tSWnﬂZCWVﬁ=m§~”ﬁ I'EMEJ

Effantive Componants for the Srids Tnﬁ:]rlllatlo]l SOCi_et}"

lechnologies
Project no. FP6-034442

GridCOMP

Grid programming with COM Ponents. an advanced component platform
for an effectiveinvisiblegrid

STREP Project

Advanced Grid Technologies, Systems and Services

D.UC.05.A — Use cases: final documentation
(Manual and detailed architectural design)

Due date of deliverable: 1 December 2008
Actual submission date: 19 January 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this delble: GS

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination L evel
PU PUBLIC PU

Keyword List: use case, prototype, component, GCM
Responsible Partner: Gaston Freire, GS

i
. I

MODIFICATION CONTROL
Version Date Status Modifications made by
1.0 01-12-2008 Draft Fabio Tumiatti, Irati R. S&ezUrabain,
Thomas Weigold, Gaston Freire
1.1 17-12-2008 Draft Fabio Tumiatti, Irati R. SakzUrabain,
Thomas Weigold, Gastén Freire
1.2 12-01-2009 Final Gastoén Freire

Deliver able manager
* Gaston Freire, GS

List of Contributors

* Thomas Weigold, IBM
e Fabio Tumiatti, ATOS

e |rati R. Sdez de Urabain, ATOS

* Gaston Freire, GS
List of Evaluators

* Magdalena Escalas, GS
e Marco Danelutto, UNIPI

Summary

» This document describes the final prototypes ofue case applications. For each use
case, its architectural design is explained in hiepifering complete details about the
components (both primitive and composite) and theiterfaces. Also, a
comprehensive user manual is offered, includingalteion and running instructions,
along with screenshots of the final prototype amtlons. Finally, the impact of
GridCOMP and the Grid Component Model (GCM) on tliferent use cases is
summarized in the conclusions.

GridCOMP FP6-034442

page 2 of 58 D.UC.05.A

{C}/{Q 7\&!

q M
GridCOMP &2

i

Table of Content
1 IINTRODUCT ION ..ottt e e e e e e e et e et e e et e et e e e eaeeeeeeeeeeeeeeeen e aaeeaaeeseeeseeeeeeennnnnanans 5

2 BIOMETRIC IDENTIFICATION SYSTEMccciii s 6

2.1 DETAILED ARCHITECTURAL DESIGNutttuttttttttttttnsneetreeeeeteeteettttteasssssssessssnnssanssaasnnnnnnnssnnsnnnesnssssnes 6
211 High-level architecture of the appliCation ... s 6
212 BUSINESS PIrOCESSES.eeueeeeietesteeteeseeseestesueeeassesseaseeseessesaesseeseessessesaeansesenseasessseneessessesnsenssssesnsanen
2200 G T V1Y o X Vo V=T F= T | = RS
214 GCM COMPONENES....c.ueiteeeeterterteeseeseestestesueesessesseaseessessessesseeseessessesaeasseseseaseeneensesbessenasensessesnesnean

2141 Components diagram............ccccceeennn.

2.14.2 Components description
O 3 R A o o o= o o RO SPP SO
R S |V - (o 1= RSP POTPR
2.1.42.3 Data-Parallel BeSKecccocevveiiiiiiieeccnnnns
2.1.4.2.4 Autonomic Behaviour Controller (ABC)
2.1.4.2.,5 Autonomic Manager (AM)........ccccvveeerriiuunnens

2.143 Interfaces........ccccccevvvieennnn,
2.1.43.1 Interface Il
2.1.43.2 Interface 12
2.1.43.3 Interface I3
B e B R | 01 1= 5 = Tod = U P PPRPR
R e T ST (014 5 - Lo = LSS EER

215 Demo Application

2.2 IVIANUAL .ttt et et e e e e e e e e e e e e e e e e e e s o ea bbb kbbb bbbk bbbt st et e e e e e e e e eeeeeeaeeeeaaeeeeaeeaeeaaaaan
221 Final prototype ESCIiPLiON.......ciiierieirterie ettt sttt st bbbt ene s
222 CoNfigUration @GN USAQE........ccurveiererririerieiertestesesiesiesee st seesaesestesee et ste st seebesbesesbeseeessesbesbeneeseses

3 COMPUTING OF DSO VALUE ... e s 18

3.1 DETAILED ARCHITECTURAL DESIGNtttuiteeeeiteettiit e s e e e eeeeeetnsaaaea s e e e eeeeeasssssa e s s e e eeeeesnnnnaaaeeeeeens
3.1.1 Architecture of the @pPliCALION.coivireirere bbb
312 GCM Components.......c.cccocerueruenns

3.1.21 Components diagram.............cccee....

3.1.22 Components description
3.1.2.2.1 DSOProgram Component
3.1.2.2.2 Reader Component..........ccccvveeeenunen.
3.1.2.2.3 ComputeFarm Component
3.1.2.2.4 COMPULE COMPONENTeiiuiiiriieiiieeitee st cmmmme ettt e st e e sttt e abeesbe e e et ebeesbe e b e e nteesaneasbeenteenneas
3.1.2.2.5 ColleCtOr COMPONENTuuiiieiiiiiiieeeeiitmeeeeeeeeasirreeeestereeeeaasssaeeessssaeeeaassseeeeeansssnneessasneneees

3.1.23 INEEITACES ..ot e e
3.1.2.31
3.1.2.3.2
3.1.2.3.3
3.1.2.34
3.1.2.35

3.2 IVIANUAL .ottt ettt e e e ettt e e e e e et e e e e s s b s e e e e e s s ba s e e e e e s e b e e e e e e e aanee s
321 Final prototype ESCIiPLiON.......ciiieriririerieisie sttt sttt e ettt ese s
3.2.2 Configuration and usage
323 EXAMPIES ...ttt b e bt be et n et sttt eee

4 EDR PROCESSOR ..ot b bbb bbb 31

4.1 DETAILED ARCHITECTURAL DESIGN ... iuuituiititniiteeaeetten st saaseassnsennsassean s saseasssnseassssensrenssnasansens 31
411 Architecture of the @pPliCAITON.........cciiiieeee e eneen 31
412 GCM Components........ccccereeruenne

41.2.1 Components diagram.............cccee.....
4.1.2.1.1 Plain CFlversionccccccevveeen...
4.1.2.1.2 Autonomic version.......................

4122 Components description
4.1.2.2.1 EDRProcessor and EDRProcesSSOrAUtONOMICccceeeeevirrieiieeeeeeeeeaeeeeieieiiiasssasreeeeeeeeeeaaenns 35
4.1.2.2.2 EDRMaster and EDRMaStErAULONOMICcmmererrreeeeeeieaaeeaeaaaaaaeiiiiissrsrereeeeeeeeeeaaans
4.1.2.2.3 EDRSlaveFarmcccccceiiiiiiiiiiiiiiieeeeeeeen.
4.1.2.2.4 EDRSlave and EDRSlaveAutonomic
4.1.2.2.5 RESUSCOHBCIONttt ettt e et e e e e aaaae e e e e e e asasaasaaasaeaaaaaeeeeas
O T w1 1=T @ o 1T (o) SRR

GridCOMP FP6-034442 page 3 of 58 D.UC.05.A

x ‘{Cf@ g\ i‘
GridCOMP Y 6

M
XY
4123 101 (=T = Tol= L U TSSOSO UOOSUS SRR
4,1.2.3.1 EDRProcessor
4.1.2.3.2 EDRSIAVE... ..ttt et e e e e e ——— et e e e e e e e e e e e aaaaeaeeiaaaaa————a
4.1.2.3.3 EDRSIQVEMUIICAST.uutiiiiiiiiiiiiee ettt e e e e e e e e e e e e e ettt ra e e e e e e e aaaaaaaaaaaas
4.1.2.3.4 FileOperator........ccccccevvvueennn.
4.1.2.3.5 ResultsCollector...
4.2 MANUAL ..o,
421 Final prototype description...
422 Configuration @nd USAJE.........ccurueueerererieieesiesieresiesteseeestessesessessesee e ssessesessesseseesessensesessesseseenensens
4.2.2. 1.1 AULONOIMIC VEISION ...uuiitiiiiiiiiiiieiieeeeeseeeme e e eeeeeeees s e e s s e aaassssaaaeeeeeeeeaaaaasaasssnnsssssssssseaeseeeees

G T 0 o] =TSRSS
B WING DESIGN ...ttt eee et s et e e b e e e s e e s e s e e ee e s eme e b es e eeebeeeeesbeneesnbeaessebeaeens a4

5.1 DETAILED ARCHITECTURAL DESIGN ... cituiiteeitteetteeetteesiaeeataeesneessnseetessnrestaestneertsesnaessnneernaessnnns 44
511 Architecture of the apPliCAtION.........coii it a4
512 GCM Components

5.1.2.1 (@0] 24T o Yo aT=T a1 e3e [F= T | = Vo SRS
5.1.2.1.1 PlAN CFl VEISION ...ttt emmeee sttt ettt et e et e e s st e s ame e e abe e e snbee s anbe e e bbeeannreeas
5.1.2.1.2 Autonomic version..........

5.1.2.2 Components description
5.1.2.2.1 WingDesign and WingDesignAutonomic
5.1.2.2.2 Master and MasterAutonomicC............c....veeccenn

5.1.2.2.3 ParameterSweeper.........ccc..cu.....
5.1.2.2.4 MerakFarm.............cccvveeeeene.
5.1.2.2.5 MerakAutonomic......

5.1.22.6 MeraK.........ccceennnn.

5.1.2.2.7 MerakController....
B5.1.2.2.8 MEIAKWIAPPET .. .uveeeeeeeiiiiieeesittteeeessmmmmmm e e e sssseeeaesasssaeeaassssseaeaeassssseaeannssseeesssssneeeeesnssnssenssnnes
5.1.2.2.9 ResultsComposer
5.1.2.3 Interfaces.......cccccceeevvcvenennn.
5.1.2.3.1 WingDesign
5.1.2.3.2 ParamMetEIrSWEEPEeutietiitee it s 4tttk et et es bt e sbeesbb e et e eas e et b e nr et nen
5.1.2.3.3 MEIAK ..ttt e e e
5.1.2.3.4 MerakMulticast.........
5.1.2.3.5 ResultsComposer
5.2 MANUAL ...
52.1 Final prototype description...
522 CoNfiguration @Nd USAQE........ccurverueriruirierieisiesiesesesie e ie sttt see e te bbb st sbesee e ssesbesseneeseees
5.2.2.1.1 AULONOMIC VEISION ...eiiiitiiiiiiieiitie et tmrense et e st e ettt e st e st e sib et e sabe e s ta e e sen et e asne e e ntneeeanbeee e
LI T e 000 = RS
6 CONGCLUSIONS.... ettt ettt b et h e st e s b s btk e st e se e eb e e et enee s b e bt eb e e st e ne e sbeehe e s enneebeeneenes 56
7 REFERENGCES ...ttt ettt h b e se e se e bt e ae s et ee e st et e b sb e b e eneeseeseesanennan 58

GridCOMP FP6-034442 page 4 of 58 D.UC.05.A

BridCOMP ¢

{)
0 G H
ReO XY

1 Introduction

This document describes the final prototypes of ube cases for the GridCOMP project.
These use cases are not only a presentation @étheical functionalities developed within
the project, but they have also been selected beaaiutheir exploitation potential. They will
be used to showcase the project results in frobhbtf the industrial and the academic worlds.
The selection of use-cases pursued the followiitgra in order to obtain a comprehensible,
varied and truly representative list of exampled #ueir potential:

» Use-cases selected had to cover multiple indusseators and scientific research
areas, such as management, security, engineeritglecommunications, in order to
appeal to a large audience, and proving that go@dwork developed can be applied
to different industrial environments.

» Use-cases selected had to prove the flexibility ameroperability of GridCOMP,
interacting with services generally deployed insth@reas, such as database servers,
workflow systems, etc.

» Use-cases selected had to demonstrate legacy appiidntegration. The possibility
of seamlessly integrating these applications toldbumore advanced ones with
optimized performance (thanks in part to the distibn of the processing effort).

» Use-cases selected had to show the effectivenege afolution for both computing
and data intensive processes.

» Use-cases selected had to address and tackle isghdsoth embarrassingly parallel
processes and stateful distributed applicationsuagh a way that the solutions can be
redeployed to solve more complex situations

» Use-cases selected had to attest the autonomigreesmanagement features, in order
to achieve different objectives: better performa¢ibeoughput) or a reduced response
time.

Taken as a whole, the use-cases selected in Grid€@ldet the above criteria and the
partners responsible for each selected use-casedrheir reliability and ensured high-
quality and performance in the project. The applices selected for the use cases are the
following:

1. Biometric Identification System, by IBM Zurich Reseh Labs.

2. Computing of DSO Value, by Atos Origin.

3. EDR Processor, by GridSystems.

4. Wing Design, by GridSystems.

Each one is covered in a separated section ofdbgsiment, all of which have a common
structure:

1. A detailed description of the architectural desag the infrastructure needed to run
the application (data bases, application serversrkflow systems, third-party
software components, etc.). All the componentshmimitive and composite) and
their interfaces are explained in detail.

2. Manual of the final prototype, including instruct® on how to install or deploy the
application. Several screenshots of the applicatioraction are included, and a set of
examples is provided.

Along with this document, a set of 4 compressedsfi(D.UC.05.B*.zip) is provided,
containing the code (binaries and/or source) offtlue use case final prototypes. In order to
run them, a common set of tools is required: J&}jafpache Ant [6] and ProActive 3.90 [7].

GridCOMP FP6-034442 page 5 of 58 D.UC.05.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

) ¢ C/

== e

2 Biometric Identification System

The IBM use case application is a biometric idécdation system (BIS) based on fingerprint
biometrics, which works on a large user populatibine core problem is to identify a given
person solely on his biometric information by comipa its fingerprints against a large
database of enrolled (known) identities. This rezgliimassive computing power because
biometric matching algorithms are non trivial andsinbe applied may times. Therefore, the
identification system takes advantage of a Gridastfucture and an appropriate GCM
component system. The identification problem igritisted across the nodes in the Grid and
this way real-time identification performance candcrhieved even when working on a very
large user population. Additionally, the systemlsgandependently in accordance with a
given quality of service (QoS) contract thankshe autonomic reconfiguration functionality
provided by the GridCOMP GCM framework.

2.1 Detailed architectural design

2.1.1 High-level architecture of the application

The high-level architectural design of the BIS adined in D.UC.03/04 ([1], [2]) and shown
in Figure 1 has been retained for the final prgietylescribed in this document. However,
under the covers, there have been many changés way the system is implemented. The
parts of the system that have undergone significdr@nges are the GCM component
architecture and the GCM adapter, the businesepses (workflow scripts) interacting with
the GCM adapter, and the demo application. The medson for this is the fact that, during
the second and third year of the project, we hawreidered the use of various WP3 results,
namely, we have implemented and improved the BISubing autonomic behavioural
skeletons. In a first iteration we used the taslelel farm skeleton as documented in
D.UC.04 [2]. For the final prototype we moved te ttlata-parallel skeleton, which has been
developed by the WP3 partners to specifically sup@ata-parallel applications such as the
BIS use case. The details of the final BIS protetygased on the data-parallel skeleton are
described in the following subsections.

GridCOMP FP6-034442 page 6 of 58 D.UC.05.A

GridCOMP © g5

Demo Biometric Identification System (BIS) \
Application
R

BIS
Services Business Processes

| —
\ PP System
DB { Identification }[A
- ﬁ Access

Identities

DB

GCM Workflow Engine
Adapter

N /
N

Grid Infrastructure

Component Component
== =
‘\L ﬂ [I T | K ’7 = n

Figurel: Biometric identification system high-level overwie

Figure 1 outlines the high-level system designtef BIS. It is built around a workflow
execution engine acting as the central control ohithe system. A number of business
processes are implemented as workflow scripts nghmvithin the engine. The processes
comprise functionality accessible from the demo ligppon via the BIS services (e.g.
identification, QoS definition) as well as internsystem management logic required to
control the distributed biometric matching. Furthere, the BIS provides a number of
adapters to the workflow engine such that the lmssinprocesses can interact with other
external entities, namely, the identity databaseérgl information about enrolled identities,
and the interface to the Grid infrastructure.

2.1.2 Business Processes

The business processes for BIS management anldef@ctual identification functionality are
interacting with the Grid via the GCM adapter. Gamgently, the change in the component
architecture, where we now make use of the dataHphiskeleton, also affects the logic
implemented in the corresponding workflow scripibe “startup” process, as illustrated in
Figure 2, no longer allocates the desired initianber of workers. This has to do with the
way the skeleton works. To be able to define titealmumber of workers the ADL definition
of the skeleton must be adapted before it is degloyThis functionality has been
implemented as part of activity 2. Another modifioa is that, in contrast to the task parallel
approach used in D.UC.04 [2], now the database imshitially distributed to all workers.
This is done in activity 4.

GridCOMP FP6-034442 page 7 of 58 D.UC.05.A

o
—x O
GridCOMP ¢ G5
S¥icctive Componenza for she Grids (L 7\52;,/

1.2
Connect
DB

1.1
Start Nodes

1.3
Generate DB

}

Deploy GCM
Components

J

Submit QoS
contract to
uton. manager

i

Distribute
database

.

Figure 2: Business process “startup” activity-flow diagram

The identification process, named “identify”, halsanged as well. As the data-parallel
skeleton fits much better to the problem than #sk farm, the identification process became
much simpler. Instead of generating tasks for #renfand collecting asynchronous results it
now just submits the identification request inchglithe fingerprints of the person to be
identified to the skeleton and receives the resyhchronously in activity 8. Figure 3
illustrates the control flow within the identifi¢gah process.

T

7
Pre-process
fingerprints

identification
request

Retrieve identity
from DB

Figure3: Business process “identify” activity-flow diagram

GridCOMP FP6-034442 page 8 of 58 D.UC.05.A

I

SaWAE

2.1.3 Workflow adapters

The workflow adapters, as indicated in Figure Mehalready been defined in D.UC.03 [1].
As the services they provide to the workflow saipave not changed substantially, not all of
them are described again at this point. In paricuhe implementation of the DB adapter and
the BIS services API remained unchanged. Howekerinhplementation of the GCM adapter
has changed significantly as the architecture ®fGICM component system changed through
the use of skeletons. The details on how the GChptad of the final prototype implements
the distributed biometric matching via GCM compadsers presented in the following
Section.

2.1.4 GCM Components

This section describes the GCM component architect@aomponent description, and
interface description of the final BIS prototype.

2.1.4.1 Components diagram

The final BIS prototype, in contrast to the preotersion described in D.UC.04 [2], is now
based on the data-parallel autonomic farm skelateweloped within WP3. Figure 4
illustrates the GCM component architecture usedhim prototype and indicates how it
interacts with the non-componentized part of thaiagtion.

At the heart of the component system, there igitlta-parallel behavioural skeleton (BeSke),
as defined in D.NFCF.04 [3], which consists of ttmmposite component highlighted in
yellow. It includes a custom controller, the automo behaviour controllerABC), which
implements the mechanisms supporting autonomictifumaity, for instance, increasing or
decreasing the number of worker components andrddtatribution. Furthermore, the farm
includes a default implementation of an autonomanager AM) component, the component
actually implementing autonomic control of the BeSKhese three components represent the
data-parallel skeleton. To apply the skeleton, wednto parameterise it by adding a worker
component, here namédMatcher. This is the component which the ABC clones ardsad
the farm as many times as required to increasdlg@ésm. By default, the skeleton starts with
the number of matcher components defined in théegkes ADL. Therefore, the ADL is
adapted accordingly before it is deployed. Sineedhta-parallel skeleton fits very well to the
biometric matching problem we have to solve, ther@o need to develop any additional
custom components. We only wrap the skeleton imt@\@plication component to hide it
from the non-componentized part of the BIS applicat The dashed lines in Figure 4
illustrate the interaction between the non-comptimed part of the BIS application, namely
the GCM adapter, and the GCM component systemhé&umiore, Figure 4 indicates that all
IDMatcher components have access to a shared database stwirdentities known by the
BIS. As far as deployment is concerned, the idethas only thelDMatcher components,
which represent the workers, are to be distributed.

When the BIS application is started, it submits@Q@ontract to the AM which defines the

conditions under which the AM should increase acrdase the number of workers. In the
prototype, the AM enforces this QoS contract eveny seconds. Furthermore, the prototype
allows updating the QoS contract at runtime to ble #o trigger reconfiguration during the

demos.

GridCOMP FP6-034442 page 9 of 58 D.UC.05.A

AR
Gridcome (e
Before identification requests can be processed, itlentity database must be initially
distributed across the worker components. The igeDB holds information such as name,
address, and fingerprints of all enrolled (knowapple. For distributing the DB, the skeleton
offers a multicast port, also called the scattelr Eigure 4) or initialization port, which takes
a list of tasks as input parameter. In case oBll$e each task defines a part (defined by index
and length) of the identity DB. The skeleton dimites these tasks equally among the workers
and the workers load the parts from the shared B8.a result, each worker can be
considered to have one partition of the DB loadao itransient memory as indicated in
Figure 4. In other words, a partition is the fraginef the DB (a number of records) each
worker has loaded.

Once the skeleton has been initialized, identiiicatequests can be submitted to the second
multicast port provided by the skeleton, the sdechbroadcast port. Fingerprints of the
person to be identified are broadcasted via thid pm all worker components and each
worker matches them against its partition of the. B&sults are, in contrast to the task
parallel farm used in D.UC.04, returned synchrohous method return values.

If the AM triggers reconfiguration via the ABC, faxample, to increase the number of
worker components, the ABC retrieves all tasks fralinworkers, modifies the number of
workers, and finally redistributes the tasks. Thigy the DB is redistributed during each
reconfiguration operation.

Application T
Data-Parallel ABC
BeSke
‘_f I
I
QoS contract
_____ L -2 AM
N Tasks .
Partition
s scatter I5
~ ~ [] / [3
. . ~ \‘ . - =
Identification \\‘ H+—> X ™ |IDMatcher 1
request H—+) >
y 14
broadcast

IDMatcher N Identity DB

Figure 4: GCM component architecture

Figure 5 shows how the component system has beghigally composed within the Grid
Integrated Development Environment (GIDE) [14].

GridCOMP FP6-034442 page 10 of 58 D.UC.05.A

=5 "

& Java - bis/default.gidecomposition_diagram - Eclipse Platform

Fle Edit Diagram Mavigate Search Project Run Siindow Help
$-0-Q- HEG- @O - : 5§
v Biv off - o e e 0o v
Pa 5 P17 0|) defoul.gidecomposition_dagram &4 = 5| B TaskLst 2 =)
= T ErBe~

»oal oy

[

-5
® 1= bis

G Uneatsgorized

< >
[Z: Problems | @ Javadoc | [, Declaration | =1 Properties 52 gl& = Y0
O Component Type default

G Propetty Value fa
2] E

Last Modfied
Appearance [= Source Management.

Bin

Sre = v ¥

Rulers & Grid

Figure5: BIS component composition in GIDE

2.1.4.2 Components description

The availability of the data-parallel skeleton sagnificantly reduced the number of custom
components to be developed compared to previousover of the BIS use case. Only the
primitive componentDMatcher and theApplication composite have been designed from
scratch. Compared to earlier use case versiongnaking use of behavioural skeletons, the
code size has been reduced by approximately 35%ca@khponents used, including the
skeleton components, are briefly introduced in shils-section.

2.1.4.2.1 Application

The Application component is a composite component enclosing tmeptete component
system of the BIS application. As such it hidesilindl components and only offers two
server ports, one to initially distribute the DBavinterface 11 (c.f. Figure 4), and one to
broadcast identification requests via interface 12.

2.1.4.2.2 I DMatcher

The IDMatcher component is a primitive component, which includes actual fingerprint
matching functionality. When a matcher componemtitsalized it receives a number of tasks
which together define a partition of the identityg DThe matcher then accesses the shared
database and loads the partition into RAM for flasteess. Initialization happens either via
interface I3 while the DB is initially distributedr during a reconfiguration operation via
interface 15. Afterwards, it receives identificatioequests via interface 14 and returns results
via method return values. While processing an ifleation request, it matches the
fingerprints of a given person against its partt{pan) of the database.

GridCOMP FP6-034442 page 11 of 58 D.UC.05.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

C/

2.1.4.2.3 Data-Parallel BeSke

The Data-Parallel BeSke component represents the autonomic data-pardtieleton as
provided by WP3 (c.f. D.NFCF.04) [3].

2.1.4.2.4 Autonomic Behaviour Controller (ABC)

To implement the behavioural skeleton the defaahjgonent controller has been replaced by
an autonomic behaviour controllehBC). The ABC is part of the data-parallel skeleton. It

offers autonomic operations such as increasingeoredsing the parallel degree which are
triggered by the autonomic manager if requiredigy@oS contract.

2.1.4.2.5 Autonomic Manager (AM)

The AM component regularly enforces the QoS contracttaggders an autonomic operation
via theABC if required. The QoS contract consists of a JEus®Is rule file as listed below.
The BIS application allows defining the desiredrage target partition size as a performance
contract, for example, say 1700 identities g@Matcher component. Based on this value,
defined by the BIS administrator, a rule file isxgeated which defines an upper bound and a
lower bound for the partition size. The upper boismdefined as the target partition size plus
10% and the lower bound is defined as the targgitipa size minus 10%. If the upper bound
is reached, the rule triggers the AM operatt®D EXECUTOR to instruct the AM to trigger
increasing the parallel degree via the ABC. Sirjilahe operatiolREMOVE_EXECUTOR is
triggered if the lower bound is reached as candmnsn the listing. Whenever the target
partition size is modified by the BIS administratamew rule file is generated and submitted
to the AM to update the QoS contract.

[met hodMoni t or =" sear chiat ch"]
rul e "CheckH gher Bound"
when
$arrival Bean : PartitionSi zeBean(val ue > 1870)
then
$arri val Bean. fireQperati on(Manager Oper at i on. ADD_EXECUTCR) ;
end
[met hodMoni t or =" sear chiat ch"]
rul e "CheckLower Bound"
when
$arrival Bean : PartitionSi zeBean(val ue < 1530)
then
$arri val Bean. fi reOperati on(Manager Oper at i on. REMOVE_EXECUTOR) ;

end

2.1.4.3 Interfaces
This section describes the interfaces 11-15, a®tehin Figure 4 in more detail.

2.1.4.3.1 Interfacel 1

The multicast interface 11 is used to transfer sagjenerated by the GCM adapter, from the
Application component to theData-Parallel BeSke and from there to théDMatcher
components. It includes tlgetService() method as shown in the listing below. The purpafse
this interface is to initially distribute the idégtDB across thdDMatcher components. It
takes a list of tasks as a parameter whereas askhdpresents a part of the DB described by
an index and the number of records. In the pro®msgch task represents up to 100 identities
in the DB. When the list of tasks arrives at thdtimast interface of th®ata-Parallel BeSke
component, the tasks are distributed via a custispatth mode as indicated in the method
annotation. This dispatch mode distributes the stasually across the boun®Matcher
components.

GridCOMP FP6-034442 page 12 of 58 D.UC.05.A

public interface MilticastTestltfl {
/** Initially distribute the identity DB.

* list List of tasks to be distributed across nmatcher conponents.

* RFU.

*/
@kt hodDi spat chMet adat a(rode = @par anDi spat chMet adat a(node =Par anDi spat chMbde. CUSTOM
cust omvbde = MapDi spat ch. cl ass))
public List<Task> get Service(List<Task> list);

}

2.1.4.3.2 Interfacel 2

The multicast interface 12 is used to broadcasttifleation requests to all boud®Matcher
components. Thus, the distribution m&ROADCAST is indicated in the method annotation
of the searchMatch() method as shown in the listing below. An idenéfion request is
represented by a task object which holds the fiprijgis. The resulting list of tasks represents
the matching results from diDMatcher components. Each result task includes the ID ef th
matching DB record, if any, and the name of theenatiich found the match.

public interface MilticastTestltf2 extends MulticastTestltfl {

/** Broadcast an identification request.
*

* list List including one task which holds the fingerprints of the person to be
* identified.
* Li st of tasks holding the matching results fromall |Dvatcher conponents.

*/
@kt hodDi spat chMet adat a(node = @par anDi spat chMet adat a(node =Par anDi spat chMode. BROADCAST))
public List<Task> searchMatch(List<Task> list);

}

2.1.4.3.3 Interfacel 3

Interface I3 allowsiDMatcher components to be bound to the multicast interfdceThe
matcher components receive their tasks via thierfate and automatically load the
corresponding partition of the DB into RAM uponieat of the tasks. The task parameter can
represent one or more tasks (the Task object &nar@ container).

public interface IDDistribute {

/** Recei ve tasks representing the DB partition to nmatch against.
*
* t One or nore tasks representing a part of the DB.
* RFU.
*/
public Task get Service(Task t);

}

2.1.4.3.4 Interfacel4

Interface 14 allowsiDMatcher components to be bound to the multicast interf@ceThe
matcher components receive an identification reiguiss this interface. In response, each
matcher component matches the given fingerpringsnagits DB partition and returns a task
object including the ID of the matching DB recoilany, and the name of the node the
component is running on.

public interface |IDVatch extends |DDistribute {

GridCOMP FP6-034442 page 13 of 58 D.UC.05.A

GridCOMP © g5

\/** Receive an identification request.
* list List including one task which holds the fingerprints of the person to be
* Tasks hol ding the matching result.

*/
public Task searchMat ch(Li st <Task> |ist);

|
* i dentified. ‘
|

1}

2.1.4.35 Interfacel5

Interface 15 is used by the ABC during reconfigimatoperations. If the ABC modifies the
parallel degree within the skeleton (by addingesnoving an DMatcher component), then it
firstly retrieves all tasks from all current compeots via the methogbrovideSatus(),
secondly it adds or removes a component, and lasthedistributes the tasks via the
setSatus() method. This way the DB is redistributed duringmweconfiguration operation.

public interface ReconfigSupport {
public void setStatus(List<Task> tsl);
public List<Task> provi deStatus();

}

2.1.5 Demo Application

The previous version of the BIS demo applicatioly gmovided a command line interface to
interactively work with the application. This wdsetcase because the command line interface
is easier to adapt to the changing base functignadliring development. For the final
prototype, a graphical user interface (GUI) hasnb#developed which allows configuring the
application and interactively triggering identifin operations. Furthermore, the GUI not
only visualizes the identification process but almws monitoring and manipulating the
autonomic functionality of the data-parallel skefetat runtime. More details about the
configuration and usage including some screen stastde found in the following section.

2.2 Manual

2.2.1 Final prototype description

The final prototype as described in the previougises includes a number of improvements
over the previous versions delivered in D.UC.03(4, [2]), mostly because it uses the
autonomic data-parallel skeleton developed in WRS. overall functionality can be
summarized as follows:

* It represents a biometric identification system akhican work on a large user
population in real-time.

* The system scales independently thanks to the amiocrreconfiguration functionality
provided by the behavioural skeleton.

* The QoS contract which controls the autonomic fianetlity can be conveniently
defined in a rule file. Furthermore, the QoS carttan be updated at runtime.

« The graphical user interface supports triggerirgnidication requests and updating
the QoS contract interactively. Furthermore, ituaizes the autonomic management
functionality to monitor the state of the compongydgtem.

GridCOMP FP6-034442 page 14 of 58 D.UC.05.A

=5 "

* The BIS application can be deployed on arbitrarydiare infrastructures without
code changes.

* As the data-parallel skeleton supports the distidbuand redistribution of the DB, the
system can now, in contrast to the version destribdd.UC.04 [2], be scaled to any
number of nodes.

* The code size and thus the development time areceelddue to the availability of
advanced features such as behavioural skeletontharlDE.

More details about the functionality provided by tBUl and its usage are provided in the
next Section.

2.2.2 Configuration and usage

The final prototype is available in the file D.UGE}IBM.zip. The prototype is configured to
run on Grid5000. It makes use of the deploymentrig®r file descriptor/BIS-Grid.xml,
which defines all nodes reserved in Grid5000. Tkedeton uses these nodes for allocating
IDMatcher components. All other components are running erdéfault node (the local JVM
of the application). Since all nodes in the degorighould ideally be available solely for
IDMatcher components, the application should beedafrom a dedicated node not listed in
the descriptor.

The application can be started via the includgdscript. The application takes command line
arguments with the following syntax target-partition-size> <db-size> <number-workers>.
Target-partition-size denotes the desired number of biometric matches |p&latcher
component and thus per nodib;size defines the desired database size, rmmdber-workers
defines the initial number of workers the skelesrould start with. The command line
parameters can also be changed in the GUI latasa®scribed below.

When the application is started, it displays thgahparameters defined at the command line
in the startup dialog as shown in Figure 6.

< BIS Startup

DB size: oo
Initial number of workers: |4
Partition size: 12000

start |

Figure 6: BIS startup dialog

The user can further modify the parameters andlyipaess the start button to trigger the BIS
application initialization phase.

GridCOMP FP6-034442 page 15 of 58 D.UC.05.A

cnive Compao;

e
GridCOMP WC & 3
s for the Grids et

£ BIS Initialization

-> connecting to database

-> starting nodes

-> 8§ cores available in the Grid

=> deploying GCM components

-> submit QoS contract (partition size: 2000)
-> distribute DB of 8000 identities to 4 workers
=> BIS initialization successful

continue

Figure 7: BIS initialization window

During the BIS initialization phase, the informatiavindow as shown Figure 7 is visible. It
allows the user to monitor the initialization stegpgh as GCM component deployment or DB
distribution carried out during the initializatigpghase. Once all steps have been completed
successfully, as can be seen in Figure 7,ctmtinue button becomes active and the user
arrives in the main GUI upon pressing it.

< Biometric Identification System

Biometric Identification System GridCOMP

Person to be Identified ’ Autonomic Manager

First Name: Jehn
Enforce QoS Contract
Last Name: Doe 2202

Address: 1st Avenue, New York City, USA

Cores/Workers Used

DB Size: 5000
o Time : 5.063 sec. 5
Matching Identity QoS Contract

First Name: John

Target partition size (¥*10%) : 1000
Last Name: Doe 2202

Current partition size : 1000
Address: 1st Avenue, New York City, USA

Identify: ;Known Person' Unknown Person ‘ Target partition size: update

Figure 8: BIS main GUI

Once successfully started, the BIS applicationlmamsed interactively via the main GUI as
shown in Figure 8. The GUI is split into two maiars, the biometric identification part on
the left side, and the autonomic management pathi@night side.

The biometric identification part allows initiatingentification of either an unknown person
or a known person. In the latter case, a persdietmentified is randomly chosen from the
database of known identities and her details avevshn the upper left area of the GUI. Then,
the distributed identification is initiated, andetfingerprint image starts changing to visually

GridCOMP FP6-034442 page 16 of 58 D.UC.05.A

I
H =
H hoLel!

indicate progress as long as the nodes are segrihim matching identity. Once a match is
found, the identification time is shown beside flmgerprint image and the details of the
matching identity are printed below. In the caskere an unknown person is to be identified,
fingerprints, not in the identity DB and thus ankoown identity, are submitted to the

distributed identification process.

BridCOMP:

The autonomic management part of the GUI servesntaim purposes. Firstly, it visualizes
the autonomic functionality such that it can be itwed in real time. Secondly, it allows
updating the QoS contract at runtime to triggeondéiguration operations during the demo. In
the top right area of the GUI the activity of th&@omic manager is indicated. Here, it can
be seen that the autonomic manager leaves idle st@ry two seconds to enforce the QoS
contract. Below, the current number of CPU coresdusvhich corresponds to the number of
IDMatcher components, can be monitored. The lower right afdhe GUI shows the current
QoS contract represented by the target partitine. sihe input field below allows updating
the target partition size while the component sysie running. When the target partition size
is updated, the user can monitor the resultingnigorations operations. For example, the
autonomic manager indicates that the parallel @degrest be increased, the number of cores
changes, and the current partition size is updagezbon as the DB has been redistributed.

GridCOMP FP6-034442 page 17 of 58 D.UC.05.A

I

SaWAE

3 Computing of DSO Value

“Computing of DSO Value” is the use case selectgdAtps for the development of this
project. The DSO (Days Sales Outstanding) is gfiGgiion used by Atos Origin to calculate
the mean time that their clients delay to pay awice to Atos.

The information is needed by several internal depamts, so it must be calculated from
several points of view (by client, by group, by rtigretc.).

The amount of data needed to compute the paymefaisniation is over 6.000lients, and
the process lasts about 4 hours to complete. Tjeetoke is to achieve the utilization of spare
resources via Grid computing to reduce the compgutme.

3.1 Detailed architectural design

The previous deliverable documents from WP5 show tie architectural design of the use
case called “Computing of DSO value” has changeel dhre project. This section includes
the final architectural design of the application.

3.1.1 Architecture of the application

The DSO application is based on a client / servdrastructure with heavy processes
implemented in PL/SQL procedures to make all thieutations needed to get the final
results.

The architecture of the application is divided it different parts, or it could be also said
that there are two different types of nodes: Thetaranode and worker nodes.

» Themaster node is the one which controls the running of the agglon. It divides the
process into different tasks, and after that idsethem to the different worker nodes.
Here is where the application starts the workflawgd the main database is installed.
The master database normally is the same datalsasgeby the initial application, the
one that we want to grid-enable. With that, the pany doesn’'t need to change or
recreate their existing application database itfuature. Usually the database
management system used in the companies to ext#mitePL-SQL code is Oracle
Enterprise Edition or Oracle Standard Edition.

* The worker nodes receive the tasks to process them. When this wordone, the
results of the operation are sent back to the mastte. So, worker nodes are the ones
doing the application calculations. Then, the ssof those calculations are sent back
to the master node. It is important to know that eomputer (server, desktops, and
laptops) could be used as a worker node, as loitghas Oracle management system
installed. If the worker node doesn’t have Oraaalled, we recommend installing
Oracle Express Edition because it is free of charge

An important requirement is to have Java runtimérenment 1.6 installed in all the nodes,

as Java is the language used to develop the ajiict is essential to take into account the
operating system of each node. It is necessarave la ssh server installed, so if the node
works with Linux operating system, there is no peoi because Linux has a ssh server

GridCOMP FP6-034442 page 18 of 58 D.UC.05.A

incorporated. However, if the node uses Windowsjsitnecessary to install Cygwin
[11](creating a Linux-like environment for Windowahd SSH server for Cygwin [11].

In summary, the infrastructure requirements neédedn the application are:

® A Master Node with:
O Main database : Oracle Enterprise Edition or Or&téandard Edition
O Java runtime environment 1.6 [5]

® Several Worker Nodes, each with.
O Node database: Oracle Express Edition
O Java runtime environment 1.6 [5]
O If Windows operating system is used: Cygwin [11d &8H server for Cygwin

[11].

The next image shows the application architectuqgementation:

Difice worke Difice worker Ofice warker

_fi Clients
ﬂ Master]
S, Node NS
Main
Database
| Oracle SEEE
‘f‘Z = ves Worker
T Nodes
ST |
Lapt z i in Cli
Windows 95/98/2000 e QI PCDRS MREERRIn S0k Worker
9 E] @ @ 9 Database
Oracle XE

3.1.2 GCM Components
The following sections explain the GCM componemthiecture used in this use case.

GridCOMP FP6-034442 page 19 of 58 D.UC.05.A

cnive Compao;

=
GridComP)

3.1.2.1 Components diagram

The following screenshot from the GIDE [14] illusties the components diagram used in the
final version of the Computing of DSO Value useecas

& Java - GRIDCOMP-FARM-ACTIVE/DSO.gidecomposition_diagram - Eclipse Platform _1=] x|
File Edit Diagram Mawigate Search Project Run Window Help
| -0 - |lEFe- B s |t m % 20 gl
|[rahoma 2 NS 1] s e e e e | — | 100 =
| S5 Havig | F packa 52~ G=oudn | T O (3] Readerjava | | deployment.ml i 3 Ds0igidecampostion_dagram 53 3 =0
EEEE [—ralette —
Select
Flt% GridConp-Examples 50 n? :
4 GRIDCOMP-FARM [GRIDCOMP-FARM] g 2000
3 GRIDCOMP-FARM-ACTIVE [GRIDCOMP-FA (=) Hote
- src P — | = Component +
SOProgram
Bl Referenced Libraties R 9 e i e o porant
B IRE System Library [irel.6.0_07
JRE Sy v [_07] | . [Interfaces |
 scritks H Tector & Standard Server
Inkerace
| D50, gidecomposition 25 &f08/08 17:1 i e o
) D50, gidecomposition_diagram 25 800 A — | et
- =] GRIDCOMP-UC.log sl 4 Stand_ard Client
g GRIDCOMP-UC.Iog.1 67 8/10j08 11:4 Interace
. o5 proactive.java.policy 35 B/08/06 17:2 | Multicast Interface
i proactive-logd) 35 8/08/08 17:25 ftul | Gather Multicast
|54 proactive-logd]_debug 35 80808 17 Tiiler due
-l GRIDCOMP-FARM-ACTIVE Farm_new_ver £ fnaéhrf:c‘:st
[[gy GRIDCOMP-UC [GRIDCOMP-UC] : g |
= Connzctions ll

= Inter’aceConnect...

-
4| | EN
|2 Propems| @ Javadoc \f: Froperties 52N [consale | B GIDE Resource Manitor | 8 GIDE Repository View S e i (!

= 1 i e
O component Type DSOProgram

Cois Prupert | Walue I .l
=] Core Properties
Deployment | | Tmpl Class I= com.atosorigin usercase.dso comp. DSOFrogram
Attribites Logger =
Appearance | Mame U= DSOPragram
| 2 Deploymet Properties
Expor-ed Virtual Modes
Wirtua Mode
4] |] e L5
J =i Building workspace: (49%%) L]] e

This components diagram is different from the lasé of the previous document version
(D.UC.04 [2]) because the final UC version is udimg Farm component developed by WP3.

In the lines below there is an explanation of tppli@ation workflow, which describes step
by step the UC diagram:

The client user interface makes a request to th@B8gram component to start the
process.

* The DSOProgram component obtains the list of dielldls to be processed from the
Reader component.

* The DSOProgram component breaks the list of clidbts into chunks tasks). The
number of tasks that the application generates pescied in the file called
DSOProgram.fractal.

* These tasks are sent to the ComputeFarm compowhith distribute the tasks
between the remote nodes to be processed. At the 8me the number of tasks is
sent to the Collector component. This way it kndkaes total number of tasks that will
be processed by the nodes.

GridCOMP FP6-034442 page 20 of 58 D.UC.05.A

AR
GridCOMP izt
 The Compute component receives the tasks from tirapOteFarm and inserts the

information on the slave database. After that,Gbenpute component calls the stored
procedure situated inside the slave database wutx¢he PL/SQL code. When the
Compute component finishes each task, it sends tdicaton to the Collector

component informing that the task is done.

* When the Collector receives all notifications fridme Compute components, it sends a
notification to the DSOProgram component tellingatththe execution of the
application is done.

3.1.2.2 Components description

3.1.2.2.1 DSOProgram Component

SOProgram |
. |
L]
| |

L.

The DSOProgram is the master component of the agifan, and it is responsible of the
program workflow. It offers some server and clienérfaces:

® RunDSO: It is a server interface used to start the exenudf the application using the
parameters needed.

® Result: It is a server interface used to receive thefication from the Collector when
the application ends the execution.

® Reader: It is a client interface used to get the inforimatof the clients from the
Reader component.

® OurTask: It is a client interface used to start the predeshe remote nodes.

® Collector: It is a client interface used to initiate the leotor component with the
number of tasks that will be sent to the workers.

3.1.2.2.2 Reader Component

Reader

GridCOMP FP6-034442 page 21 of 58 D.UC.05.A

I

SaWAE

The Reader component offers the functionality tonaxt to the master database and gets the
list of clients’ IDs that will be processed by tigplication It offers a server interface:

® Reader: It is a server interface to get the informatioritaf clients from the database.

3.1.2.2.3 ComputeFarm Component

ComputeFarm

= Fompute |
|

AL

The ComputeFarm component is responsible for Hidirig and controlling the worker
nodes. Using Farm component we can manage the wgodfethe application, adding or
removing them when it is necessary. The interfacgsd in ComputeFarm component are
explained in the lines below:

® OurTask: It is a server interface that starts the proceske node.
® Collector: It is a client interface to notify the Collectormponent that the task is
finished

3.1.2.2.4 Compute Component

Fompute |

The Compute component offers the functionality teecute the tasks received by the
ComputeFarm and execute them. The component recgiggask with the list of clients to be

inserted in the node database. After that, the corapt calls an Oracle stored procedure
stored in the node database to execute the PL/9Q&. dhe Compute component offers the
same server and client interfaces as the Compute€amponentOur Task andCollector.

3.1.2.2.5 Collector Component

GridCOMP FP6-034442 page 22 of 58 D.UC.05.A

=5 "

Collector

= 4

When a worker node ends a task it sends a notditéad the Collector component saying that
the task is finished. This way, this component kaow how many tasks are still pending to
process, how many tasks are already finished anchttment when all tasks are finished. The
interfaces used to develop this component are mgalan the lines below:

® Collector: It is a server interface used to receive the atibns from the worker
nodes.

® Result: It is a client interface used to notify the DSOReog that the process has
finished.

3.1.2.3 Interfaces

As is mentioned above, there are some interfacésiitd the components. Those interfaces
are explained in the following lines:

3.1.2.3.1 RunDSO

When the user starts the application execution,fitisé interface called iSunDSO. This
interface takes the parameters imputed by the {(cdient id, group id or initial and final
dates) and begins the execution.

public interface RunDSO {

public final static String ITF_NAME ="runnable’

/**

* Starts the execution of the application. It getss®f the
* parameters needed for the appboat

*

* startDate The initial date of the period to be processed.
* endDate The final date of the period to be processed.
* clientiD Id from the specificclientto beprocessed

* groupld Idfrom the groupof clientsto be processed

*

* void

*/
public void run(String startDate, String endDate, String dliggn
String grouplt

3.1.2.3.2 Reader

As it could be guessed, the Reader interface i®tigewho connects to the master database
and gets the list of the clients from the masté¢alozse.

GridCOMP FP6-034442 page 23 of 58 D.UC.05.A

—/6{?:?*’\'*
public interface Reader {
public final static String ITF_NAME ="read"
/**

* Getsthelist of theclient'slds from the mastedatabase.

*

* clientld Id fromthespecificclientto be processed

* groupld Idfrom the groupof clientsto be processed
*

* list of client'slds

*/
String[] getClients(String clientld, String growi

3.1.2.3.3 OurTask

The OurTask interface is responsible for starting the procesghe remote nodes. The
information needed for this operation is the listiee clients and the list of dates. The list of
dates is composed by the initial and final dated the user enters at the beginning of the
execution. Those parameters are used to specifintbwval of dates, in short, to specify the
time spot we need to evaluate by the PL/SQL code.

public interface OurTask {

public final static String ITF_NAME ="work";

/**

* A serverinterfaceto receivethetaskson the workemodes

*

* clients Thdist of client'sids

* dates Theeriodto be processed
*

* void

*/
public void compute(List<String> clients, List<String> dates);

3.1.2.3.4 Collector

The Collector interface is an important new one included infthal version of this use case.
It is used to control when the tasks sent to tHeerdint worker nodes are finished. This
interface implements four different methods. Thetfione is callednit and it is used to
initiate the Collector with the total number ofkasThe second one, calledllect, is used by
the worker nodes to notify the Collector when & tasfinished. There are also other two
methods to control the number of tasks which aristiied and the number of task which are
not finished. Those methods are calietResultFilesCount andgetResultFilesToCollect.

public interface Collector {

publicfinal static String ITF_NAME ="collect";

GridCOMP FP6-034442 page 24 of 58 D.UC.05.A

=5 "

/**

* This method is to initiate the Collector storing tiotal number of tasks.
*
* numOfResultsToCollect The total number of tasks.

*
g void
*/
void init(int numOfResultsToCollect);

/**
* When a worker ends its task this is the method wli@xecuted
* void
*/
void collect();

/**

* This method indicates the number of tasks finished.

*

* IntWrapper
*/
IntWrapper getResultFilesCount();

/**

* This method indicates the number of tasks unfirdshe

*

g IntWrapper
*
IntWrapper getResultFilesToCollect();
}
3.1.2.3.5 Result

The last interface is callg@esult and it is used to send the notification of the ehthe
execution to the DSOProgram.

public interface Result {

public final static String | TF_NAME = "result";
/**

* This method is used to send the results of thewiarto the DSOProgram.

* void
*/
public void result();

3.2 Manual
This section describes how to configure and exeth@eise case application.

3.2.1 Final prototype description
The main differences between the final prototyppl@mentation and the primitive one are:

GridCOMP FP6-034442 page 25 of 58 D.UC.05.A

AR

Gridcome (e

® The application progress information is displaymetigh the user interface, as a progress
bar.

® The number of workers used and the time that tipdicgtion will finish depending on
the number of workers are graphically displayed.

® The task farm behavioral skeleton was integrated thie DSO program, providing a
way to add or remove workers at execution time.

® A time controller was implemented to manage autarably the time that the
application should finish.

® The computation result is shown at the graphical ugerface.

During the development of this project, we analyddterent ways to distribute the PL/SQL
code between the master node and worker nodesaw@hd solution. In the last document,
four different distributions were explained. Novitea the performance tests, we came to the
conclusion that only two of them were really suigato get good, fast and satisfactory results.
In the following lines, we give a short explanatmirthose two possibilities.

The first possibility is to store a part of the BQL code in the databases installed in the
worker nodes, and the other part of the PL/SQL coukall the tables in the master database
located in the master node. This method is usedwine information is distributed between
many tables and it is necessary to use all of tvben executing the PL/SQL code.

The second possibility is to store all the code amgpty main tables in the worker nodes
databases, and the main tables in the master databae information stored in the worker
database only belongs to the specific clients wlamengoing to be processed in each node.
Then, this method is suitable when the databad®gisThis option can be used when the
PL/SQL code does a lot of calculations with spedifata access. This database structure was
selected to be used with the Computing of DSO \&luse case because the application
PL/SQL code use specific information stored in #jetables to do the calculations. When
we did the performance tests, we could see thttisncase the process time decreased when
this kind of distribution was used. The PL/SQL cedk use the information stored inside the
node tables to do the calculation, and if it nesdse data, it will take it from the master
database.

It is possible to find more information about thetdbution of the databases in the previous
document D.UC.04 [2].

The final version of the application is using ttotivee Farm skeleton. This component is used
to manage the worker nodes by adding or removiemtlwhen necessary. Furthermore, it
provides a manager module that automatically addsremoves worker nodes when
necessary. To use this module some parametershasst to complete the criterion needed
to determinate when the nodes should be addechwved. Those specifications are written
in ther ul es. dr file. In this use case the manager module is tssthart the initial worker
nodes of the application.

3.2.2 Configuration and usage

The first thing to do before executing this propmyis to install the required software listed in
section 3.1.1. After installing, testing and rurgniall required software, you can start
configuring the prototype. To configure the appiioa is essential to add the following
libraries to the lib directory:

GridCOMP FP6-034442 page 26 of 58 D.UC.05.A

=5 "

ProActive 3.9 (ProActive binaries and related Iig)
classesl12.jar (JDBC library)
Task farm behavioural skeleton binaries and relbitedries

The following files need to be changed to configuwed run the prototype on your
environment:

\classes\com\atosorigin\user case\dso\deployment.xml - open the deployment file and
rewrite it with the nodes information.

\classes\com\atosorigin\user case\dso\adl\DSOProgram.fractal - open the fractal file
and change the attribute numTasks value, specifiniegnumber of tasks that are
going to be executed in the worker nodes. To spdicis number we have to take into
account that we need enough tasks to distributpriheess between the nodes, but this
number should not be too large to avoid havingniamy accesses in the worker nodes
databases.

\classes\com\atosorigin\user case\dso\adl\Reader Imp.fractal - open the fractal file and
change the attributesl|, user andpwd with the master database information
\classes\com\atosorigin\user case\dso\adl\Compute.fractal - open the fractal file and
change the attributag|, user andpwd with the master node database information. It
is a worker node located inside the master nodsifsgally the first worker node the
application initializes.

\classes\com\atosorigin\user case\dso\adl\ComputeSaves.fractal - open the fractal file
and change the attributed, user andpwd with the worker database information.
\classes\com\atosorigin\usercase\dso\adl\rules.drl - open the FARM rules file to set
the number of workers that the application needstaa when the application begins
the execution.

After changing all the files listed above, you ctart the application running the command:
...\GRIDCOMP-FARM-ACTIVE\scripts\unix\dso.sh

When the main application called “DSOProgram” begunning the graphical user interface
appears.

3 Computing of DSO value =ES

File
o
SPdCOIMIP ¢ &5

Client ID: [|

Client group: | |

Initial date:

Finaldate: [0 e 2008
Max duration: \bT|vhnurs 30 Epn ut

2008-10-14 11:26:36,436 INFO gridcomp controller - FarmAddivforker:: Created internal collective client interface for external server interface [work]
2008-10-14 11:26:36,436 INFC gridcomp controller - FarmAddyorker: Created collective interface dispatcher proxy for external server interface fwark]
2008-10-14 11:26:36,436 INFO_gridcomp.controlier - FarmCantroller:Collactive Interfaces successiully intialized

anager: Starting farmwith 3 workers

2008-10-14 11:26:43 982 INFO DSOLauncher -

2008-10-14 11.26:43,988 INFO DSOLauncher -+ DE0 component started

GridCOMP FP6-034442 page 27 of 58 D.UC.05.A

=5 "

At this time, the farm manager starts running amtializes the number of nodes specified in
the rules file. As explained before, this file sfies the rules that the farm manager will use
to manage the application, adding or removing warleitomatically depending on the rules
that you define. The final prototype uses the managly to start the initial workers that the
application will use. The new feature called timantroller is being used to manage the
number of workers needed (adding and removing th&m}y new feature was implemented
because the farm manager doesn't work based ondmhewith the task throughput.

The application log is located in the box on thédra of the first window. There, it is also
possible to see what is happening with the workeles.

When the initial worker nodes are initiated, Siart button will be enabled. At this moment it
is possible for the user to enter some parameterder to filter the output information.
These parameters at@tient ID, Group ID, initial andfinal dates, or themaximum duration
of the process. Only two of those parameters digaibry: theinitial andfinal dates.

The maximum duration parameter is used to start the time controlletufeadeveloped by
ATOS. This feature is used in the final versiontbé use case to give to the user the
possibility to set the time that the applicationsinfinish. This controller will add or remove
workers automatically depending on the time spedifin themaximum duration parameters.

When theSart button is pushed, all the tasks are distributetvéen the different workers,
and the window with the graphics appears (two jidgss).

1- The user sets thmeaximum duration parameters

If the user has set theaximum duration parameters, the time controller starts runninge Th
window the user is going see is the one showelddrpicture bellow:

Computing of DSO value A=

Estimation Finish Time Worker Monitor

#Workers

0
11:20:40 11:20:50 11:3000 11:30:10 11:28:40
Time Time

~ Duralion — Confract Threasold Confract Threasold

GridCOMP FP6-034442 page 28 of 58 D.UC.05.A

G

Colel

In this window you can see some graphics and aressgbar that shows the execution state
belong the time. The progress bar on the top id tsshow the percentage of tasks that was
already executed.

750
Pat
{) x

BridCOMP:

The graphic on the left shows the time that thdiegiion is going to take to finish (based on
the task executions throughput), and it is updatesty 5 seconds. If the time controller is
running, the graphic will show two lines: the bliuge represents the maximum time that the
application should finish and the green line repnés the minimum time. If the red line is
under the green line, the time controller is gdimgemove a worker to increase the execution
time, making the red line return inside the twafinHowever, if it is over the blue line, the
time controller is going to add a worker to decestiee execution time. This is the way this
tool works to meet the time specified by the user.

The graphic on the right shows the number of warkbe application is using during the
execution time. In this case, it shows that thdiegion starts the process with three workers.
At the beginning, there is a transition period whie@ average throughput is calculated and
this makes an initial peak showed in the graphi¢henleft. The time controller doesn’t take
into account this initial event.

2- The user doesn’t set tingaximum duration parameters

If the user has not set theaximum duration parameter, the time controller is not started. The
window the user is going see is the one showelddrmicture bellow:

wuling ol BSO ruluc =10l ||

Estimation Finish Time Worker Monltor

00700 P EY e

-0:06:00

REEN]

w

Lo
“0:04:30 1

REESTi]

Firish Time.

“0:02:30
“0:03:00

FWotker
= I

“o:mz0o |

“0:01:30

— £} ; 2
10:01:0 12:01:30 100200 10:01:23 10:013C 100200
lime hime

| aua [Renore |

Using this way theAdd and Remove buttons will be enabled to execute the correspandi
operations manually when the user considers prppkrthe user press thadd button, the
application will add a new worker, and the exeautiall be faster. If the user presamove
button the result will be the opposite, the appiarawill remove a worker and the execution
will be slower.

GridCOMP FP6-034442 page 29 of 58 D.UC.05.A

When the application finishes the execution oftasks, a new window will appear showing
the calculation results. The following picture stsatle final window:

E2 Computing of DSO value

File
_ID_CLIENTE_PK PERIODO_PK IMF_FENDIENTE IMP_CN Dias
. . ‘ .
60434 200701 533333 o 31 il
60435 200701 533333 o 31
BO436 200701 833333 li} 31
IEI]43? 200701 833333 o 31
60438 200701 833333 o 31
60439 200701 533333 o 31
60440 200701 533333 o 31
BO015 200701 833333 451501 0
IEI]EIM 200701 o 634334 0
60013 200701 833333 634334 0
60012 200701 16666.67 317167 2
60011 200701 416667 EANALTS 0
60010 200701 833333 317167 1
IEI]EII]B 200701 4166 67 8614111 0 ||
G008 200701 833333 8614111 0 =
60007 200701 -4166.67 5614111 0 fir
60006 200701 -833333 G614111 0
60005 200701 4166 BT 8614111 0
IEI]EII]& 200701 4166 67 8614111 0
60001 200701 128200976.91 19960 31
60002 200701 16666.67 9980 31
60003 200701 833333 29940 9
ITOTAL 200701 o o 0
IEI]EHE 200701 833333 317167 1
60017 200701 833333 EAALTS 1
60018 200701 533333 EANALTS 1
60019 200701 833333 317167 1
IEI]EIQEI 200701 833333 317167 1
IEI]EI21 200701 833333 317167 1
60022 200701 533333 EAALTS 1
60023 200701 533333 EANALTS 1
60024 200701 533333 317167 1
IEI]EIQE 200701 833333 317167 1
IEI]EIQE 200701 833333 317167 1
60027 200701 533333 EANALTS 1
60028 200701 533333 EAALTS 1
60132 200701 533333 0 31
IEI]133 200701 833333 o 31 =
| e ICTEE 2222 i 2

3.2.3 Examples
To test the application you can use the followiagameters:

Client ID: <leave empty>

Client group: <leave empty>

Initial date: September 2008

Final date: October 2008

Maximum Time of process: <don’t change>

After that, insert the parameters you need andsphestart button to start the application.
The second window will appear and them you cartlseexecution process. When all tasks
are done, the result window will appear with thiegkation results.

GridCOMP FP6-034442 page 30 of 58 D.UC.05.A

I

SaWAE

4 EDR Processor

This use case, taken from the Telecommunicationddwis an embarrassingly parafiel
application that deals with huge amounts of daktas $pecial feature will serve to assess and
test whether the GCM is prepared to deal with weald applications.

Record processing is a common computing problent eéméerprises have to deal with,
especially in the Telco world. Basically, the objee is to transform a big set of data records
into another, which is in the end an essential fgarthe business. This transformation usually
takes a lot of time to be performed and requiresomsiderable amount of computing
resources.

Because real-world EDR processing is time constdhiand critical to the company’s
objectives, the objective in this use case is twige a high performance computing solution,
based on a Grid Component version of the EDR Psotegpplication, thus improving the
guality of the processing by offering redundan@&ylf-tolerance, scalability, load balancing,
and reduced computing times.

4.1 Detailed architectural design

4.1.1 Architecture of the application

An actual EDR Processor application will work ueatted, inside a nightly batch process,
taking information from a sequential file (previbugenerated from some source database)
and storing the results into another sequential(éventually imported to a target database).
For the purposes of this project, the source anpgttalatabases will be ignored.

Input -
EDR File

Output -
Transformed EDR
EDR
Process

— N

. 4

Rules and [— J
configuration —
Data Warehouse

Being an embarrassingly parallel process, the ED&tgssing can be easily distributed
among a set of (likely heterogeneous) computingue®s. In order to do that, the input EDR
file must be split into fragments. Each fragment b processed by a grid resource, and the
results will later be joined.

The scattering and joining of the files is perfodr®y a “master” resource (the one running
the application). The processing of the fragmesntdoine by the “EDR slaves”, which transfer
the result files back to the “master”. As we wilteslater, this fits perfectly one of the
behavioural skeletons from WP 3 (the task farm).

The following picture shows the conceptual behawvafuhe application:

! http://en.wikipedia.org/wiki/Embarrassingly parélle

GridCOMP FP6-034442 page 31 of 58 D.UC.05.A

Input -
EDR File

s

Rules and
configuration

Scatter File }

o

TR,
GridCOMP ﬁf %C M@\d

Qutput -

Transformed EDR

Data Warehouse

As explained in previous deliverable documents aredentations ([1], [2]), the processing of
an EDR is a rather simple case of an Extract, Toamsand Load (ETL) process.
The following picture shows the design of the ETdrresponding to the processing of an

EDR file:

EDR file input

Rate lookup Sort Rates Rates file input

Mormalize Consumption Apply Rate District obtainment

Add System Infe (Date + Hostname)

1

2

Result file output

The Extract Transform and Load processing is dosiaguPentaho Data Integration, also
known as Kettle Project [4]. Kettle is an open seuETL library that includes a very user-
friendly integrated development environment. Uslingt IDE the user can easily design the

GridCOMP FP6-034442 page 32 of 58

D.UC.05.A

=5 "

ETL process and save it to a metafile. That metafdn later be used to execute the ETL
process through the Java API of the Kettle libsarie
Each one of the steps of the transformation isriest in depth in D.UC.04.A [2].

4.1.2 GCM Components

Both this and the Wing Design use-cases have tstindt architectural designs: one using
autonomic features, and the other not. The lates developed first, as autonomic features
were made available later during the project. Tove-autonomic design is based on collective
interfaces that take care of the distribution & tdomputations. The autonomic design, based
on Behavioural Skeletons, adds quality of servigeS) features along with the distribution
of the computations, offering a higher level ofeigrtation with the application. Although not
based on the same features, these two versionsecaaen as a “before and after”, showing
the evolution of features within the project.

4.1.2.1 Components diagram

4.1.2.1.1 Plain CFI version

This version of the architectural design uses destures from the Component Framework
Infrastructure (developed in Work Package 2). lis ttase, a multicast interface is used in
order to distribute the processing effort amongrtbees of the grid.

& GIDE Composition - EDRProcessor/adl/PlainCF.gidecomposition_diagram - Eclipse Platform
Fie Edt Disgam Navigste Search Project Run Window Help

Q- = FERe [) GIDE Monitori... GIDEDeploy... | % GIDE Composi... | & Java
i ol © Bov (1% v

5
i

1] Helper.jova | [¥) EDRProcessorUL [e am | [3) EDRSlavelr [5 busy_contract.dd [buidxm |] Root M) PlainCFL.gid §irin s = 0|/ B Outine %5 Navigator

FDRProcessor

DRSlave
resultsCollector §

o slave (= Interfaces @ A
. edihocessor | Standard Server Interface

estiitsGolietor + Standard Controler
slave resultsCollector ket
4 Standard Clent Interface

resuttsCollector fieCperator Ji 5 Multicast Interface

fileOperator 4 -

TeOperator
fileOperator

i >

= properties . [21 problems | = console B|L = v
O Compenent Type PlainCFI

&
P Value

Rulers & Grid
Appearance

= PlainCFI

L4 151700327
Last Modified =
e Mamanamant

Summarizing, the architectural design is as foltows

® The EDRProcessor, the composite component congaévarything else, receives the
request to process an EDR file, and redirectstiteécenclosed EDRMaster
component.

® Using the FileOperator, the EDR file is split iftagments.

® Using amulticast interface, the fragments are processed by the EDRSlave
components

GridCOMP FP6-034442 page 33 of 58 D.UC.05.A

— Y

® The partial results are sent to the ResultsColiecto
® \When all fragments have been processed, the RE€sllistor, using the FileOperator,
merges the partial results, obtaining the finaliltes

The above composition diagram, made using the [Bitl[14], includes a single EDRSlave.
The ADL cannot express the dynamic deployment @iven component; it is a known
limitation, which can be circumvented using Behavad Skeletons (as in the other version of
the architectural design) or a programmatic sotutio

Making use of the programmatic solution allows asuse the multicast interface (the main
objective of the Plain CFI version of the use cabe)prder to adapt better to the underlying
deployment, a helper class will instantiate andit@is many EDRSlave components as nodes
available. The following fragment of code is resgibfe for doing that:

Factory factory = FactoryFactory. get Factory();
edr Processor = (Conponent) factory. newConponent (" EDRProcessor", context);

/'l Looks for well-known subconponents
Content Controller cc = (ContentController) edrProcessor
. get Fcl nt erface(Const ants. CONTENT_CONTROLLER) ;
Conmponent conps[] = cc. get FcSubConponents();
for (Conponent c : conps) {
if (Fractal.getNaneController(c).getFcNanme().equal s("EDRVaster")) {
edr Master = c;
} else if (Fractal.getNanmeController(c).getFcNanme().equal s("ResultsCollector")) {
resul tsCol | ector = c;

}
}

/| create EDRS| ave conponents for all nodes
/1 First node should already have an EDRSI ave depl oyed in
sl aves = new Conponent[nodes. | ength - 1];
for (int i =0; i < slaves.length; i++) {
sl aves[i] = (Conponent) factory. newConponent ("EDRS| ave", context);
Fract al . get Bi ndi ngControl | er(slaves[i]).bindFc("resultsCollector",
resul tsCol | ector. get Fclnterface("resul tsCollector"));
Fract al . get Bi ndi ngControl | er (edr Mast er) . bi ndFc("sl ave",
sl aves[i].getFclnterface("slave"));
/Il start slave conmponent
Fractal . getLifeCycleController(slaves[i]).startFc();
| ogger . i nf o("EDRS|I ave conponent " + i
+ " created, and bound to EDRVaster and Resul tsCol |l ector");

/'l start EDRProcessor conponent
Fractal . getLi f eCycl eControl | er (edr Processor).startFc();

4.1.2.1.2 Autonomic version

The autonomic version of the architectural desggfocused in testing and assessing the
Behavioural Skeleton developed in Work Packagehss Tise case features a Task Farm, as it
is the Behavioural Skeleton which fits better keds.

GridCOMP FP6-034442 page 34 of 58 D.UC.05.A

& GIDE Composition - EDRProcessor/srcforg/gridcomplusecases/edrprocessor/adl/autonomic/Root. gidecomposition_diagram - Eclipse Platform
Fie Edt Diagram Mavigate Search Project Run Window Help
@ - -G A G [) GIDE Monitori. GIDE Deploy.. | % GIDE Composi... | & Java
5 Hioigl mao - - [125% v

1] Helper java [3] EDRPre T (B! am [3} EDRslaveImpl. 5] busy_contract.drl 3% buid.xml il Root. il Root. 230 ™ = O 2= outine % Navigator | &¢ & |7

FDRProcessorAutonomic L@
¥

DRSlaveFarm = Cor
rDRMasterAutmnﬂm\c DRSlaveAutonomic & i
stave . | B (= Interfac

| sdtProcessor -
] =ea=Collestor | Standard Server Interface

resultsCollector T Standard Controller Interface

resuitsCollector Jl—

resuitsCollectar

fileOperator
permter I fileOperator ||

| Gathercast Interface

(= Connections @

= InterfaceConnectonsType

fleOperator
FileOperstor

< >

= Properties . [2 Problems | & Console |
O Component Type Autonomic

Core Property Value

Rulers & Gid = Core Properties

Appearance

= Autonomic

1 1143377477

In this version, made using the Grid IDE [14], thelticast interface between the EDRMaster
and the EDRSlave components has been replaced BOwsla Farm component, the
EDRSIlaveFarm. This component will take care of dgiplg as many EDRSlave components
as needed, controlling the parallelism degree. @agee can vary during the execution of the
application, in order to adapt the performancéérequirements of the user.

4.1.2.2 Components description

4.1.2.2.1 EDRProcessor and EDRProcessor Autonomic

These are the higher level components from itsespownding architectural designs, the Plain
CFI and the autonomic one. They contain the regt@tomponents from the architecture and
offer a singleedrProcessor server interface. The GUI of the application malkss of this
interface to submit EDR processing requests.

4.1.2.2.2 EDRMaster and EDRM aster Autonomic
The EDRMaster and the EDRMasterAutonomic act as rtfaster component of their
corresponding architectures, offering edrProcessor server interface. The main difference
between them is theslave client interface: the former useshailticast interface, while the
latter uses ainglecast one, but bound to a Task Farm BeSke. Otherwise b#havior of
these components is identical:

» Scatter the file using tHdeOperator client interface.

« Initialize the ResultsCollector component throutg interface, telling it how many

fragments must be processed.
» Process the fragments using theve client interface.

4.1.2.2.3 EDRSlaveFarm

This component is only present in the autonomisivoer of the application. This composite
component extends thggidcomp.manager.farm.adl.farm from the NFCF, offering éarm of

GridCOMP FP6-034442 page 35 of 58 D.UC.05.A

I
H =
H hoLel!

o

EDRSlaveAutonomic components. Using the non fumetianterfaces of this component, the
user can modify the parallelism degree of the apptn.

BridCOMP:

4.1.2.2.4 EDRSlave and EDRSlaveAutonomic

These components only differ slightly in their ABpecification, in order to adapt them to
their respective architectures. Otherwise, theyidestical and have the same behavior.
These are the components in charge of applyind=fie process implemented using Kettle
and described in a previous section of this documétinen receiving the first request, the
Kettle library will be initialized with all the neled configuration files. Subsequent requests
will be processed faster, as no initialization tabe performed again.

When Kettle initialization is done, the componeansfers the corresponding fragment of the
EDR file from the node where the EDRMaster componien deployed. Then, the
transformation is applied to the file using the tielibrary. The result is transferred back and
the ResultsCollector is invoked to notify anothagiment has been processed.

4.1.2.2.5 ResultsCollector

This component collects the intermediate resuéist #om the EDRSlave or EDRSlaveFarm
components. When all results are collected, theyaned, using the FileOperator.

Also, this component offers information about thegoess of the processing (how many
fragments have already been processed).

4.1.2.2.6 FileOperator

The FileOperator component offers the functiondlitygcatter and join files. Those files must
reside in the local file system.

4.1.2.3 Interfaces

In this section, the interfaces from the differeamponents are presented.

4.1.2.3.1 EDRProcessor

This is the server interface offered by the EDRPssor, EDRProcessorAutonomic,
EDRMaster and EDRMasterAutonomic components:

public interface EDRProcessor {

*

Processes the given EDR input file.

/

i nput Fi |l ePath path to the EDR input file

out putFilePath path to store the results file to

recor dsPer Fragnent nunmber of EDR to include on each fragment of the input file
* gzi pFil es whether to conpress fragnent files when transferring them

*/

voi d process(String inputFilePath, String outputFilePath, int recordsPerFragnent,

bool ean gzi pFil es);

E

}

It contains a single, straight-forward method.

4.1.2.3.2 EDRSlave
This is the server interface offered by the EDR8land EDRSlaveAutonomic components:

public interface EDRSl ave {

GridCOMP FP6-034442 page 36 of 58 D.UC.05.A

Gridcome

An EDRRequest contains the path to one of the fragments of th& Enput file, the node
where it is stored, the path to store the par&siults, and a flag that states whether to
compress those files when transferring them.

4.1.2.3.3 EDRSlaveMulticast

This is the multicast client interface used by thain CFl version of the EDRMaster
component to invoke the EDRSlave components.

4.1.2.3.4 FileOperator
This interface contains the needed operationsfilétst scat t er () andj oi n().

GridCOMP FP6-034442 page 37 of 58 D.UC.05.A

o
—x O
GridCOMP ¢ G5
S¥icctive Componenza for she Grids (L 7\52;,/

4.1.2.3.5 ResultsCollector
The server interface offered by the ResultsCollectonponent is the following:

public interface ResultsCollector {
/ *
Initializes the ResultsCollector conponent.

nunX Resul t Fi | esToCol | ect nunber of partial results to be collected
resultsFile path to the results file

* gzi pFil es whether the files are conpressed

*/
void init(int numXResultFilesToCollect, File resultsFile, bool ean gzi pFiles);

EE S

*

/
Informs the collector a new partial result is available, providing its |ocation.
<p>

If the nunber of results files to be collected has been reached, this triggers the
joining of the partial results files into the final result, using the FileQperator.

¥ % ok k¥ *

* renoteFile path to the new partial result.
*/
void collect(File renoteFile);

| **

* Gets the nunmber of partial result files already coll ected.
*

* the nunber of partial result files already collected.
*/
I nt Wapper getResul tFil esCount ();

| **

* CGets the nunber of partial result files to be collected.
*
* the nunber of partial result files to be collected.
*/
I nt Wapper getResultFil esToCollect();

}

The init() method is invoked from the EDRMaster and EDRMasigwnomic
components, thecol | ect () method from the EDRSlave and EDRSlaveAutonomic
components, and the get Resul t Fi | esCount () and
get Resul t Fi | esToCol | ect () methods from the Graphical User Interface, in otder
provide feedback about the progress of the praogssi

4.2 Manual

4.2.1 Final prototype description

The final prototype, as well as revised componectiigecture, includes several enhancements
over the previous prototypes, specially the autdnamrsion:
» Integration with final NFCF prototype.
* Dynamic quality of service (QoS) contract: desirddoughput and maximum
parallelism degree can be changed during the ewecut
* “Idle” and “busy” QoS: when the application is idtbe target is to reduce the
deployment to its minimum (only one worker compdjekWhen the application is
busy, the target is to reach the quality of sertheecuser expects.
* Monitoring of the Task Farm: showing the achieved aesired throughput and the
current parallelism degree.
* Full integration of the source code and ADL fileshathe GIDE: the programmer can
navigate the source code using the compositiorrainasg;

GridCOMP FP6-034442 page 38 of 58 D.UC.05.A

GridCOMP @@ﬂ

4.2.2 Configuration and usage

Both the source code and the binaries of the fpaltotype are included in the file
“D.UC.05.B — EDR Processor final prototype.zip”.€llatest version of this prototype is also
publicly available at INRIA's GForggr i dconpwp5gs project [12].
In addition to the common system requirementseish the introduction of this document
(Section 1)), the following tools are needed ineori run the application:

e Gnuplot [10] standalone, or

e Gnuplot bundled in cygwin distribution [11] (windsvenly).

After uncompressing the aforementioned zip filed assuming that both java and ant are in
the path, just typ@nt processor to invoke the EDR Processor. The application will
request to enter the path to the distribution folde ProActive 3.90. After that, the user

interface will appear:

EDRProcessor

[Depioyment | options | Exeoution |
["] Use autonomic features
descriptors'gsk-24nodes.xml
descriptors'g5k-hordeaux.xml
A descriptors'gbk-nodesList.xml
Deployment descriptor: descriptorsilocal-2-cores.xml
descriptorsiocal.xml
Deployment log:

This first “tab” contains the deployment detaileed2nding on your infrastructure, select one
of the included deployment descriptors and pressieploy” button.
The “Deployment log” text box will show the log teoutput during the deployment:

GridCOMP FP6-034442 page 39 of 58 D.UC.05.A

GridCOMP

Effective Componsnsa for she Grids

£ EDRProcessor

GridCOMP ¢

Effective Components for the Grids

SYSTEMS

Depl nt | Options | Execution |

[] Use autonomic features

-24nodes.xml
5 ordeaux.xmi
descriptorsigsk-nodesList.xml
descriptorsiocal-2-coresxml
descriptorsiocal.xml

Deployment descriptor:

Deployment log:

IMFO - INFO - --= This ClassFileSemver is listening on port 2027
IMNFO - INFO - --= Thig ClassFileServeris listening on port 2028
IMFO - INFO - Detected an existing RMI Registry on port 1099
IMNFO - INFO - Detected an existing RMI Registry on port 1099
IINF O - *=* Mapping VirtualMode slave-node with Mode: rmiilocalhost1 099/slave-node2003433023 dar
IMF O - === Mapping VirtualMNode slave-node with Node: rmidflocalhost1099/slave-nodel 487475738 don_ |
INFO - Generating class ; pa.stub.org.gridcomp.usecases.edrprocessor_StubEDRMasterimpl

IMNFO - Generating class | pa.stub.org.ohjectweb proactive core.component_StubProActivelnterfacelmpl
INFO - Generating class | pa.stub.org.gridcomp.usecases.edrprocessor._StubFileOperatarimpl

IMNFO - Generating class | pa.stub.org.gridcomp usecases. edrprocessor_StubResultsCallectorimpl
INFO - Generating class ; pa.stub.org.gridcomp.usecases.edrprocessor._StubEDRSlavelmpl

INFO - Generating class | pa.stub.org.objectweb. proactive core.component type,_StubComposite

INFO - EDRSlave component 0 created, and bound to EDRMaster and ResultsCollectar

INFO - EDRProcessor component started!

[»

q] 1 | [+

| Deploy | | Undeploy

After the deployment is done, the “Options” talemabled:

EDRProcessor EJ |E”

GridCOMP &

Effective Components for the Grids

SYSTEMS

Deployment | Options | Execution |

Input file: |C:'\Documn.nts and Setlings\gfreire\workspace\EDRProcessar\tesf\.test32l-<.edr| I:I

Partition size: -Eﬁm= records

[Transmit compressed data

Output file: |C:‘.Documents and Settings\afreiretworkspacelEDRProcessonresults 321 64 |
QoS: Throughy KEDRps
Max. Parallelism Degree: I:l

Apply QoS

The “options” tab contains the controls to selbetdesired input parameters:
® Input file: path to the file containing the EDRshte processed.

GridCOMP FP6-034442 page 40 of 58

D.UC.05.A

@ Partition size: number of EDRs each fragment filit @ontain.

® Transmit compressed data: whether to compresgdlgenénts of the input file before
transferring them. This may reduce the time neddeansfer the data through the
network.

® OQutput file: path to the file where the resultsled processing will be stored.

The controls related to the autonomic behaviour@veiously, disabled when running the
plain CFI (non-autonomic) version of the applicatio

When all of the above fields have been complimenitesl “Start” button can be pushed. The
request will be submitted to the components, arel “taxecution” tab will be enabled,
showing the log trace of the execution and a psxybar.

B3 EDRProcessor

Effective Components for the Grid

GridCOMP (e}

[Deplayment | Options [Execution |

Progress: |
EDRs to process: 8000 Processing Time: 00:00:37
EDRs processed: 7000 Performance: 184,67 EDRs per sec.

| ¥

IMFO - CountryPhoneCodes file input.0 - Iniciando gjecucion...

IMFO - Add Systern Info (Date + Hostname).0 - Iniciando gjecucidn..

IMFO - Sart Rates.0 - Iniciando gjecucidn...

INFO - EDR file input.0 - Iniciando ejecucian...

IMFO - Apply Rate.0 - Iniciando ejecucidn...

IMFO - Rate lookup.0 - Iniciando ejecucian..

IMFO - Rate lookup.0- Leyendo valores de busqueda del paso [Sort Rates)

IMFO - District abtainment.d - Iniciando ejecucian...

IMFO - CodeService Mapper.0 - Iniciando ejecucidn...

IMFO - Sart Codes.0- Iniciando gjecucidn...

INFO - Rates file input.0 - Opening file: CADOCUME~1\afreire\CONFIG~11TempledrProcessing44400.dinkR
IMFO - CountryPhoneCodes file input.0 - Opening file; CADOCUME~1\gfrelre\CONFIG~11TempledrProcessi
IIMFO - Mormalize Consumption.d - Iniciando ejecucian...

INFO - EDR file input.0 - Opening file: CADOCUME~1\glreire\CONFIG~1\TempiedrPracessing44400.dirtest
IMFO - Add CurrencyCode.0 - Iniciando ejecucion...

INFO - CountryPhoneCodes file input 0 - Procesamiento finalizado (=218, 0=0, R=0, W=218, U=0, E=0
IMFO - Sort Codes.0 - Procesamiento finalizado (=0, 0=0, R=218,W=218, U=0, E=0

INFO - Rates file input.0 - Pracesamiento finalizado (I=1744, 0=0, R=0, W=1744, U=0, E=0

IMFO - Sort Rates.0 - Procesamiento finalizado (=0, 0=0, R=1744 W=1744, U=0 E=0
INFO - EDR file input.0 - Procesamiento finalizade (=1000, 0=0, R=0, W=1000, U=0, E=0
IMFO - CountryCode lookup.0 - Procesamiento finalizado {1=0, 0=0, R=1218, W=1000, U=0
IMFO - CodeService Mapper.0 - Pracesamiento finalizado (=0, 0=0, R=1000, W=1000, U=
INFO - Add CurrencyCode.0 - Pracesamienta finalizado {I=0, 0=0, R=1000, W=1000, U=0
INFO - Rate lookup.0 - Procesamiento finalizado (=0, 0=0, R=2744 'W=1000, U=0, E=0
IMFO - Mormalize Consumption.d - Procesamiento finalizado (=0, 0=0, R=1000, W=1000, U=0, E=0
IMFO - Apply Rate.0 - Pracesamiento finalizado (=0, 0=0, R=1000, W=1000, U=0, E=0

IIMF O - District obtainment.0 - Procesamiento finalizado (=0, 0=0, R=1000, W=1000, U=0, E=0

JE=0
0, E=0
E=0

|

4] i I D

When the progress bar reaches 100%, the execstidonie (all fragments from the EDR file
have been processed and their results joined)newdequests can be submitted.

4.2.2.1.1 Autonomic version

In order to test the autonomic version of the aggpion, the “Use autonomic features” check
box must be checked in the “Deployment” tab, anel ohthe specific deployment descriptors
must be selected.

GridCOMP FP6-034442 page 41 of 58 D.UC.05.A

B EDRProcessor

x £ \
GridCOMP 55
Effective Componants for the Grids) - STEMS
If Depl it | Options | Execition |
[¥] Use autonomic features
descriptor icilocal.xmil
Deployment descriptor:
Deployment log:
| Deploy | | Undeploy |

When in autonomic mode, the QoS controls are edaltddting the user decide the target
throughput (measured in thousands of EDR procgssedecond) and the maximum allowed
parallelism degree (the maximum number of workefdder changing any of those values,
the user must press the “Apply QoS” button to mefkective that change.

3 EDRProcessor

frective Components for the Grids

GridCOMP 5"

I_[Deployment r()ptions | Execution |

Input file: |C:'\Documents and Seftingsigfreireworkspacel\EDRProcessoritesit ‘32K.edr|

Partition size: records

[] Transmit compressed data

Output file: |C:'-.Documents and Settings\gfreire\workspacelEDREProcessonresults 32K bd | II’

QoS: Throughy 0.3 KEDRps
Max. Parallelism Degree:
Apply QoS

During the execution of the request, the user cavehaccess to the monitoring of the
EDRSlaveFarm, issuing the following command in allslynupl ot farm nonitor.gp (or
gnupl ot farm nonitor_w ndows. gp in windows). This will open a window displaying two
different charts made with the monitoring infornsaticoming from the BeSke:

GridCOMP FP6-034442 page 42 of 58 D.UC.05.A

=5 "

2 Autonomic EDR Processor - BeSke farm manager monitor (UNIPI-ISTI)

Throughput

o1 b - L o L L Lo L ‘monitor m—
: : : : : : : : . cantract (>]

a0t LIS D I SO R R N D N A R O T D I DA I D T D D T R R N D R A

35:4536:0036:15 36:3036:4537:0037:1537:3037:4538:0038:1538:3038:4539:00

n. of warkers

#;workl'er

1.0 Lo i LS S SR T Y S vt sl SRS
35:4536:0036:15 36:3036:4537:0037:1537:3037:4538:0038:1538:3038:4539:00
Time

The green line represents the throughput requireaseantered in the QoS section of the GUI
(and will change accordingly). The magenta linthes current throughput, as measured by the
monitor. That measure will differ slightly from tlome being offered by the GUI, as they are
not computed the same way: the manager computasr@ng average (based on time
windows, and more sensitive to changes in the lgdiszh degree) while the GUI displays the
complete average (from start to finish). Finallye ted line represents the current number of
workers (EDRSlaveAutonomic components) bound td8b&SlaveFarm.

In the above figure, we can see how the autonoraicager adds more workers after realizing
the required throughput could not be achieved wfité initial single worker. When the
processing is done, the extra workers are removed.

4.2.3 Examples

The /test folder contains several sample inpus fienerated using the script provided on the
same folder), ranging from one thousand EDRs toroiéon EDRs. If needed, more files
can be generated, invoking the EDRGenerator @ot (gener at or in the main folder).
Generating random EDR files is a time consuming &5 in order to create a new file, it is
advised to use one of the included ones to replgadegend it to the new one.

GridCOMP FP6-034442 page 43 of 58 D.UC.05.A

BridCOMP ¢

LG >

}
{
< o/

5 Wing Design

This use case, in contrast to the Telco one (Sedjipmanages small amounts of information,
but needs lots of computing power. The applicaisomiso an embarrassingly parallel one, but
based on pre-existing legacy code. The ability taprand grid-enable existing legacy code is
crucial for the adoption of the GCM by the industry

In the aerospace sector, the software that complgeaerodynamic wing performance for a
given configuration is used to test different cgofations of the wing features and to
eventually find an acceptable design. Merak isgadg application, written in FORTRAN 77
by Dr. Mariano Vazquez, with binaries for Windowsnux and Solaris. This application
permits to analyze parameters variation in incomsgilde turbulent flow around a triple
element airfoil, to evaluate the stalling angledifferent wing geometries. Turbulence is
simulated using different k-epsilon modelmcluding law-of-the-wall and two-layer low Re
Finally, the application can extract the desiredrimation and create a graph using gnuplot
[10].

5.1 Detailed architectural design

5.1.1 Architecture of the application

Merak, manages small amounts of information, budselots of computing power. Our
objective is to use GridComp solution to wrap and-gnable this existing legacy code and
also to prove the integration of data staging fog tnput files and output files into this
sweeping process.

A depiction of the operation of the Wing Design laggtion is offered next:

Wing Geometry

Compose .
Results

Graph

5 1)

S Merak %ﬁ>

Legacy
Executables

1. The user provides a set of wing geometry filesiapdt parameters for the
experiment.

2. The legacy application binaries (Merak) are prarnsid to the resources on the grid,
as new components.

2 hitp://en.wikipedia.org/wiki/Turbulent Kinetic Ergr
3 http://en.wikipedia.org/wiki/Reynolds number

GridCOMP FP6-034442 page 44 of 58 D.UC.05.A

,ff@ﬁ&\n
3. The complete set of parameter combinations is nétbby the Parameter Sweeper
component.
4. Each parameter combination is sent to a Merak coeto which performs its
simulation.
5. Results are collected, composed and a graph isgjede

Legacy executable files are only available for Wiwd, Linux and Solaris, so resources
running these operating systems are needed. A¢soltrgraph is generated using gnuplot
[10], which must be installed in the computer rungnihe application.

In order to provide a better user experience, @aractive graph is built during the execution
(per wing geometry involved). The user can chamhgepint of view; zoom in and out, etc.

These interactive graphs are generated using {Bjadvhich is based on Java3D [9] that
must be present in the computer running the appica

5.1.2 GCM Components

5.1.2.1 Components diagram

5.1.2.1.1 Plain CFI version

As in the previous use case, this version of tohitectural design uses only features from the
Component Framework Infrastructure (developed imrk\Rackage 2): a multicast interface is
used in order to distribute the computation effontong the nodes of the grid.

& GIDE Composition - WingDesign/src/org/gridcomp/usecases/wingdesign/adl/Root. gidecomposition_diagram - Eclipse Platform

Fle Edt Navigate Search Project Run Window Help
Ch Q- B A (e T) GIDE Monitori.. & GIDEDeplay... | ¥ GIDE Composi,., | & Java
= i a9 Bal- = v
4] Root.gidecomposition_diagram 53 = 0| B= outine B3 Mavigator| 5+ B || T
A 33 palette b -
FRQi- =A==, =
[ingDesion = =
e B o ® b
[New Companent ==
(= Interfaces %
Taster B esUMsCompose | Standard Server Inter:
composer | SrakControler b ST e
. T Standard Controler Interface
W vinoneson composer i 1 Bl composer
| Stendard Clent Interfoce
mersk 13
e | Mulficast Interface
| rei RN | Gather Multicast Interface
sweeper.] | Gathercast Interface
feci
(= Connections. &
2 InterfaceConnectionsType
arametersweener
sweaper
v
< >
[= Properties . [2 Problems | = Console B E T
O component Type PlainCFI
Core Property Value fo
= Core Properties
Rlesa & Grid Name €= PlaincFL
Appearance &l Miscellaneous
‘Author =
nnnnnnn =
d 4 804022685
Last Modified =
= &niree Mananamant R

A brief explanation of this architectural designade using the Grid IDE [14], is the
following:

e The WingDesign receives the request to perform a simulation, rgimeset of wing
configurations and input parameters. This requsstredirected to the Master
component.

GridCOMP FP6-034442 page 45 of 58 D.UC.05.A

=5 "

e Using theParameter Sveeper, the complete list of parameter combinations tal@ate
is obtained.

e The above information is also passed toResiltsComposer. This is done in order to
be able to keep track of the progress of the coatiouis.

e Each one of the parameter combinations is deliveyedMerak component, using the
multicast interface.

e Merak is a composite component, consisting in MerakController and a
MerakWrapper: the latter wraps the legacy code (using the faters and techniques
contributed by Tsinghua University [13]), while tfreemer prepares and transfers both
the parameter and result files. Combining these poorants, Merak performs the
simulation using the given parameters.

e Results are delivered to tiResultsComposer. When all results are received, the graph
showing the comparison of the results is made.

As in the EDR Processor, for this version of theh@ectural design the same programmatic
mechanism is used to deploy as many Merak compositgponents as nodes available.

5.1.2.1.2 Autonomic version

The autonomic version of the components diagrandlemaing the Grid IDE [14], is the
following:

E GIDE Composition - WingDesign/src/org/gridcomp/usecases/wingdesign/adl/autonomic/Root. gidecomposition_diagram - Eclipse Platform
File Edit Diagram Navigate Search Project Run Window Help

i Q- T iB A (ks [1) GIDE Monitor. GIDE Deploy... | GIDE Composi... | & Java

i

[Reot.gidecomposition_diagram &2 = B8 outine " % Navigater | &+ 1 [£F] 7

b
ingDesignAutonamic = _} El
P] New Component
asterAutonomic (= Interfaces b =
] ﬁ e r ErakAdohbmE | | Standard Server Interface
mersk | L Wrerak composer it i — Standsrd Controler Interface

| 4| Standard Client Interface
composer - Multicast Interface
| I Gather Multicast Interface
sweeper | EsulisGompaser | Gathercast Interface
campasar (= Connections @
2 InterfaceConnectionsType

Faram eterSweeper

W svesper

< >

= properties - (2 Problems| & console |3

O Compenent Type org.gridcomp.usecases.wi ign.adl.autonomic.

il s
&
>

Core
Rulers & Grid

Appearance 4 845202088

v
i

This autonomic architectural design makes use dfaem controller (theMerakFarm),
replacing the multicast interface between Master and theMerak components from the
plain CFl version. TheMerakFarm controls the parallelism degree of the application
deploying as manivlerakAutonomic components as needed. This degree can vary dinéng
execution of the application, in order to adapth performance requirements of the user.

GridCOMP FP6-034442 page 46 of 58 D.UC.05.A

AR
Gridcomp (e

St oot for e B *\szu

As the task farm behavioural skeleton does notr @ifenplete support for composite workers
(monitoring and rebalancing of tasks have issue®),had to turn the MerakAutonomic
component into a primitive one, removing the legaagle wrapper component, and using the
ad hoc approach as in previous deliverables (1], [

5.1.2.2 Components description

5.1.2.2.1 WingDesign and WingDesignAutonomic

These are the higher level components of theirewsge architectural designs. They are
composite components, encapsulating all the otlaard, offering a server interface, name
wingDesign, which is used by the graphical user interfaceotligh this interface the user can
submit simulation requests, providing one or momnegwgeometry files and the needed input
parameters.

5.1.2.2.2 Master and Master Autonomic

The previous components redirect their wingDesigrves interface to these ones. They
control the execution, invoking the appropriateifdaces from the different components they
interact with:
e Initialize the ResultComposer component with theuirparameters.
e Initialize the Merak components, with the approferilegacy application binaries for
their platform.
e Obtain the list of all the parameter combinatiomat tmust be processed, calling the
ParameterSweeper component.
e Processes the list of parameter combinations, ingokhe Merak components
(whether through the multicast interface or thenfaontroller).

5.1.2.2.3 Parameter Sweeper

This component computes the complete list of patanm@mbinations to be processed. This
is simply the Cartesian product of:

* The range of incidence angles

* The range of Reynolds numbers

» The range of wing configurations
This component must be co-allocated with Khaster (or Master Autonomic) one, as it needs
local access to the wing geometry files.

5.1.2.2.4 MerakFarm

As in the previous use case, this component is prdgent in the autonomic version of the
application. This composite component extends ghidcomp.manager.farm.adl.farm from
the NFCF, offering afarm of MerakAutonomic components. Using the non functional
interfaces of this component, the user can modiié garallelism degree of the application,
both directly or setting a QoS contract.

5.1.2.2.5 MerakAutonomic

This is the worker component of the MerakFarms & iprimitive component that manages the
execution of the legacy code. It is not based @nléigacy code wrapping techniques from

Tsinghua University [13], as this will require thee of a composite component, and the task
farm behavioural skeleton has issues with this kindorkers.

GridCOMP FP6-034442 page 47 of 58 D.UC.05.A

GridCOMP &)

5.1.2.2.6 Merak

In the plain CFI version, this component takes cdireverything related to the execution of
the legacy application, encapsulating the two grimicomponents described next:
MerakController and MerakWrapper.

5.1.2.2.7 MerakController
The MerakController component makes sure the execution of the legady can be
achieved:
» Downloads the proper executable files from the erasode on initialization (this is
only done once).
» Processes each received request for executionrapédnes the input parameters
* Invokes the legacy code control interface of tMerakWrapper component, thus
executing the legacy application.
» Transfers the result file after finishing the exi&mu
» Deletes temporary file when done.

5.1.2.2.8 MerakWrapper

This component, deriving from the templates andrfates provided by Tsinghua University
[13], wraps the legacy code, and keeps track axecution.

5.1.2.2.9 ResultsComposer

The ResultsComposer gathers the result files from the simulations,agating a graph where
the different wing geometries are compared. It affers information about the progress of
the process and temporary results, allowing thphgcal user interface to display that results
live.

5.1.2.3 Interfaces

In this section, the interfaces from the differeamponents are presented.

5.1.2.3.1 WingDesign

This is the interface offered by th@/ingDesign, WingDesignAutonomic, Master and
Master Autonomic components. Its only method is the starting pofrihe whole process:

public interface WngDesign {

| **

* Perfornms a sinulation, processing the given paranmeter specification.
*

* spec contains the wi ng geonetries, incidence angles, reynolds and iteration
* nunbers to performthe simulation
* a graph conparing the different wing geonetries.

*
/
Fi |l e process(SweepSpecification spec);

}

A SweepSpeci fication is a java class that contains a list of geometeg fthe initial
and final values for the incidence angle and thgnRkels number ranges, the number of
samples to take from each range, and a numbegratidns to perform the simulation.

GridCOMP FP6-034442 page 48 of 58 D.UC.05.A

Gridcome

5.1.2.3.2 Parameter Sweeper

This interface contains the method to generatéigshef parameter combinations to be used
when invoking the legacy application (merak):

5.1.2.3.3 Merak

The interface of the Merak, MerakAutonomic and M&rantroller components, offering
access to the legacy application is the following:

5.1.2.3.4 MerakMulticast

This is the multi-cast client interface used by piein CFI version of thdlaster component
to invoke theMerak components:

GridCOMP FP6-034442 page 49 of 58 D.UC.05.A

Gridcome

The only method offering a multicast behaviour is1. This is dispatched in a round robin
fashion among thMerak components.

5.1.2.3.5 ResultsComposer
The server interface offered by tResultsComposer component is the following:

Thei ni t method is invoked by th@&/ingDesign component at the start of the process. The
addResul t method is invoked by thderak components each time a new result is obtained.
Last, get Resul t sPer cent andget Pendi ngResul t s are invoked from the GUI in
order to implement a progress bar and the intesalitie graphs, respectively.

5.2 Manual

5.2.1 Final prototype description

The final prototype of the Wing Design use caseuies the same enhancements as the EDR
Processor, described in 4.2.1, and also makes fuee degacy code wrapping techniques
contributed by the Tsinghua University [13] (onhgtnon-autonomic version).

GridCOMP FP6-034442 page 50 of 58 D.UC.05.A

5.2.2 Configuration and usage

The file “D.UC.05.A — Wing Design final prototyp&Z contains both the source and the
binaries of the final prototype. The latest versodrthis prototype is also publicly available at
INRIA's GForgegr i dconpwp5gs project [12].
In addition to the common system requirementseish the introduction of this document
(Section 1)), the following tools are needed ineori run the application:

® Java3D [9]

® Gnuplot standalone [10] or

® Gnuplot bundled in cygwin distribution [11] (windsvenly).

Runant W ngDesi gn to invoke the Wing Design. The application willguest you to
enter the path to the distribution folder of Pranet3.90. After that, the user interface will
appear:

WingDesign

GridCOMP ¢ &2

l[[l_'_ t | Options | Execution | Results |

["] Use autonomic features

descriptorsigbk-24nodes.xml
descriptorsigbk-bordeaux.xml
descriptorsigbk-nodesList.xml
descriptorsilocal+furaxmi
descriptorsilocal-2-cores.xmi
descriptorsiocal.xmi

Deployment descriptor:

Deployment log:

Deploy

This first “tab” contains the deployment detaileed2nding on your infrastructure, select one
of the included deployment descriptors and pressiteploy” button.

The “Deployment log” text box will show the log é&output during the deployment:

GridCOMP FP6-034442 page 51 of 58 D.UC.05.A

GridCOMP

Effective Componsnsa for she Grids

2 WingDesign

OMP '

Effeotive Components fon the Grids

Deployment | Options | Execution | Resuilts |

|:| Use autonomic features

criptor S5k-24nodes.xml
k-hordeaux.xml
k-nodeslist.xml

Deployment descriptor: |, uraxml

local-2-coresxmi
criptorsiocal.xml

Deployment log:

INFO - **=*Wapping VifualNode slave-node with Mode: rmii10.0.0.60:1088/slave-noded083358872 done =
INFO - Generating class : pa.stub.org.aridcomp.usecases.wingdesign._StubMasterimpl

INFO - Generating class | pa.stub.org.objectweb proactive.care.component._StubProActivelnterfacelmpl

INFO - Generating class | pa.stub.org.gridcomp.usecases.wingdesign._StubParameterSweeperimpl

INFO - Generating class | pa.stub.org.gridcomp.usecases wingdesign._StubResulisComposerimpl

INFO - Generating class : pa.stub.org.gridcomp.usecases.wingdesian._StubMerakContralledmpl

INFO - Generating class ; pa.stub.org.tsinghua.gcm.legacyComponentlegacycode._StublegacyCodeClassProxy
INFO - Generating class ; pa.stub.org.objectweb proactive.core.component type._StubComposite —|
INFO - INFO - Generating class : pa.stub.org.objectweb. proactive.core.componenttype._StubComposite

INFO - INFO - Generating class : pa.stub.org.objectweb. proactive.core.componenttype._StubComposite

INFO - INFO - Generating class : pa.stub.org.gridcomp.usecases wingdesign._StubMerakContrallerimpl

INFO - INFO - Generating class : pa.stub.orgtsinghua.gem.legacyComponent.legacycode,_StublegacyCodeClassProxy
INFO - Merak component 0 created, and bound to Master

INFO - INFO - Generating class : pa.stub.org.gridcomp.usecases. wingdesign._StubMerakContrallerimpl

INFO - INFO - Generating class : pa.stub.org.tsinghua.gecm.legacyComponent.legacycode,_StublLegacyCodeClassProxy

-

<] Il I [v]

| Deploy || Undeploy ‘

After the deployment is done, the “Options” tabeisabled. This tab includes controls to
select the input parameters:
e Wing geometries: all .geo files found in the geaiestfolder are listed; one or more
can be selected (Ctrl + click).
e Range of incidence angle: from, to, and numbeaofpdes
Range of Reynolds number: from, to, and numbenrofdes
e Number of iterations

GridCOMP FP6-034442 page 52 of 58 D.UC.05.A

GridCOMP

Effective Componsnsa for she Grids

£3 WingDesign

GridCOMP ¢

Effeotive Components for the Grids SYST EME:;
Deployment | Options | Execulion | Resuils |
:ometriesihilift.geo Exd
Wi etties: geometries‘hilift2.geo =
2 et Lo geometrieslowlift.geo —
geometriesilowlift2.geo B
Incidence angle: from| 15—
to J0=
pl 10—
Reynolds number: from| 3.000—
to] 6.000—
pl 10—
terations:
Qos: Throughtput: Iterations per second

Max. Parallelism Degree:

Apply QoS

Start

The “start” button submits the request, when prsshe “Execution” and “Results” tabs are
enabled. The former shows log messages and a psogae:

WingDesign

CEX

GridCOMP

Effective Componenta for the G SYST EME:;
Deployment | Options Execution | Results |
Progress: [_ 3%
iterations to perform: 6000 Processing Time: 00:00:23
iterations performed: 200 Performance: 8,65 iterations per sec.

IMFO - INFO - Process finished Thread=IMN -= CADOCUME~1\gfreire)
IMFO -
IINFO - the executing return value is 0

IMNFO - INFO - null execution finished. Exitcode =10

IMFO - INFO - Transferring results file to Mode rmi:i10.0.0.60:1099/Node1992407500 and path results\iowlift.geo_23.3333333
INFO - INFO -

INFO - INFO - ChDocuments and SettingsigfreireiworkspaceiWingDesign=cd CIDOCUME~1\gfreire\COMNFIG~11Tempimerak2
IMFO - INFO - Results file transfarred

IMNFO - INFO - Mew point aboutto be added: {reynolds: 5000.0, angle; 23.3333 lit 2.3231)

IMNFO - INFO - Result added to compaoser

IMFO - INFO - Creating CADOCUME~1\gfreire\COMFIG~1\Tempimeraki 331 6.difmerak.run

IMFO - INFO - About to run launch.bat at CADOCUME~1\gfreireVCOMNFIG~1\Tempimeraks 331 6.dir

INFO - INFO - Incidence angle = 30.00000000000001

IMFO - INFO - Reynolds number=5000.0

IMFO - INFO - Wing geametry = midlift.geo

IMFO - INFO - terations = 20

INFO - INFO -

INFO - INFO - ChDocuments and SettingsigfreireiworkspaceiWingDesign=cd CIDOCUME~1\gfreire\COMNFIG~11Tempimeraks
IMFQ - INFO - Process finished Thread=IMN -= CADOCUME~1\gfreire)

IMFO - INFO - Process finished Thread=ERR -= CADOCUME~1\gfreire}

|[MF Q) - s

| »

IINFO - the executing return value is 0

INFO - INFO - null execution finished. Exitcode =0 |
IMFO - INFO - Transferring results file to Mode rmii10.0.0.60:1099/Node1852407500 and path results\owliftgeo_15.3333333] = |
] i | ’

GridCOMP FP6-034442 page 53 of 58 D.UC.05.A

I
H =
H hoLel!

o

G "
I:;i(gzyu

The “Results” tab displays the interactive graghgrogress bar and the gnuplot comparison
graph (only when finished):

BridCOMP:

Deployment | Options | Execution | Results |

lowlift.geo

[v] Enable scale [] Point mode [| Texture mapping

Line width:1 |Point size: 1

In order to control the interactive graphs:
e Dragging the mouse will rotate the point of view
e Pressing caps while dragging the mouse up or dolzeom in or out.
e Pressing ctrl while dragging the mouse will move pioint of view
e The controls at the bottom of each window will chanthe appearance of the
corresponding graph.

5.2.2.1.1 Autonomic version

In order to test the autonomic version of the agpion, the “Use autonomic features” check
box must be checked in the “Deployment” tab, anel oithe specific deployment descriptors
must be selected (at the time of this writing oalyocal deployment descriptor is offered).
While running a request, a set of controls willdpabled in the “Options” tab:
» Throughput: the desired number of iterations peosd. The autonomic manager will
try to reach this throughput.
* Maximum parallelism degree: the maximum number airkers the autonomic
manager can use for the distribution of the contmna.

During the execution of the request, the user cawvehaccess to the monitoring of the
MerakFarm, issuing the following command in a shghupl ot farmnonitor.gp (or
gnupl ot farm nonitor_w ndows. gp in windows). This will open a window displaying two
different charts made with the monitoring infornsaticoming from the BeSke:

GridCOMP FP6-034442 page 54 of 58 D.UC.05.A

TR,
GridCOMP ﬁf %C M@\d

2 Autonomic Wing Design - BeSke farm manager monitor (UNIPI-ISTI)

Thraoughput

az b b e L monitor ==
: : : : . contract (>)

0.0+ PR R N R e LI S LT O I A R LI LI B I T R R T

54:00 54:30 55:00 55:30 56:00 56:30 57:00 57:30 58:00 58:30)

4.0 R LI R I IR S
sofb L Ao S Lo S L S

20 b L L L L S L sl

n. of warkers

: : : : : : # workers
1.0 L PR R | I L L.) D N I AN

54:00 5430 55:00 55:30 56:00 56:30 57:00 57:30 58:00 58:30

Time

The meaning of the lines is the same than in teeipus use case: the green line represents
the throughput requirement; the magenta line is dheent throughput; and the red line
represents the current number of workers (Merakdarttic components) bound to the
MerakFarm.

In the image above, we can see how the managsitdrie@ach and keep up with the requested
throughput but, as the limit of the parallelism a=gis 4 (in this case), it fails.

5.2.3 Examples

The early prototype includes a few wing geometigsfito be used for testing (under the
geometries folder). The more files that are inctlde the more samples that are selected for
the incidence angle or Reynolds number, the higleramount of invocations to the legacy
application. Changing the amount of iterations &i#io increase or decrease the time needed
to accomplish each invocation (the higher, the éoshgDefault values should take a few
minutes to complete for a local deployment, whea wing geometry is selected.

GridCOMP FP6-034442 page 55 of 58 D.UC.05.A

I

SaWAE

6 Conclusions

This section summarizes the impact of GridCOMP thiedGrid Component Model (GCM)
on the different use cases.

Biometric identification is known to be computatirintensive and thus time consuming if
applied to a large user population. With the BI8 oase, a scalable distributed identification
system has been built which is able to processtifiEtion requests in real-time, for
instance, in a few seconds, while working on a Varge user population.

Traditionally, such systems have been specificdiiyeloped to satisfy pre-defined QoS
requirements. Consequently, system modificationsewequired whenever the QoS contract
changed. The BIS prototype eliminates this impiaat since it scales independently in
accordance with the current QoS contract thanksth® autonomic reconfiguration
functionality provided through the component franoekv

Furthermore, traditional identification systems &arsually built for a specific dedicated
hardware infrastructure. The GridCOMP frameworkwawer, with its strict separation of
concerns and its advanced deployment infrastructli@vs building distributed applications
independent of the target hardware infrastructé®.a result, the BIS prototype can be
deployed on arbitrary and possibly heterogeneowweae without changing a single line of
application source code.

Finally, the BIS use case demonstrates that, viith help of the GridCOMP framework,
development of Grid applications is no longer cam@nd time consuming. On the contrary,
development time could be significantly reduced dwoe advanced features such as
behavioural skeletons and the GIDE provided asqfatte GridCOMP framework.

“Computing of DSO value” was an application whickeded a long time to process and
obtain the expected results. It is used to worktbetmean time that the clients delay to pay
an invoice to Atos.

Those are the main improvements after use Gridderamework:
* The reduction of the execution time.
* The reduction of the complexity throughout the depment phase.
* The development of a cheaper infrastructure anidyestmlable application.

The first improvement that should be mentioneches teduction of the execution time. It is
important to know that for carrying through the @i®mn a heavy PL/SQL process is
executed which has a high calculation level. Moegpif we take into account that the results
the application calculates are processed baseldeomfiormation stored in a central and very
large database, and that those results should dessexd by several departments inside the
company, we are going to realize that the datagssing is quite high and will only increase
over time. The old DSO application actually takbsw four hours to compute around 6.600
clients. Some tests were performed on top of GA@5latform to measure the benefits using
a grid solution. For this test, the master databasereplicated to all nodes making each node
independent to do their calculation. The calcufatime using 25 nodes was almost 96% less
than using only one node.

The second objective achieved is to reduce the atp throughout the development phase.
Therefore, we stress the importance of the compsranthe GridCOMP framework during
this phase: GridCOMP provides some features, lilee GIDE, that reduce the complexity
when implementing the components of a Grid appbeatt is also important to highlight the

GridCOMP FP6-034442 page 56 of 58 D.UC.05.A

e
Pat
e

™ (/_/ M\" “\ \c‘!
EridCOMP !

) @C—/ o
-:;:;gf;"
significance of other advanced features such asavefal skeletons, which saves the
application the trouble of manage the nodes. Theetires fulfill our objective.

The third aim of this use case consists of devalp@ cheaper infrastructure and easily
scalable application. To maintain the old appi@ata new powerful server was needed.
Using Grid technology, existing machines can belus€ducing the infrastructure costs. What
is more, using the deployment file, worker nodes lva added easily.

The Extended Data Record Processing applicationimptemented for very specific, and
expensive, hardware. The first objective, whenipgrthe application to GridCOMP, was to
write a portable, multiplatform, application. Beiag100% Java solution, GridCOMP based
applications can be run on almost any platformnopethe path to an affordable and easy
scalability. Also, thanks to the XML-based deploymehe new application can be scaled up
without changing its source code.

Using the Grid IDE, the new application benefiteahi a top-down design, taking advantage
of the composition of components. Moreover, the RR@ovided the means to achieve
autonomically the desired QoS using Behaviouraléd&gas and JBoss rules based contracts.
While the original application was commercial arldsed source, the new one is free and
open.

The Wing Design use case consisted in bringing lifevto an obsolete and hardly reusable
legacy code application. This is a common situaiioresearch environments, where there is
multitude of programs developed using ancient pogning languages, no longer

maintained and poorly documented. Instead of reawyithem using a new language, which
will need a big investment both in time and morse programs can be wrapped inside
components and reused by new (most probably disédt) applications, taking advantage of
what it is already implemented and worked wellyfears.

In this case, an aerodynamic simulation progranttemrin FORTRAN 77, was used to show

the benefits of this philosophy. Using the methadsd techniques for wrapping the legacy
code into a component (developed by the Tsinghuadusity), the resulting component was

integrated into a new, GridCOMP-based demonstrapmiication, taking advantage of the

distributed execution and the autonomic manageroéiits performance. This resulted in

reduced response times, thanks to the distribubiothe computations, enabling also the
scalability of the application, adding more (lowstoresources without the need to do any
change in the code.

GridCOMP FP6-034442 page 57 of 58 D.UC.05.A

[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

=5 "

7 References

T. Weigold, F. Tumiatti, E. Prunés, J. Santaca#al{®d Freire. D.UC.03 Use cases
description: preliminary architectural design amidnitive prototypes.
https://bscw.ercim.org/bscw/bscw.cqi/d315688/D. B=fiBal.pdf

T. Weigold, F. Tumiatti, G Freire. D.UC.04.A Usesea: early documentation.
https://bscw.ercim.org/bscw/bscw.cgi/d510892/D.UCAO Final.pdf

M. Aldinucci, S. Campa, P. Dazzi, N. Tonellotto, Zappi. D.NFCF.04: NFCF prototype
and early documentation.
https://bscw.ercim.org/bscw/bscw.cqi/d510923/D.NFEZFfinal. pdf

Pentaho Data Integratiohttp://kettle.pentaho.org/

Java:http://java.sun.com/

Apache Anthttp://ant.apache.org/

ProActive 3.90http://proactive.inria.fr/

Visad: http://www.ssec.wisc.edu/~billh/visad.html
Java3Dhttps://java3d.dev.java.net/

Gnuplot:http://gnuplot.info/

Cygwin: http://www.cygwin.com/

gridcompwp5 project at INRIA's GForgettp://gforge.inria.fr/projects/gridcompwp5gs/
D. Caromel, L. Du, Y. Wu, X. Wu, C. Dalmasso, Grd¥e Pezzi. D.CFI.04: Methods and
techniques for legacy code wrapping as components.
https://bscw.ercim.org/bscw/bscw.cqi/d510898/D.C#| Final.pdf

V. Getov, S. Isaiadis, A. Basukoski, J. Thiyagadimy D.GIDE.03: Grid IDE Prototype
and Early Documentation, EU GridCOMP Project, J20€8.
https://bscw.ercim.org/bscw/bscw.cgi/d510932/D.GITE Final.pdf

GridCOMP FP6-034442 page 58 of 58 D.UC.05.A

