapper getResultFilesCount();

 /**
 * Gets the number of partial result files to be collected.
 *
 * @return the number of partial result files to be collected.
 */
 IntWrapper getResultFilesToCollect();
}

The init() method is invoked from the EDRMaster and EDRMasterAutonomic
components, the collect() method from the EDRSlave and EDRSlaveAutonomic
components, and the getResultFilesCount() and
getResultFilesToCollect() methods from the Graphical User Interface, in order to
provide feedback about the progress of the processing.

4.2 Manual

4.2.1 Final prototype description
The final prototype, as well as revised component architecture, includes several enhancements
over the previous prototypes, specially the autonomic version:

• Integration with final NFCF prototype.
• Dynamic quality of service (QoS) contract: desired throughput and maximum

parallelism degree can be changed during the execution.
• “Idle” and “busy” QoS: when the application is idle the target is to reduce the

deployment to its minimum (only one worker component). When the application is
busy, the target is to reach the quality of service the user expects.

• Monitoring of the Task Farm: showing the achieved and desired throughput and the
current parallelism degree.

• Full integration of the source code and ADL files with the GIDE: the programmer can
navigate the source code using the composition diagrams.

GridCOMP FP6-034442 page 39 of 58 D.UC.05.A

4.2.2 Configuration and usage
Both the source code and the binaries of the final prototype are included in the file
“D.UC.05.B – EDR Processor final prototype.zip”. The latest version of this prototype is also
publicly available at INRIA's GForge gridcompwp5gs project [12].
In addition to the common system requirements (listed in the introduction of this document
(Section 1)), the following tools are needed in order to run the application:

� Gnuplot [10] standalone, or
� Gnuplot bundled in cygwin distribution [11] (windows only).

After uncompressing the aforementioned zip file, and assuming that both java and ant are in
the path, just type ant processor to invoke the EDR Processor. The application will
request to enter the path to the distribution folder of ProActive 3.90. After that, the user
interface will appear:

This first “tab” contains the deployment details. Depending on your infrastructure, select one
of the included deployment descriptors and press the “Deploy” button.
The “Deployment log” text box will show the log trace output during the deployment:

GridCOMP FP6-034442 page 40 of 58 D.UC.05.A

After the deployment is done, the “Options” tab is enabled:

The “options” tab contains the controls to select the desired input parameters:

� Input file: path to the file containing the EDRs to be processed.

GridCOMP FP6-034442 page 41 of 58 D.UC.05.A

� Partition size: number of EDRs each fragment file will contain.
� Transmit compressed data: whether to compress the fragments of the input file before

transferring them. This may reduce the time needed to transfer the data through the
network.

� Output file: path to the file where the results of the processing will be stored.

The controls related to the autonomic behaviour are, obviously, disabled when running the
plain CFI (non-autonomic) version of the application.

When all of the above fields have been complimented, the “Start” button can be pushed. The
request will be submitted to the components, and the “Execution” tab will be enabled,
showing the log trace of the execution and a progress bar.

When the progress bar reaches 100%, the execution is done (all fragments from the EDR file
have been processed and their results joined), and new requests can be submitted.

4.2.2.1.1 Autonomic version
In order to test the autonomic version of the application, the “Use autonomic features” check
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors
must be selected.

GridCOMP FP6-034442 page 42 of 58 D.UC.05.A

When in autonomic mode, the QoS controls are enabled, letting the user decide the target
throughput (measured in thousands of EDR processed per second) and the maximum allowed
parallelism degree (the maximum number of workers). After changing any of those values,
the user must press the “Apply QoS” button to make effective that change.

During the execution of the request, the user can have access to the monitoring of the
EDRSlaveFarm, issuing the following command in a shell: gnuplot farm_monitor.gp (or
gnuplot farm_monitor_windows.gp in windows). This will open a window displaying two
different charts made with the monitoring information coming from the BeSke:

GridCOMP FP6-034442 page 43 of 58 D.UC.05.A

The green line represents the throughput requirement as entered in the QoS section of the GUI
(and will change accordingly). The magenta line is the current throughput, as measured by the
monitor. That measure will differ slightly from the one being offered by the GUI, as they are
not computed the same way: the manager computes a running average (based on time
windows, and more sensitive to changes in the parallelism degree) while the GUI displays the
complete average (from start to finish). Finally, the red line represents the current number of
workers (EDRSlaveAutonomic components) bound to the EDRSlaveFarm.
In the above figure, we can see how the autonomic manager adds more workers after realizing
the required throughput could not be achieved with the initial single worker. When the
processing is done, the extra workers are removed.

4.2.3 Examples
The /test folder contains several sample input files (generated using the script provided on the
same folder), ranging from one thousand EDRs to one million EDRs. If needed, more files
can be generated, invoking the EDRGenerator tool (ant generator in the main folder).
Generating random EDR files is a time consuming task so, in order to create a new file, it is
advised to use one of the included ones to repeatedly append it to the new one.

GridCOMP FP6-034442 page 44 of 58 D.UC.05.A

5 Wing Design

This use case, in contrast to the Telco one (Section 4), manages small amounts of information,
but needs lots of computing power. The application is also an embarrassingly parallel one, but
based on pre-existing legacy code. The ability to wrap and grid-enable existing legacy code is
crucial for the adoption of the GCM by the industry.
In the aerospace sector, the software that computes the aerodynamic wing performance for a
given configuration is used to test different configurations of the wing features and to
eventually find an acceptable design. Merak is a legacy application, written in FORTRAN 77
by Dr. Mariano Vázquez, with binaries for Windows, Linux and Solaris. This application
permits to analyze parameters variation in incompressible turbulent flow around a triple
element airfoil, to evaluate the stalling angle of different wing geometries. Turbulence is
simulated using different k-epsilon models2, including law-of-the-wall and two-layer low Re3.
Finally, the application can extract the desired information and create a graph using gnuplot
[10].

5.1 Detailed architectural design

5.1.1 Architecture of the application
Merak, manages small amounts of information, but needs lots of computing power. Our
objective is to use GridComp solution to wrap and grid-enable this existing legacy code and
also to prove the integration of data staging for the input files and output files into this
sweeping process.
A depiction of the operation of the Wing Design application is offered next:

1. The user provides a set of wing geometry files and input parameters for the
experiment.

2. The legacy application binaries (Merak) are provisioned to the resources on the grid,
as new components.

2 http://en.wikipedia.org/wiki/Turbulent_Kinetic_Energy
3 http://en.wikipedia.org/wiki/Reynolds_number

GridCOMP FP6-034442 page 45 of 58 D.UC.05.A

3. The complete set of parameter combinations is obtained by the Parameter Sweeper
component.

4. Each parameter combination is sent to a Merak component, which performs its
simulation.

5. Results are collected, composed and a graph is generated.

Legacy executable files are only available for Windows, Linux and Solaris, so resources
running these operating systems are needed. Also, result graph is generated using gnuplot
[10], which must be installed in the computer running the application.
In order to provide a better user experience, an interactive graph is built during the execution
(per wing geometry involved). The user can change the point of view; zoom in and out, etc.
These interactive graphs are generated using Visad [8], which is based on Java3D [9] that
must be present in the computer running the application.

5.1.2 GCM Components

5.1.2.1 Components diagram

5.1.2.1.1 Plain CFI version
As in the previous use case, this version of the architectural design uses only features from the
Component Framework Infrastructure (developed in Work Package 2): a multicast interface is
used in order to distribute the computation effort among the nodes of the grid.

A brief explanation of this architectural design, made using the Grid IDE [14], is the
following:

� The WingDesign receives the request to perform a simulation, given a set of wing
configurations and input parameters. This request is redirected to the Master
component.

GridCOMP FP6-034442 page 46 of 58 D.UC.05.A

� Using the ParameterSweeper, the complete list of parameter combinations to evaluate
is obtained.

� The above information is also passed to the ResultsComposer. This is done in order to
be able to keep track of the progress of the computations.

� Each one of the parameter combinations is delivered to a Merak component, using the
multicast interface.

� Merak is a composite component, consisting in a MerakController and a
MerakWrapper: the latter wraps the legacy code (using the interfaces and techniques
contributed by Tsinghua University [13]), while the former prepares and transfers both
the parameter and result files. Combining these components, Merak performs the
simulation using the given parameters.

� Results are delivered to the ResultsComposer. When all results are received, the graph
showing the comparison of the results is made.

As in the EDR Processor, for this version of the architectural design the same programmatic
mechanism is used to deploy as many Merak composite components as nodes available.

5.1.2.1.2 Autonomic version
The autonomic version of the components diagram, made using the Grid IDE [14], is the
following:

This autonomic architectural design makes use of a Farm controller (the MerakFarm),
replacing the multicast interface between the Master and the Merak components from the
plain CFI version. The MerakFarm controls the parallelism degree of the application,
deploying as many MerakAutonomic components as needed. This degree can vary during the
execution of the application, in order to adapt to the performance requirements of the user.

GridCOMP FP6-034442 page 47 of 58 D.UC.05.A

As the task farm behavioural skeleton does not offer complete support for composite workers
(monitoring and rebalancing of tasks have issues), we had to turn the MerakAutonomic
component into a primitive one, removing the legacy code wrapper component, and using the
ad hoc approach as in previous deliverables ([1], [2]).

5.1.2.2 Components description

5.1.2.2.1 WingDesign and WingDesignAutonomic
These are the higher level components of their respective architectural designs. They are
composite components, encapsulating all the others, and offering a server interface, name
wingDesign, which is used by the graphical user interface. Through this interface the user can
submit simulation requests, providing one or more wing geometry files and the needed input
parameters.

5.1.2.2.2 Master and MasterAutonomic
The previous components redirect their wingDesign server interface to these ones. They
control the execution, invoking the appropriate interfaces from the different components they
interact with:

� Initialize the ResultComposer component with the input parameters.
� Initialize the Merak components, with the appropriate legacy application binaries for

their platform.
� Obtain the list of all the parameter combinations that must be processed, calling the

ParameterSweeper component.
� Processes the list of parameter combinations, invoking the Merak components

(whether through the multicast interface or the farm controller).

5.1.2.2.3 ParameterSweeper
This component computes the complete list of parameter combinations to be processed. This
is simply the Cartesian product of:

• The range of incidence angles
• The range of Reynolds numbers
• The range of wing configurations

This component must be co-allocated with the Master (or MasterAutonomic) one, as it needs
local access to the wing geometry files.

5.1.2.2.4 MerakFarm
As in the previous use case, this component is only present in the autonomic version of the
application. This composite component extends the gridcomp.manager.farm.adl.farm from
the NFCF, offering a farm of MerakAutonomic components. Using the non functional
interfaces of this component, the user can modify the parallelism degree of the application,
both directly or setting a QoS contract.

5.1.2.2.5 MerakAutonomic
This is the worker component of the MerakFarm. It is a primitive component that manages the
execution of the legacy code. It is not based on the legacy code wrapping techniques from
Tsinghua University [13], as this will require the use of a composite component, and the task
farm behavioural skeleton has issues with this kind of workers.

GridCOMP FP6-034442 page 48 of 58 D.UC.05.A

5.1.2.2.6 Merak
In the plain CFI version, this component takes care of everything related to the execution of
the legacy application, encapsulating the two primitive components described next:
MerakController and MerakWrapper.

5.1.2.2.7 MerakController
The MerakController component makes sure the execution of the legacy code can be
achieved:

• Downloads the proper executable files from the master node on initialization (this is
only done once).

• Processes each received request for execution and prepares the input parameters
• Invokes the legacy code control interface of the MerakWrapper component, thus

executing the legacy application.
• Transfers the result file after finishing the execution.
• Deletes temporary file when done.

5.1.2.2.8 MerakWrapper
This component, deriving from the templates and interfaces provided by Tsinghua University
[13], wraps the legacy code, and keeps track of its execution.

5.1.2.2.9 ResultsComposer
The ResultsComposer gathers the result files from the simulations, generating a graph where
the different wing geometries are compared. It also offers information about the progress of
the process and temporary results, allowing the graphical user interface to display that results
live.

5.1.2.3 Interfaces

In this section, the interfaces from the different components are presented.

5.1.2.3.1 WingDesign
This is the interface offered by the WingDesign, WingDesignAutonomic, Master and
MasterAutonomic components. Its only method is the starting point of the whole process:

public interface WingDesign {
 /**
 * Performs a simulation, processing the given parameter specification.
 *
 * @param spec contains the wing geometries, incidence angles, reynolds and iteration
 * numbers to perform the simulation
 * @return a graph comparing the different wing geometries.
 */
 File process(SweepSpecification spec);
}

A SweepSpecification is a java class that contains a list of geometry files, the initial
and final values for the incidence angle and the Reynolds number ranges, the number of
samples to take from each range, and a number of iterations to perform the simulation.

GridCOMP FP6-034442 page 49 of 58 D.UC.05.A

5.1.2.3.2 ParameterSweeper
This interface contains the method to generate the list of parameter combinations to be used
when invoking the legacy application (merak):

public interface ParameterSweeper {
 /**
 * Generates the combination of parameters to be submitted to merak.
 * <p>
 * This is the Cartesian product of the ranges contained in the sweep specification
 *
 * @param spec the specification of the ranges of values to be swept
 * @return a list of Merak Parameters
 */
 List<MerakParameters> sweep(SweepSpecification spec);
}

5.1.2.3.3 Merak
The interface of the Merak, MerakAutonomic and MerakController components, offering
access to the legacy application is the following:

public interface Merak {

 /**
 * Prepares the component for the execution of the Merak legacy application.
 *
 * @param supplier the node to download the executable files from
 * @param platformFiles map with the executable files per platform.
 * @param resultsDir path on the supplier node where result files must be stored
 */
 void prepare(Node supplier, Map platformFiles, File resultsDir);

 /**
 * Runs the Merak legacy application, using the given parameters.
 *
 * @param params parameters to pass to the legacy application
 */
 void run(MerakParameters params);

 /**
 * Deletes all temporary files stored in the local file system during preparation or
 * execution.
 */
 void cleanUp();
}

5.1.2.3.4 MerakMulticast
This is the multi-cast client interface used by the plain CFI version of the Master component
to invoke the Merak components:

public interface MerakMulticast {

 /**
 * Prepares the component for the execution of the Merak legacy application.
 *
 * @param supplier the node to download the executable files from
 * @param platformFiles map with the executable files per platform.
 * @param resultsDir path on the supplier node where result files must be stored
 */
 void prepare(Node supplier, Map platformFiles, File resultsDir);

 /**
 * Runs the Merak legacy application, using the given list of parameters, using Round
 * Robin parameter dispatch mode.
 *
 * @param params the list of parameters to pass to the legacy application
 */
 @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode = ParamDispatchMode.ROUND_ROBIN))
 void run(List<MerakParameters> params);

GridCOMP FP6-034442 page 50 of 58 D.UC.05.A

 /**
 * Deletes all temporary files stored in the local file system during preparation or
 * execution.
 */
 void cleanUp();
}

The only method offering a multicast behaviour is run. This is dispatched in a round robin
fashion among the Merak components.

5.1.2.3.5 ResultsComposer
The server interface offered by the ResultsComposer component is the following:

public interface ResultsComposer {

 /**
 * Initializes the component.
 *
 * @param spec the input parameters to be processed
 * @param resultsDir the path to the directory where temporary results will be stored
 */
 void init(SweepSpecification spec, File resultsDir);

 /**
 * Adds a new result (a point in the graph for a certain wing geometry) to the composer.
 * When all results are added, the graph comparing the different wing geometries is
 * made.
 *
 * @param geoPoint a point in the graph for a certain wing geometry
 */
 void addResult(GeometryPoint geoPoint);

 /**
 * Gets the percentage of results received since the component was initialized.
 *
 * @return the percentage of results received since the component was initialized
 */
 Integer getResultsPercent();

 /**
 * Gets a list with all the results added since the last call to this method.
 *
 * @return a list with all the results added since the last call to this method
 */
 List<GeometryPoint> getPendingResults();
}

The init method is invoked by the WingDesign component at the start of the process. The
addResult method is invoked by the Merak components each time a new result is obtained.
Last, getResultsPercent and getPendingResults are invoked from the GUI in
order to implement a progress bar and the interactive live graphs, respectively.

5.2 Manual

5.2.1 Final prototype description
The final prototype of the Wing Design use case features the same enhancements as the EDR
Processor, described in 4.2.1, and also makes use of the legacy code wrapping techniques
contributed by the Tsinghua University [13] (only the non-autonomic version).

GridCOMP FP6-034442 page 51 of 58 D.UC.05.A

5.2.2 Configuration and usage
The file “D.UC.05.A – Wing Design final prototype.zip” contains both the source and the
binaries of the final prototype. The latest version of this prototype is also publicly available at
INRIA's GForge gridcompwp5gs project [12].
In addition to the common system requirements (listed in the introduction of this document
(Section 1)), the following tools are needed in order to run the application:

� Java3D [9]
� Gnuplot standalone [10] or
� Gnuplot bundled in cygwin distribution [11] (windows only).

Run ant WingDesign to invoke the Wing Design. The application will request you to
enter the path to the distribution folder of ProActive 3.90. After that, the user interface will
appear:

This first “tab” contains the deployment details. Depending on your infrastructure, select one
of the included deployment descriptors and press the “Deploy” button.

The “Deployment log” text box will show the log trace output during the deployment:

GridCOMP FP6-034442 page 52 of 58 D.UC.05.A

After the deployment is done, the “Options” tab is enabled. This tab includes controls to
select the input parameters:

� Wing geometries: all .geo files found in the geometries folder are listed; one or more
can be selected (Ctrl + click).

� Range of incidence angle: from, to, and number of samples
� Range of Reynolds number: from, to, and number of samples
� Number of iterations

GridCOMP FP6-034442 page 53 of 58 D.UC.05.A

The “start” button submits the request, when pressed. The “Execution” and “Results” tabs are
enabled. The former shows log messages and a progress bar:

GridCOMP FP6-034442 page 54 of 58 D.UC.05.A

The “Results” tab displays the interactive graphs, a progress bar and the gnuplot comparison
graph (only when finished):

In order to control the interactive graphs:

� Dragging the mouse will rotate the point of view
� Pressing caps while dragging the mouse up or down will zoom in or out.
� Pressing ctrl while dragging the mouse will move the point of view
� The controls at the bottom of each window will change the appearance of the

corresponding graph.

5.2.2.1.1 Autonomic version
In order to test the autonomic version of the application, the “Use autonomic features” check
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors
must be selected (at the time of this writing only a local deployment descriptor is offered).
While running a request, a set of controls will be enabled in the “Options” tab:

• Throughput: the desired number of iterations per second. The autonomic manager will
try to reach this throughput.

• Maximum parallelism degree: the maximum number of workers the autonomic
manager can use for the distribution of the computations.

During the execution of the request, the user can have access to the monitoring of the
MerakFarm, issuing the following command in a shell: gnuplot farm_monitor.gp (or
gnuplot farm_monitor_windows.gp in windows). This will open a window displaying two
different charts made with the monitoring information coming from the BeSke:

GridCOMP FP6-034442 page 55 of 58 D.UC.05.A

The meaning of the lines is the same than in the previous use case: the green line represents
the throughput requirement; the magenta line is the current throughput; and the red line
represents the current number of workers (MerakAutonomic components) bound to the
MerakFarm.
In the image above, we can see how the manager tries to reach and keep up with the requested
throughput but, as the limit of the parallelism degree is 4 (in this case), it fails.

5.2.3 Examples
The early prototype includes a few wing geometry files to be used for testing (under the
geometries folder). The more files that are included or the more samples that are selected for
the incidence angle or Reynolds number, the higher the amount of invocations to the legacy
application. Changing the amount of iterations will also increase or decrease the time needed
to accomplish each invocation (the higher, the longer). Default values should take a few
minutes to complete for a local deployment, when one wing geometry is selected.

GridCOMP FP6-034442 page 56 of 58 D.UC.05.A

6 Conclusions

This section summarizes the impact of GridCOMP and the Grid Component Model (GCM)
on the different use cases.

Biometric identification is known to be computational intensive and thus time consuming if
applied to a large user population. With the BIS use case, a scalable distributed identification
system has been built which is able to process identification requests in real-time, for
instance, in a few seconds, while working on a very large user population.
Traditionally, such systems have been specifically developed to satisfy pre-defined QoS
requirements. Consequently, system modifications were required whenever the QoS contract
changed. The BIS prototype eliminates this implication, since it scales independently in
accordance with the current QoS contract thanks to the autonomic reconfiguration
functionality provided through the component framework.
Furthermore, traditional identification systems were usually built for a specific dedicated
hardware infrastructure. The GridCOMP framework, however, with its strict separation of
concerns and its advanced deployment infrastructure, allows building distributed applications
independent of the target hardware infrastructure. As a result, the BIS prototype can be
deployed on arbitrary and possibly heterogeneous hardware without changing a single line of
application source code.
Finally, the BIS use case demonstrates that, with the help of the GridCOMP framework,
development of Grid applications is no longer complex and time consuming. On the contrary,
development time could be significantly reduced due to advanced features such as
behavioural skeletons and the GIDE provided as part of the GridCOMP framework.

“Computing of DSO value” was an application which needed a long time to process and
obtain the expected results. It is used to work out the mean time that the clients delay to pay
an invoice to Atos.

Those are the main improvements after use Gridcomp Framework:

• The reduction of the execution time.

• The reduction of the complexity throughout the development phase.

• The development of a cheaper infrastructure and easily scalable application.

The first improvement that should be mentioned is the reduction of the execution time. It is
important to know that for carrying through the operation a heavy PL/SQL process is
executed which has a high calculation level. Moreover, if we take into account that the results
the application calculates are processed based on the information stored in a central and very
large database, and that those results should be accessed by several departments inside the
company, we are going to realize that the data processing is quite high and will only increase
over time. The old DSO application actually takes about four hours to compute around 6.600
clients. Some tests were performed on top of Grid5000 platform to measure the benefits using
a grid solution. For this test, the master database was replicated to all nodes making each node
independent to do their calculation. The calculation time using 25 nodes was almost 96% less
than using only one node.

The second objective achieved is to reduce the complexity throughout the development phase.
Therefore, we stress the importance of the components of the GridCOMP framework during
this phase: GridCOMP provides some features, like the GIDE, that reduce the complexity
when implementing the components of a Grid application. It is also important to highlight the

GridCOMP FP6-034442 page 57 of 58 D.UC.05.A

significance of other advanced features such as behavioral skeletons, which saves the
application the trouble of manage the nodes. Those features fulfill our objective.

The third aim of this use case consists of developing a cheaper infrastructure and easily
scalable application. To maintain the old application, a new powerful server was needed.
Using Grid technology, existing machines can be used reducing the infrastructure costs. What
is more, using the deployment file, worker nodes can be added easily.

The Extended Data Record Processing application was implemented for very specific, and
expensive, hardware. The first objective, when porting the application to GridCOMP, was to
write a portable, multiplatform, application. Being a 100% Java solution, GridCOMP based
applications can be run on almost any platform, opening the path to an affordable and easy
scalability. Also, thanks to the XML-based deployment, the new application can be scaled up
without changing its source code.
Using the Grid IDE, the new application benefited from a top-down design, taking advantage
of the composition of components. Moreover, the NFCF provided the means to achieve
autonomically the desired QoS using Behavioural Skeletons and JBoss rules based contracts.
While the original application was commercial and closed source, the new one is free and
open.

The Wing Design use case consisted in bringing new life to an obsolete and hardly reusable
legacy code application. This is a common situation in research environments, where there is
multitude of programs developed using ancient programming languages, no longer
maintained and poorly documented. Instead of rewriting them using a new language, which
will need a big investment both in time and money, those programs can be wrapped inside
components and reused by new (most probably distributed) applications, taking advantage of
what it is already implemented and worked well for years.
In this case, an aerodynamic simulation program, written in FORTRAN 77, was used to show
the benefits of this philosophy. Using the methods and techniques for wrapping the legacy
code into a component (developed by the Tsinghua University), the resulting component was
integrated into a new, GridCOMP-based demonstrator application, taking advantage of the
distributed execution and the autonomic management of its performance. This resulted in
reduced response times, thanks to the distribution of the computations, enabling also the
scalability of the application, adding more (low cost) resources without the need to do any
change in the code.

GridCOMP FP6-034442 page 58 of 58 D.UC.05.A

7 References

[1] T. Weigold, F. Tumiatti, E. Prunés, J. Santacatalina, G Freire. D.UC.03 Use cases
description: preliminary architectural design and primitive prototypes.
https://bscw.ercim.org/bscw/bscw.cgi/d315688/D.UC.03-final.pdf

[2] T. Weigold, F. Tumiatti, G Freire. D.UC.04.A Use cases: early documentation.
https://bscw.ercim.org/bscw/bscw.cgi/d510892/D.UC.04.A_Final.pdf

[3] M. Aldinucci, S. Campa, P. Dazzi, N. Tonellotto, G. Zoppi. D.NFCF.04: NFCF prototype
and early documentation.
https://bscw.ercim.org/bscw/bscw.cgi/d510923/D.NFCF.04_final.pdf

[4] Pentaho Data Integration: http://kettle.pentaho.org/
[5] Java: http://java.sun.com/
[6] Apache Ant: http://ant.apache.org/
[7] ProActive 3.90: http://proactive.inria.fr/
[8] Visad: http://www.ssec.wisc.edu/~billh/visad.html
[9] Java3D: https://java3d.dev.java.net/

[10] Gnuplot: http://gnuplot.info/
[11] Cygwin: http://www.cygwin.com/
[12] gridcompwp5 project at INRIA's GForge: http://gforge.inria.fr/projects/gridcompwp5gs/
[13] D. Caromel, L. Du, Y. Wu, X. Wu, C. Dalmasso, G. Peretti Pezzi. D.CFI.04: Methods and

techniques for legacy code wrapping as components.
https://bscw.ercim.org/bscw/bscw.cgi/d510898/D.CFI.04_Final.pdf

[14] V. Getov, S. Isaiadis, A. Basukoski, J. Thiyagalingam. D.GIDE.03: Grid IDE Prototype
and Early Documentation, EU GridCOMP Project, June, 2008.
https://bscw.ercim.org/bscw/bscw.cgi/d510932/D.GIDE.03_Final.pdf

