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Summary 

• This document describes the final prototypes of the use case applications. For each use 
case, its architectural design is explained in depth, offering complete details about the 
components (both primitive and composite) and their interfaces. Also, a 
comprehensive user manual is offered, including installation and running instructions, 
along with screenshots of the final prototype applications. Finally, the impact of 
GridCOMP and the Grid Component Model (GCM) on the different use cases is 
summarized in the conclusions. 
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1 Introduction 

This document describes the final prototypes of the use cases for the GridCOMP project. 
These use cases are not only a presentation of the technical functionalities developed within 
the project, but they have also been selected because of their exploitation potential. They will 
be used to showcase the project results in front of both the industrial and the academic worlds. 
The selection of use-cases pursued the following criteria in order to obtain a comprehensible, 
varied and truly representative list of examples and their potential: 

• Use-cases selected had to cover multiple industrial sectors and scientific research 
areas, such as management, security, engineering, or telecommunications, in order to 
appeal to a large audience, and proving that the framework developed can be applied 
to different industrial environments. 

• Use-cases selected had to prove the flexibility and interoperability of GridCOMP, 
interacting with services generally deployed in these areas, such as database servers, 
workflow systems, etc. 

• Use-cases selected had to demonstrate legacy application integration. The possibility 
of seamlessly integrating these applications to build more advanced ones with 
optimized performance (thanks in part to the distribution of the processing effort). 

• Use-cases selected had to show the effectiveness of the solution for both computing 
and data intensive processes. 

• Use-cases selected had to address and tackle issues with both embarrassingly parallel 
processes and stateful distributed applications, in such a way that the solutions can be 
redeployed to solve more complex situations 

• Use-cases selected had to attest the autonomic resource management features, in order 
to achieve different objectives: better performance (throughput) or a reduced response 
time. 

 
Taken as a whole, the use-cases selected in GridCOMP meet the above criteria and the 
partners responsible for each selected use-case proved their reliability and ensured high-
quality and performance in the project. The applications selected for the use cases are the 
following: 

1. Biometric Identification System, by IBM Zurich Research Labs. 
2. Computing of DSO Value, by Atos Origin. 
3. EDR Processor, by GridSystems. 
4. Wing Design, by GridSystems. 

 
Each one is covered in a separated section of this document, all of which have a common 
structure: 

1. A detailed description of the architectural design and the infrastructure needed to run 
the application (data bases, application servers, workflow systems, third-party 
software components, etc.). All the components (both primitive and composite) and 
their interfaces are explained in detail. 

2. Manual of the final prototype, including instructions on how to install or deploy the 
application. Several screenshots of the applications in action are included, and a set of 
examples is provided. 

 
Along with this document, a set of 4 compressed files (D.UC.05.B*.zip) is provided, 
containing the code (binaries and/or source) of the four use case final prototypes. In order to 
run them, a common set of tools is required: Java [5], Apache Ant [6] and ProActive 3.90 [7]. 
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2 Biometric Identification System 

The IBM use case application is a biometric identification system (BIS) based on fingerprint 
biometrics, which works on a large user population. The core problem is to identify a given 
person solely on his biometric information by comparing its fingerprints against a large 
database of enrolled (known) identities. This requires massive computing power because 
biometric matching algorithms are non trivial and must be applied may times. Therefore, the 
identification system takes advantage of a Grid infrastructure and an appropriate GCM 
component system. The identification problem is distributed across the nodes in the Grid and 
this way real-time identification performance can be achieved even when working on a very 
large user population. Additionally, the system scales independently in accordance with a 
given quality of service (QoS) contract thanks to the autonomic reconfiguration functionality 
provided by the GridCOMP GCM framework.  
 

2.1 Detailed architectural design 

 

2.1.1 High-level architecture of the application 
The high-level architectural design of the BIS as outlined in D.UC.03/04 ([1], [2]) and shown 
in Figure 1 has been retained for the final prototype described in this document. However, 
under the covers, there have been many changes in the way the system is implemented. The 
parts of the system that have undergone significant changes are the GCM component 
architecture and the GCM adapter, the business processes (workflow scripts) interacting with 
the GCM adapter, and the demo application. The main reason for this is the fact that, during 
the second and third year of the project, we have considered the use of various WP3 results, 
namely, we have implemented and improved the BIS by using autonomic behavioural 
skeletons. In a first iteration we used the task-parallel farm skeleton as documented in 
D.UC.04 [2]. For the final prototype we moved to the data-parallel skeleton, which has been 
developed by the WP3 partners to specifically support data-parallel applications such as the 
BIS use case. The details of the final BIS prototype based on the data-parallel skeleton are 
described in the following subsections. 
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Figure1: Biometric identification system high-level overview 

 
Figure 1 outlines the high-level system design of the BIS. It is built around a workflow 
execution engine acting as the central control unit of the system. A number of business 
processes are implemented as workflow scripts running within the engine. The processes 
comprise functionality accessible from the demo application via the BIS services (e.g. 
identification, QoS definition) as well as internal system management logic required to 
control the distributed biometric matching. Furthermore, the BIS provides a number of 
adapters to the workflow engine such that the business processes can interact with other 
external entities, namely, the identity database storing information about enrolled identities, 
and the interface to the Grid infrastructure. 
 
 

2.1.2 Business Processes 
The business processes for BIS management and for the actual identification functionality are 
interacting with the Grid via the GCM adapter. Consequently, the change in the component 
architecture, where we now make use of the data-parallel skeleton, also affects the logic 
implemented in the corresponding workflow scripts. The “startup” process, as illustrated in 
Figure 2, no longer allocates the desired initial number of workers. This has to do with the 
way the skeleton works. To be able to define the initial number of workers the ADL definition 
of the skeleton must be adapted before it is deployed. This functionality has been 
implemented as part of activity 2. Another modification is that, in contrast to the task parallel 
approach used in D.UC.04 [2], now the database must be initially distributed to all workers. 
This is done in activity 4. 
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Figure 2: Business process “startup” activity-flow diagram 

 
The identification process, named “identify”, has changed as well. As the data-parallel 
skeleton fits much better to the problem than the task farm, the identification process became 
much simpler. Instead of generating tasks for the farm and collecting asynchronous results it 
now just submits the identification request including the fingerprints of the person to be 
identified to the skeleton and receives the result synchronously in activity 8. Figure 3 
illustrates the control flow within the identification process. 
 

 
Figure3: Business process “identify” activity-flow diagram 
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2.1.3 Workflow adapters 
The workflow adapters, as indicated in Figure 1, have already been defined in D.UC.03 [1]. 
As the services they provide to the workflow scripts have not changed substantially, not all of 
them are described again at this point. In particular, the implementation of the DB adapter and 
the BIS services API remained unchanged. However, the implementation of the GCM adapter 
has changed significantly as the architecture of the GCM component system changed through 
the use of skeletons. The details on how the GCM adapter of the final prototype implements 
the distributed biometric matching via GCM components is presented in the following 
Section. 
 

2.1.4 GCM Components 
This section describes the GCM component architecture, component description, and 
interface description of the final BIS prototype. 
 

2.1.4.1 Components diagram 

The final BIS prototype, in contrast to the previous version described in D.UC.04 [2], is now 
based on the data-parallel autonomic farm skeleton developed within WP3. Figure 4 
illustrates the GCM component architecture used in the prototype and indicates how it 
interacts with the non-componentized part of the application. 
 
At the heart of the component system, there is the data-parallel behavioural skeleton (BeSke), 
as defined in D.NFCF.04 [3], which consists of the composite component highlighted in 
yellow. It includes a custom controller, the autonomic behaviour controller (ABC), which 
implements the mechanisms supporting autonomic functionality, for instance, increasing or 
decreasing the number of worker components and data redistribution. Furthermore, the farm 
includes a default implementation of an autonomic manager (AM) component, the component 
actually implementing autonomic control of the BeSke. These three components represent the 
data-parallel skeleton. To apply the skeleton, we need to parameterise it by adding a worker 
component, here named IDMatcher. This is the component which the ABC clones and adds to 
the farm as many times as required to increase parallelism. By default, the skeleton starts with 
the number of matcher components defined in the skeletons ADL. Therefore, the ADL is 
adapted accordingly before it is deployed. Since the data-parallel skeleton fits very well to the 
biometric matching problem we have to solve, there is no need to develop any additional 
custom components. We only wrap the skeleton into an Application component to hide it 
from the non-componentized part of the BIS application. The dashed lines in Figure 4 
illustrate the interaction between the non-componentized part of the BIS application, namely 
the GCM adapter, and the GCM component system. Furthermore, Figure 4 indicates that all 
IDMatcher components have access to a shared database storing the identities known by the 
BIS. As far as deployment is concerned, the idea is that only the IDMatcher components, 
which represent the workers, are to be distributed. 
 
When the BIS application is started, it submits a QoS contract to the AM which defines the 
conditions under which the AM should increase or decrease the number of workers. In the 
prototype, the AM enforces this QoS contract every two seconds. Furthermore, the prototype 
allows updating the QoS contract at runtime to be able to trigger reconfiguration during the 
demos. 
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Before identification requests can be processed, the identity database must be initially 
distributed across the worker components. The identity DB holds information such as name, 
address, and fingerprints of all enrolled (known) people. For distributing the DB, the skeleton 
offers a multicast port, also called the scatter (c.f. Figure 4) or initialization port, which takes 
a list of tasks as input parameter. In case of the BIS, each task defines a part (defined by index 
and length) of the identity DB. The skeleton distributes these tasks equally among the workers 
and the workers load the parts from the shared DB. As a result, each worker can be 
considered to have one partition of the DB loaded into transient memory as indicated in 
Figure 4. In other words, a partition is the fragment of the DB (a number of records) each 
worker has loaded. 
Once the skeleton has been initialized, identification requests can be submitted to the second 
multicast port provided by the skeleton, the so-called broadcast port. Fingerprints of the 
person to be identified are broadcasted via this port to all worker components and each 
worker matches them against its partition of the DB. Results are, in contrast to the task 
parallel farm used in D.UC.04, returned synchronously via method return values. 
If the AM triggers reconfiguration via the ABC, for example, to increase the number of 
worker components, the ABC retrieves all tasks from all workers, modifies the number of 
workers, and finally redistributes the tasks. This way the DB is redistributed during each 
reconfiguration operation. 
  

 
Figure 4: GCM component architecture 

 
Figure 5 shows how the component system has been graphically composed within the Grid 
Integrated Development Environment (GIDE) [14].  
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Figure 5: BIS component composition in GIDE 

 

2.1.4.2 Components description 

The availability of the data-parallel skeleton has significantly reduced the number of custom 
components to be developed compared to previous versions of the BIS use case. Only the 
primitive component IDMatcher and the Application composite have been designed from 
scratch. Compared to earlier use case versions, not making use of behavioural skeletons, the 
code size has been reduced by approximately 35%. All components used, including the 
skeleton components, are briefly introduced in this sub-section. 

2.1.4.2.1 Application 
The Application component is a composite component enclosing the complete component 
system of the BIS application. As such it hides internal components and only offers two 
server ports, one to initially distribute the DB via interface I1 (c.f. Figure 4), and one to 
broadcast identification requests via interface I2. 

2.1.4.2.2 IDMatcher 
The IDMatcher component is a primitive component, which includes the actual fingerprint 
matching functionality. When a matcher component is initialized it receives a number of tasks 
which together define a partition of the identity DB. The matcher then accesses the shared 
database and loads the partition into RAM for faster access. Initialization happens either via 
interface I3 while the DB is initially distributed or during a reconfiguration operation via 
interface I5. Afterwards, it receives identification requests via interface I4 and returns results 
via method return values. While processing an identification request, it matches the 
fingerprints of a given person against its part (partition) of the database. 
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2.1.4.2.3 Data-Parallel BeSke 
The Data-Parallel BeSke component represents the autonomic data-parallel skeleton as 
provided by WP3 (c.f. D.NFCF.04) [3]. 

2.1.4.2.4 Autonomic Behaviour Controller (ABC) 
To implement the behavioural skeleton the default component controller has been replaced by 
an autonomic behaviour controller (ABC). The ABC is part of the data-parallel skeleton. It 
offers autonomic operations such as increasing or decreasing the parallel degree which are 
triggered by the autonomic manager if required by the QoS contract. 

2.1.4.2.5 Autonomic Manager (AM) 
The AM component regularly enforces the QoS contract and triggers an autonomic operation 
via the ABC if required. The QoS contract consists of a JBoss Drools rule file as listed below. 
The BIS application allows defining the desired average target partition size as a performance 
contract, for example, say 1700 identities per IDMatcher component. Based on this value, 
defined by the BIS administrator, a rule file is generated which defines an upper bound and a 
lower bound for the partition size. The upper bound is defined as the target partition size plus 
10% and the lower bound is defined as the target partition size minus 10%. If the upper bound 
is reached, the rule triggers the AM operation ADD_EXECUTOR to instruct the AM to trigger 
increasing the parallel degree via the ABC. Similarly, the operation REMOVE_EXECUTOR is 
triggered if the lower bound is reached as can be seen in the listing. Whenever the target 
partition size is modified by the BIS administrator, a new rule file is generated and submitted 
to the AM to update the QoS contract. 
 
[methodMonitor="searchMatch"] 
rule "CheckHigherBound" 
        when 
            $arrivalBean : PartitionSizeBean(value > 1870) 
        then 
            $arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR); 
 end 
[methodMonitor="searchMatch"] 
rule "CheckLowerBound" 
        when 
            $arrivalBean : PartitionSizeBean(value < 1530) 
        then 
            $arrivalBean.fireOperation(ManagerOperation.REMOVE_EXECUTOR); 
 end 

 

2.1.4.3 Interfaces 

This section describes the interfaces I1-I5, as denoted in Figure 4 in more detail. 

2.1.4.3.1 Interface I1 
The multicast interface I1 is used to transfer tasks, generated by the GCM adapter, from the 
Application component to the Data-Parallel BeSke and from there to the IDMatcher 
components. It includes the getService() method as shown in the listing below. The purpose of 
this interface is to initially distribute the identity DB across the IDMatcher components. It 
takes a list of tasks as a parameter whereas each task represents a part of the DB described by 
an index and the number of records. In the prototype each task represents up to 100 identities 
in the DB. When the list of tasks arrives at the multicast interface of the Data-Parallel BeSke 
component, the tasks are distributed via a custom dispatch mode as indicated in the method 
annotation. This dispatch mode distributes the tasks equally across the bound IDMatcher 
components. 



 

GridCOMP FP6-034442   page 13 of 58    D.UC.05.A 

 
public interface MulticastTestItf1  { 
 
/** Initially distribute the identity DB. 
 * 
 * @param list List of tasks to be distributed across matcher components. 
 * @return RFU. 
 */ 
  @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.CUSTOM, 
  customMode = MapDispatch.class)) 
  public List<Task> getService(List<Task> list); 
} 

 

2.1.4.3.2 Interface I2 
The multicast interface I2 is used to broadcast identification requests to all bound IDMatcher 
components. Thus, the distribution mode BROADCAST is indicated in the method annotation 
of the searchMatch() method as shown in the listing below. An identification request is 
represented by a task object which holds the fingerprints. The resulting list of tasks represents 
the matching results from all IDMatcher components. Each result task includes the ID of the 
matching DB record, if any, and the name of the node which found the match. 
 
public interface MulticastTestItf2 extends MulticastTestItf1  { 
 
/** Broadcast an identification request. 
 * 
 * @param list List including one task which holds the fingerprints of the person to be 
 *        identified. 
 * @return List of tasks holding the matching results from all IDMatcher components. 
 */ 
  @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.BROADCAST)) 
  public List<Task> searchMatch(List<Task> list); 
} 

 

2.1.4.3.3 Interface I3 
Interface I3 allows IDMatcher components to be bound to the multicast interface I1. The 
matcher components receive their tasks via this interface and automatically load the 
corresponding partition of the DB into RAM upon arrival of the tasks. The task parameter can 
represent one or more tasks (the Task object is a generic container). 
 
public interface IDDistribute { 
 
/** Receive tasks representing the DB partition to match against. 
 * 
 * @param t One or more tasks representing a part of the DB. 
 * @return RFU. 
 */ 
  public Task getService(Task t); 
} 

 

2.1.4.3.4 Interface I4 
Interface I4 allows IDMatcher components to be bound to the multicast interface I2. The 
matcher components receive an identification request via this interface. In response, each 
matcher component matches the given fingerprints against its DB partition and returns a task 
object including the ID of the matching DB record, if any, and the name of the node the 
component is running on. 
 
public interface IDMatch extends IDDistribute { 
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/** Receive an identification request. 
 * 
 * @param list List including one task which holds the fingerprints of the person to be 
 *        identified. 
 * @return Tasks holding the matching result. 
 */ 
  public Task searchMatch(List<Task> list); 
} 

 

2.1.4.3.5 Interface I5 
Interface I5 is used by the ABC during reconfiguration operations. If the ABC modifies the 
parallel degree within the skeleton (by adding or removing an IDMatcher component), then it 
firstly retrieves all tasks from all current components via the method provideStatus(), 
secondly it adds or removes a component, and lastly it redistributes the tasks via the 
setStatus() method. This way the DB is redistributed during every reconfiguration operation. 
 
public interface ReconfigSupport { 
 public void setStatus(List<Task> tsl); 
 public List<Task> provideStatus(); 
} 

 

2.1.5 Demo Application 
The previous version of the BIS demo application only provided a command line interface to 
interactively work with the application. This was the case because the command line interface 
is easier to adapt to the changing base functionality during development. For the final 
prototype, a graphical user interface (GUI) has been developed which allows configuring the 
application and interactively triggering identification operations. Furthermore, the GUI not 
only visualizes the identification process but also allows monitoring and manipulating the 
autonomic functionality of the data-parallel skeleton at runtime. More details about the 
configuration and usage including some screen shots can be found in the following section. 
 

2.2 Manual 

2.2.1 Final prototype description 
The final prototype as described in the previous sections includes a number of improvements 
over the previous versions delivered in D.UC.03/04 ([1], [2]), mostly because it uses the 
autonomic data-parallel skeleton developed in WP3. Its overall functionality can be 
summarized as follows: 
 

• It represents a biometric identification system which can work on a large user 
population in real-time. 

• The system scales independently thanks to the autonomic reconfiguration functionality 
provided by the behavioural skeleton. 

• The QoS contract which controls the autonomic functionality can be conveniently 
defined in a rule file. Furthermore, the QoS contract can be updated at runtime. 

• The graphical user interface supports triggering identification requests and updating 
the QoS contract interactively. Furthermore, it visualizes the autonomic management 
functionality to monitor the state of the component system. 
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• The BIS application can be deployed on arbitrary hardware infrastructures without 
code changes. 

• As the data-parallel skeleton supports the distribution and redistribution of the DB, the 
system can now, in contrast to the version described in D.UC.04 [2], be scaled to any 
number of nodes. 

• The code size and thus the development time are reduced due to the availability of 
advanced features such as behavioural skeletons and the GIDE. 

 
More details about the functionality provided by the GUI and its usage are provided in the 
next Section. 
 

2.2.2 Configuration and usage 
The final prototype is available in the file D.UC.05B-IBM.zip. The prototype is configured to 
run on Grid5000. It makes use of the deployment descriptor file descriptor/BIS-Grid.xml, 
which defines all nodes reserved in Grid5000. The skeleton uses these nodes for allocating 
IDMatcher components. All other components are running on the default node (the local JVM 
of the application). Since all nodes in the descriptor should ideally be available solely for 
IDMatcher components, the application should be started from a dedicated node not listed in 
the descriptor. 
 
The application can be started via the included run script. The application takes command line 
arguments with the following syntax:  <target-partition-size> <db-size> <number-workers>. 
Target-partition-size denotes the desired number of biometric matches per IDMatcher 
component and thus per node, db-size defines the desired database size, and number-workers 
defines the initial number of workers the skeleton should start with. The command line 
parameters can also be changed in the GUI later on as described below. 
 
When the application is started, it displays the initial parameters defined at the command line 
in the startup dialog as shown in Figure 6.  
 

 
Figure 6: BIS startup dialog 

 
The user can further modify the parameters and finally press the start button to trigger the BIS 
application initialization phase.  
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Figure 7: BIS initialization window 

 
During the BIS initialization phase, the information window as shown Figure 7 is visible. It 
allows the user to monitor the initialization steps such as GCM component deployment or DB 
distribution carried out during the initialization phase. Once all steps have been completed 
successfully, as can be seen in Figure 7, the continue button becomes active and the user 
arrives in the main GUI upon pressing it. 

 

 
 

Figure 8: BIS main GUI 
 
Once successfully started, the BIS application can be used interactively via the main GUI as 
shown in Figure 8. The GUI is split into two main parts, the biometric identification part on 
the left side, and the autonomic management part on the right side. 
 
The biometric identification part allows initiating identification of either an unknown person 
or a known person. In the latter case, a person to be identified is randomly chosen from the 
database of known identities and her details are shown in the upper left area of the GUI. Then, 
the distributed identification is initiated, and the fingerprint image starts changing to visually 
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indicate progress as long as the nodes are searching for a matching identity. Once a match is 
found, the identification time is shown beside the fingerprint image and the details of the 
matching identity are printed below. In the case, where an unknown person is to be identified, 
fingerprints, not in the identity DB and thus an unknown identity, are submitted to the 
distributed identification process. 
 
The autonomic management part of the GUI serves two main purposes. Firstly, it visualizes 
the autonomic functionality such that it can be monitored in real time. Secondly, it allows 
updating the QoS contract at runtime to trigger reconfiguration operations during the demo. In 
the top right area of the GUI the activity of the autonomic manager is indicated. Here, it can 
be seen that the autonomic manager leaves idle state every two seconds to enforce the QoS 
contract. Below, the current number of CPU cores used, which corresponds to the number of 
IDMatcher components, can be monitored. The lower right area of the GUI shows the current 
QoS contract represented by the target partition size. The input field below allows updating 
the target partition size while the component system is running. When the target partition size 
is updated, the user can monitor the resulting reconfigurations operations. For example, the 
autonomic manager indicates that the parallel degree must be increased, the number of cores 
changes, and the current partition size is updated as soon as the DB has been redistributed. 

 



 

GridCOMP FP6-034442   page 18 of 58    D.UC.05.A 

3 Computing of DSO Value 

“Computing of DSO Value” is the use case selected by Atos for the development of this 
project.  The DSO (Days Sales Outstanding) is an application used by Atos Origin to calculate 
the mean time that their clients delay to pay an invoice to Atos.  
 
The information is needed by several internal departments, so it must be calculated from 
several points of view (by client, by group, by month, etc.).  
 
The amount of data needed to compute the payments information is over 6.000 clients, and 
the process lasts about 4 hours to complete. The objective is to achieve the utilization of spare 
resources via Grid computing to reduce the computing time. 

3.1 Detailed architectural design 

The previous deliverable documents from WP5 show how the architectural design of the use 
case called “Computing of DSO value” has changed over the project. This section includes 
the final architectural design of the application.  

3.1.1 Architecture of the application 
The DSO application is based on a client / server infrastructure with heavy processes 
implemented in PL/SQL procedures to make all the calculations needed to get the final 
results. 
 
The architecture of the application is divided into two different parts, or it could be also said 
that there are two different types of nodes: The master node and worker nodes.   
 

• The master node is the one which controls the running of the application. It divides the 
process into different tasks, and after that it, sends them to the different worker nodes. 
Here is where the application starts the workflow, and the main database is installed. 
The master database normally is the same database used by the initial application, the 
one that we want to grid-enable. With that, the company doesn’t need to change or 
recreate their existing application database infrastructure. Usually the database 
management system used in the companies to execute their PL-SQL code is Oracle 
Enterprise Edition or Oracle Standard Edition. 
 

• The worker nodes receive the tasks to process them. When this work is done, the 
results of the operation are sent back to the master node. So, worker nodes are the ones 
doing the application calculations. Then, the results of those calculations are sent back 
to the master node. It is important to know that any computer (server, desktops, and 
laptops) could be used as a worker node, as long as it has Oracle management system 
installed. If the worker node doesn’t have Oracle installed, we recommend installing 
Oracle Express Edition because it is free of charge.  

 
An important requirement is to have Java runtime environment 1.6 installed in all the nodes, 
as Java is the language used to develop the application. It is essential to take into account the 
operating system of each node. It is necessary to have a ssh server installed, so if the node 
works with Linux operating system, there is no problem because Linux has a ssh server 
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incorporated. However, if the node uses Windows, it is necessary to install Cygwin 
[11](creating a Linux-like environment for Windows) and SSH server for Cygwin [11]. 
  
In summary, the infrastructure requirements needed to run the application are: 

� A Master Node with: 
� Main database : Oracle Enterprise Edition or Oracle Standard Edition 
� Java runtime environment 1.6 [5] 

� Several Worker Nodes, each with. 
� Node database: Oracle Express Edition 
� Java runtime environment 1.6 [5] 
� If Windows operating system is used: Cygwin [11] and SSH server for Cygwin 

[11]. 
 
The next image shows the application architecture implementation: 
 
 

 
 

3.1.2 GCM Components 
The following sections explain the GCM components architecture used in this use case. 
 



 

GridCOMP FP6-034442   page 20 of 58    D.UC.05.A 

3.1.2.1 Components diagram 

The following screenshot from the GIDE [14] illustrates the components diagram used in the 
final version of the Computing of DSO Value use case: 
 

 
 
This components diagram is different from the last one of the previous document version 
(D.UC.04 [2]) because the final UC version is using the Farm component developed by WP3. 
 
In the lines below there is an explanation of the application workflow, which describes step 
by step the UC diagram: 
 

• The client user interface makes a request to the DSOProgram component to start the 
process.  
 

• The DSOProgram component obtains the list of clients’ IDs to be processed from the 
Reader component. 
 

• The DSOProgram component breaks the list of clients’ IDs into chunks (tasks). The 
number of tasks that the application generates is specified in the file called 
DSOProgram.fractal.  
 

• These tasks are sent to the ComputeFarm component, which distribute the tasks 
between the remote nodes to be processed. At the same time the number of tasks is 
sent to the Collector component. This way it knows the total number of tasks that will 
be processed by the nodes.  
 



 

GridCOMP FP6-034442   page 21 of 58    D.UC.05.A 

• The Compute component receives the tasks from the ComputeFarm and inserts the 
information on the slave database. After that, the Compute component calls the stored 
procedure situated inside the slave database to execute the PL/SQL code. When the 
Compute component finishes each task, it sends a notification to the Collector 
component informing that the task is done. 
 

• When the Collector receives all notifications from the Compute components, it sends a 
notification to the DSOProgram component telling that the execution of the 
application is done. 
 
 

3.1.2.2 Components description 

3.1.2.2.1 DSOProgram Component 
 

 
 

The DSOProgram is the master component of the application, and it is responsible of the 
program workflow. It offers some server and client interfaces:   
 

� RunDSO: It is a server interface used to start the execution of the application using the 
parameters needed. 

� Result: It is a server interface used to receive the notification from the Collector when 
the application ends the execution. 

� Reader: It is a client interface used to get the information of the clients from the 
Reader component. 

� OurTask: It is a client interface used to start the process in the remote nodes. 
� Collector: It is a client interface used to initiate the collector component with the 

number of tasks that will be sent to the workers. 
 

3.1.2.2.2 Reader Component 
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The Reader component offers the functionality to connect to the master database and gets the 
list of clients’ IDs that will be processed by the application. It offers a server interface: 
 

� Reader: It is a server interface to get the information of the clients from the database. 
 

3.1.2.2.3 ComputeFarm Component 
 

 
 
The ComputeFarm component is responsible for distributing and controlling the worker 
nodes. Using Farm component we can manage the workers of the application, adding or 
removing them when it is necessary. The interfaces used in ComputeFarm component are 
explained in the lines below: 
 

� OurTask: It is a server interface that starts the process in the node. 
� Collector: It is a client interface to notify the Collector component that the task is 

finished 
 

3.1.2.2.4 Compute Component 
 

 
 
The Compute component offers the functionality to execute the tasks received by the 
ComputeFarm and execute them. The component receives the task with the list of clients to be 
inserted in the node database. After that, the component calls an Oracle stored procedure 
stored in the node database to execute the PL/SQL code. The Compute component offers the 
same server and client interfaces as the ComputeFarm component: OurTask and Collector. 
 

3.1.2.2.5 Collector Component 
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When a worker node ends a task it sends a notification to the Collector component saying that 
the task is finished. This way, this component can know how many tasks are still pending to 
process, how many tasks are already finished and the moment when all tasks are finished. The 
interfaces used to develop this component are explained in the lines below:   
 

� Collector: It is a server interface used to receive the notifications from the worker 
nodes. 

� Result: It is a client interface used to notify the DSOProgram that the process has 
finished. 
 

3.1.2.3 Interfaces 

As is mentioned above, there are some interfaces to build the components. Those interfaces 
are explained in the following lines: 
 

3.1.2.3.1 RunDSO 
When the user starts the application execution, the first interface called is RunDSO. This 
interface takes the parameters imputed by the user (client id, group id or initial and final 
dates) and begins the execution.   
 
public interface RunDSO { 
 
 public final static String ITF_NAME = "runnable"; 
        
              /** 
  *  Starts the execution of the application. It gets some of the  
               * parameters needed for the application 
  *   
  *  @param startDate   The initial date of the period to be processed. 
  *  @param endDate    The final date of the period to be processed. 
  *  @param clientID     Id from the specific client to be processed 
  *  @param groupId     Id from the group of clients to be processed 
               * 
  *  @return void 
  */ 
 public void run(String startDate, String endDate, String clientId, 
   String groupId); 
} 
 

3.1.2.3.2 Reader 
As it could be guessed, the Reader interface is the one who connects to the master database 
and gets the list of the clients from the master database. 
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public interface Reader { 
 
 public final static String ITF_NAME = "read"; 
 
 /** 
  *  Gets the list of the client's Ids from the master database. 
  *   
  *  @param clientId     Id from the specific client to be processed 
  *  @param groupId     Id from the group of clients to be processed 
               * 
  *  @return list of client's Ids 
  */ 
 String[] getClients(String clientId, String groupId); 
} 
 
 

3.1.2.3.3 OurTask 
The OurTask interface is responsible for starting the process in the remote nodes. The 
information needed for this operation is the list of the clients and the list of dates.  The list of 
dates is composed by the initial and final dates that the user enters at the beginning of the 
execution. Those parameters are used to specify the interval of dates, in short, to specify the 
time spot we need to evaluate by the PL/SQL code. 
 
public interface OurTask { 
 
 public final static String ITF_NAME = "work"; 
 
 /** 
  *  A server interface to receive the tasks on the worker nodes 
  *   
  *  @param clients     The list of client's ids 
  *  @param dates       The period to be processed 
               * 
  *  @return void 
  */ 
 public void compute(List<String> clients, List<String> dates); 
} 

 

3.1.2.3.4 Collector 
The Collector interface is an important new one included in the final version of this use case. 
It is used to control when the tasks sent to the different worker nodes are finished. This 
interface implements four different methods. The first one is called init and it is used to 
initiate the Collector with the total number of tasks. The second one, called collect, is used by 
the worker nodes to notify the Collector when a task is finished. There are also other two 
methods to control the number of tasks which are finished and the number of task which are 
not finished. Those methods are called getResultFilesCount and getResultFilesToCollect.  
 
 
public interface Collector { 
 
 public final static String ITF_NAME = "collect"; 
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               /** 
  *  This method is to initiate the Collector storing the total number of tasks.  
  *   
  *  @param numOfResultsToCollect The total number of tasks.    
               * 
               * @return void 
  */ 
 void init(int numOfResultsToCollect); 
 
   
               /** 
  *  When a worker ends its task this is the method which is executed         
               *  @return void 
  */        
                void collect();  
 
 
               /** 
   *  This method indicates the number of tasks finished.  
  *   
  *  @return IntWrapper 
  */ 
 IntWrapper getResultFilesCount(); 
 
               /** 
  *  This method indicates the number of tasks unfinished.  
               * 
               * @return IntWrapper 
  */ 
 IntWrapper getResultFilesToCollect(); 
} 

 

3.1.2.3.5 Result 
The last interface is called Result and it is used to send the notification of the end of the 
execution to the DSOProgram. 
 
public interface Result { 
 
 public final static String ITF_NAME = "result"; 
 
       /** 
   *  This method is used to send the results of the execution to the DSOProgram.  
  *   
  *  @return void 
  */ 
 public void result(); 
} 

  

3.2 Manual 

This section describes how to configure and execute the use case application. 

3.2.1 Final prototype description 
The main differences between the final prototype implementation and the primitive one are: 
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� The application progress information is displayed through the user interface, as a progress 
bar. 

� The number of workers used and the time that the application will finish depending on 
the number of workers are graphically displayed. 

� The task farm behavioral skeleton was integrated with the DSO program, providing a 
way to add or remove workers at execution time. 

� A time controller was implemented to manage automatically the time that the 
application should finish. 

� The computation result is shown at the graphical user interface. 
 

During the development of this project, we analyzed different ways to distribute the PL/SQL 
code between the master node and worker nodes with a Grid solution. In the last document, 
four different distributions were explained. Now, after the performance tests, we came to the 
conclusion that only two of them were really suitable to get good, fast and satisfactory results. 
In the following lines, we give a short explanation of those two possibilities. 
 
The first possibility is to store a part of the PL/SQL code in the databases installed in the 
worker nodes, and the other part of the PL/SQL code and all the tables in the master database 
located in the master node. This method is used when the information is distributed between 
many tables and it is necessary to use all of them when executing the PL/SQL code.  
 
The second possibility is to store all the code and empty main tables in the worker nodes 
databases, and the main tables in the master database. The information stored in the worker 
database only belongs to the specific clients whom are going to be processed in each node. 
Then, this method is suitable when the database is big. This option can be used when the 
PL/SQL code does a lot of calculations with specific data access. This database structure was 
selected to be used with the Computing of DSO Values use case because the application 
PL/SQL code use specific information stored in specific tables to do the calculations. When 
we did the performance tests, we could see that in this case the process time decreased when 
this kind of distribution was used. The PL/SQL code will use the information stored inside the 
node tables to do the calculation, and if it needs more data, it will take it from the master 
database. 
 
It is possible to find more information about the distribution of the databases in the previous 
document D.UC.04 [2]. 
 
The final version of the application is using the active Farm skeleton. This component is used 
to manage the worker nodes by adding or removing them when necessary. Furthermore, it 
provides a manager module that automatically adds or removes worker nodes when 
necessary. To use this module some parameters must be set to complete the criterion needed 
to determinate when the nodes should be added or removed. Those specifications are written 
in the rules.drl file. In this use case the manager module is used to start the initial worker 
nodes of the application. 

3.2.2 Configuration and usage  
The first thing to do before executing this prototype is to install the required software listed in 
section 3.1.1. After installing, testing and running all required software, you can start 
configuring the prototype. To configure the application is essential to add the following 
libraries to the lib directory: 
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� ProActive 3.9 (ProActive binaries and related libraries) 
� classes12.jar (JDBC library) 
� Task farm behavioural skeleton binaries and related libraries 
 

The following files need to be changed to configure and run the prototype on your 
environment: 
 

� \classes\com\atosorigin\usercase\dso\deployment.xml - open the deployment file and 
rewrite it with the nodes information. 

� \classes\com\atosorigin\usercase\dso\adl\DSOProgram.fractal - open the fractal file 
and change the attribute numTasks value, specifying the number of tasks that are 
going to be executed in the worker nodes. To specify this number we have to take into 
account that we need enough tasks to distribute the process between the nodes, but this 
number should not be too large to avoid having too many accesses in the worker nodes 
databases. 

� \classes\com\atosorigin\usercase\dso\adl\ReaderImp.fractal - open the fractal file and 
change the attributes url, user and pwd with the master database information 

� \classes\com\atosorigin\usercase\dso\adl\Compute.fractal - open the fractal file and 
change the attributes url, user and pwd with the master node database information. It 
is a worker node located inside the master node, specifically the first worker node the 
application initializes. 

� \classes\com\atosorigin\usercase\dso\adl\ComputeSlaves.fractal - open the fractal file 
and change the attributes url, user and pwd with the worker database information. 

� \classes\com\atosorigin\usercase\dso\adl\rules.drl - open the FARM rules file to set 
the number of workers that the application needs to start when the application begins 
the execution. 

  
After changing all the files listed above, you can start the application running the command: 
…\GRIDCOMP-FARM-ACTIVE\scripts\unix\dso.sh 
 
When the main application called “DSOProgram” begins running the graphical user interface 
appears. 
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At this time, the farm manager starts running and initializes the number of nodes specified in 
the rules file. As explained before, this file specifies the rules that the farm manager will use 
to manage the application, adding or removing workers automatically depending on the rules 
that you define. The final prototype uses the manager only to start the initial workers that the 
application will use. The new feature called time controller is being used to manage the 
number of workers needed (adding and removing them). This new feature was implemented 
because the farm manager doesn't work based on time, only with the task throughput. 
 
The application log is located in the box on the bottom of the first window. There, it is also 
possible to see what is happening with the worker nodes.   
 
When the initial worker nodes are initiated, the Start button will be enabled. At this moment it 
is possible for the user to enter some parameters in order to filter the output information. 
These parameters are: Client ID, Group ID, initial and final dates, or the maximum duration 
of the process. Only two of those parameters are obligatory: the initial and final dates. 
 
The maximum duration parameter is used to start the time controller feature developed by 
ATOS. This feature is used in the final version of the use case to give to the user the 
possibility to set the time that the application must finish. This controller will add or remove 
workers automatically depending on the time specified in the maximum duration parameters. 
 
When the Start button is pushed, all the tasks are distributed between the different workers, 
and the window with the graphics appears (two possibilities). 
 

1- The user sets the maximum duration parameters  
 

If the user has set the maximum duration parameters, the time controller starts running. The 
window the user is going see is the one showed in the picture bellow: 
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In this window you can see some graphics and a progress bar that shows the execution state 
belong the time. The progress bar on the top is used to show the percentage of tasks that was 
already executed. 
 
The graphic on the left shows the time that the application is going to take to finish (based on 
the task executions throughput), and it is updated every 5 seconds. If the time controller is 
running, the graphic will show two lines: the blue line represents the maximum time that the 
application should finish and the green line represents the minimum time. If the red line is 
under the green line, the time controller is going to remove a worker to increase the execution 
time, making the red line return inside the two lines. However, if it is over the blue line, the 
time controller is going to add a worker to decrease the execution time. This is the way this 
tool works to meet the time specified by the user. 
 
The graphic on the right shows the number of workers the application is using during the 
execution time. In this case, it shows that the application starts the process with three workers. 
At the beginning, there is a transition period when the average throughput is calculated and 
this makes an initial peak showed in the graphic on the left. The time controller doesn’t take 
into account this initial event. 
 

2- The user doesn’t set the maximum duration parameters 
 

If the user has not set the maximum duration parameter, the time controller is not started. The 
window the user is going see is the one showed in the picture bellow: 
 

 
 
Using this way the Add and Remove buttons will be enabled to execute the corresponding 
operations manually when the user considers properly. If the user press the add button, the 
application will add a new worker, and the execution will be faster. If the user press remove 
button the result will be the opposite, the application will remove a worker and the execution 
will be slower.  
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When the application finishes the execution of all tasks, a new window will appear showing 
the calculation results. The following picture shows the final window: 
 

 

3.2.3  Examples 
To test the application you can use the following parameters: 
 

� Client ID: <leave empty> 
� Client group: <leave empty> 
� Initial date: September 2008 
� Final date: October 2008 
� Maximum Time of process: <don’t change> 

 
After that, insert the parameters you need and press the start button to start the application. 
The second window will appear and them you can see the execution process. When all tasks 
are done, the result window will appear with the calculation results. 
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4 EDR Processor 

This use case, taken from the Telecommunications world, is an embarrassingly parallel1 
application that deals with huge amounts of data. This special feature will serve to assess and 
test whether the GCM is prepared to deal with real world applications. 
Record processing is a common computing problem that enterprises have to deal with, 
especially in the Telco world. Basically, the objective is to transform a big set of data records 
into another, which is in the end an essential part for the business. This transformation usually 
takes a lot of time to be performed and requires a considerable amount of computing 
resources. 
Because real-world EDR processing is time constrained and critical to the company’s 
objectives, the objective in this use case is to provide a high performance computing solution, 
based on a Grid Component version of the EDR Processor application, thus improving the 
quality of the processing by offering redundancy, fault-tolerance, scalability, load balancing, 
and reduced computing times. 
 

4.1 Detailed architectural design 

4.1.1 Architecture of the application 
An actual EDR Processor application will work unattended, inside a nightly batch process, 
taking information from a sequential file (previously generated from some source database) 
and storing the results into another sequential file (eventually imported to a target database). 
For the purposes of this project, the source and target databases will be ignored. 

 
 
Being an embarrassingly parallel process, the EDR processing can be easily distributed 
among a set of (likely heterogeneous) computing resources. In order to do that, the input EDR 
file must be split into fragments. Each fragment will be processed by a grid resource, and the 
results will later be joined. 
The scattering and joining of the files is performed by a “master” resource (the one running 
the application). The processing of the fragments is done by the “EDR slaves”, which transfer 
the result files back to the “master”. As we will see later, this fits perfectly one of the 
behavioural skeletons from WP 3 (the task farm). 
The following picture shows the conceptual behaviour of the application: 
                                                
1 http://en.wikipedia.org/wiki/Embarrassingly_parallel 
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As explained in previous deliverable documents and presentations ([1], [2]), the processing of 
an EDR is a rather simple case of an Extract, Transform and Load (ETL) process. 
The following picture shows the design of the ETL corresponding to the processing of an 
EDR file: 

 
The Extract Transform and Load processing is done using Pentaho Data Integration, also 
known as Kettle Project [4]. Kettle is an open source ETL library that includes a very user-
friendly integrated development environment. Using that IDE the user can easily design the 
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ETL process and save it to a metafile. That metafile can later be used to execute the ETL 
process through the Java API of the Kettle libraries. 
Each one of the steps of the transformation is described in depth in D.UC.04.A [2]. 

4.1.2 GCM Components 
Both this and the Wing Design use-cases have two distinct architectural designs: one using 
autonomic features, and the other not. The latter was developed first, as autonomic features 
were made available later during the project. The non-autonomic design is based on collective 
interfaces that take care of the distribution of the computations. The autonomic design, based 
on Behavioural Skeletons, adds quality of service (QoS) features along with the distribution 
of the computations, offering a higher level of integration with the application. Although not 
based on the same features, these two versions can be seen as a “before and after”, showing 
the evolution of features within the project.  

4.1.2.1 Components diagram 

4.1.2.1.1 Plain CFI version 
This version of the architectural design uses only features from the Component Framework 
Infrastructure (developed in Work Package 2). In this case, a multicast interface is used in 
order to distribute the processing effort among the nodes of the grid. 
 

 
 

Summarizing, the architectural design is as follows: 

� The EDRProcessor, the composite component containing everything else, receives the 
request to process an EDR file, and redirects it to the enclosed EDRMaster 
component. 

� Using the FileOperator, the EDR file is split into fragments. 
� Using a multicast interface, the fragments are processed by the EDRSlave 

components 
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� The partial results are sent to the ResultsCollector. 
� When all fragments have been processed, the ResultsCollector, using the FileOperator, 

merges the partial results, obtaining the final result. 
 
The above composition diagram, made using the Grid IDE [14], includes a single EDRSlave. 
The ADL cannot express the dynamic deployment of a given component; it is a known 
limitation, which can be circumvented using Behavioural Skeletons (as in the other version of 
the architectural design) or a programmatic solution. 
Making use of the programmatic solution allows us to use the multicast interface (the main 
objective of the Plain CFI version of the use case). In order to adapt better to the underlying 
deployment, a helper class will instantiate and bind as many EDRSlave components as nodes 
available. The following fragment of code is responsible for doing that: 
 
         
        Factory factory = FactoryFactory.getFactory(); 
        edrProcessor = (Component) factory.newComponent("EDRProcessor", context); 
 
        // Looks for well-known subcomponents 
        ContentController cc = (ContentController) edrProcessor 
            .getFcInterface(Constants.CONTENT_CONTROLLER); 
        Component comps[] = cc.getFcSubComponents(); 
        for (Component c : comps) { 
          if (Fractal.getNameController(c).getFcName().equals("EDRMaster")) { 
            edrMaster = c; 
          } else if (Fractal.getNameController(c).getFcName().equals("ResultsCollector")) { 
            resultsCollector = c; 
          } 
        } 
 
        // create EDRSlave components for all nodes 
        // First node should already have an EDRSlave deployed in 
        slaves = new Component[nodes.length - 1]; 
        for (int i = 0; i < slaves.length; i++) { 
          slaves[i] = (Component) factory.newComponent("EDRSlave", context); 
          Fractal.getBindingController(slaves[i]).bindFc("resultsCollector", 
              resultsCollector.getFcInterface("resultsCollector")); 
          Fractal.getBindingController(edrMaster).bindFc("slave", 
              slaves[i].getFcInterface("slave")); 
          // start slave component 
          Fractal.getLifeCycleController(slaves[i]).startFc(); 
          logger.info("EDRSlave component " + i 
              + " created, and bound to EDRMaster and ResultsCollector"); 
        } 
        // start EDRProcessor component 
        Fractal.getLifeCycleController(edrProcessor).startFc(); 
 

 

4.1.2.1.2 Autonomic version 
The autonomic version of the architectural design is focused in testing and assessing the 
Behavioural Skeleton developed in Work Package 3. This use case features a Task Farm, as it 
is the Behavioural Skeleton which fits better its needs. 
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In this version, made using the Grid IDE [14], the multicast interface between the EDRMaster 
and the EDRSlave components has been replaced by a Task Farm component, the 
EDRSlaveFarm. This component will take care of deploying as many EDRSlave components 
as needed, controlling the parallelism degree. This degree can vary during the execution of the 
application, in order to adapt the performance to the requirements of the user. 

4.1.2.2 Components description 

4.1.2.2.1 EDRProcessor and EDRProcessorAutonomic 
These are the higher level components from its corresponding architectural designs, the Plain 
CFI and the autonomic one. They contain the rest of the components from the architecture and 
offer a single edrProcessor server interface. The GUI of the application makes use of this 
interface to submit EDR processing requests. 

4.1.2.2.2 EDRMaster and EDRMasterAutonomic 
The EDRMaster and the EDRMasterAutonomic act as the master component of their 
corresponding architectures, offering an edrProcessor server interface. The main difference 
between them is their slave client interface: the former uses a multicast interface, while the 
latter uses a singlecast one, but bound to a Task Farm BeSke. Otherwise, the behavior of 
these components is identical: 

• Scatter the file using the fileOperator client interface. 
• Initialize the ResultsCollector component through its interface, telling it how many 

fragments must be processed. 
• Process the fragments using the slave client interface. 

4.1.2.2.3 EDRSlaveFarm 
This component is only present in the autonomic version of the application. This composite 
component extends the gridcomp.manager.farm.adl.farm from the NFCF, offering a farm of 
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EDRSlaveAutonomic components. Using the non functional interfaces of this component, the 
user can modify the parallelism degree of the application. 

4.1.2.2.4 EDRSlave and EDRSlaveAutonomic 
These components only differ slightly in their ADL specification, in order to adapt them to 
their respective architectures. Otherwise, they are identical and have the same behavior. 
These are the components in charge of applying the ETL process implemented using Kettle 
and described in a previous section of this document. When receiving the first request, the 
Kettle library will be initialized with all the needed configuration files. Subsequent requests 
will be processed faster, as no initialization has to be performed again. 
When Kettle initialization is done, the component transfers the corresponding fragment of the 
EDR file from the node where the EDRMaster component is deployed. Then, the 
transformation is applied to the file using the Kettle library. The result is transferred back and 
the ResultsCollector is invoked to notify another fragment has been processed. 

4.1.2.2.5 ResultsCollector 
This component collects the intermediate results, sent from the EDRSlave or EDRSlaveFarm 
components. When all results are collected, they are joined, using the FileOperator. 
Also, this component offers information about the progress of the processing (how many 
fragments have already been processed). 

4.1.2.2.6 FileOperator 
The FileOperator component offers the functionality to scatter and join files. Those files must 
reside in the local file system. 
 

4.1.2.3 Interfaces 

In this section, the interfaces from the different components are presented. 

4.1.2.3.1 EDRProcessor 
This is the server interface offered by the EDRProcessor, EDRProcessorAutonomic, 
EDRMaster and EDRMasterAutonomic components: 
 
public interface EDRProcessor { 
 
  /** 
   * Processes the given EDR input file. 
   *  
   * @param inputFilePath path to the EDR input file 
   * @param outputFilePath path to store the results file to 
   * @param recordsPerFragment number of EDR to include on each fragment of the input file 
   * @param gzipFiles whether to compress fragment files when transferring them 
   */ 
  void process(String inputFilePath, String outputFilePath, int recordsPerFragment, 
      boolean gzipFiles); 
} 

It contains a single, straight-forward method. 

4.1.2.3.2 EDRSlave 
This is the server interface offered by the EDRSlave and EDRSlaveAutonomic components: 
 
public interface EDRSlave { 
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  /** 
   * Processes an EDRRequest. 
   * <p> 
   * This means: 
   * <UL> 
   * <LI>Downloading the given fragment of the EDR file from source node</LI> 
   * <LI>Processing all the contained EDRs, generating a partial results file</LI> 
   * <LI>Uploading the partial results file to the source node</LI> 
   * <LI>Calling the ResultsCollector component to let it know processing is finished</LI> 
   * </UL> 
   *  
   * @param request the EDRRequest to be processed 
   */ 
  void process(EDRRequest request); 
} 

 
An EDRRequest contains the path to one of the fragments of the EDR input file, the node 
where it is stored, the path to store the partial results, and a flag that states whether to 
compress those files when transferring them. 

4.1.2.3.3 EDRSlaveMulticast 
This is the multicast client interface used by the plain CFI version of the EDRMaster 
component to invoke the EDRSlave components. 
 
public interface EDRSlaveMulticast { 
 
  /** 
   * Processes a list of EDRRequests, using Round Robin parameter dispatch mode. 
   * <p> 
   * This means: 
   * <UL> 
   * <LI>Downloading EDR fragment files from source node</LI> 
   * <LI>Processing all the contained EDRs, generating partial results files</LI> 
   * <LI>Uploading the partial results files to the source node</LI> 
   * <LI>Calling the ResultsCollector component to let it know processing is finished</LI> 
   * </UL> 
   *  
   * @param requests the list of EDRRequest to be processed 
   */ 
  @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode = ParamDispatchMode.ROUND_ROBIN)) 
  void process(List<EDRRequest> requests); 
} 

4.1.2.3.4 FileOperator 
This interface contains the needed operations with files: scatter() and join(). 
 
public interface FileOperator { 
 
  /** 
   * Scatters the given file into fragments of the given size (expressed in number of 
   * lines/Extended Data Records). 
   * <p> 
   *  
   * @param source the file to be scattered 
   * @param linesPerFile size of the fragments 
   * @param gzipFiles whether to gzip fragments 
   * @return List of the resulting Files 
   */ 
  List<File> scatter(File source, int linesPerFile, boolean gzipFiles); 
 
  /** 
   * Joins the given source files into the given output one. 
   *  
   * @param sources list of files to be joined 
   * @param outputFile where to save the resulting file 
   * @param gzipFiles whether the source files are gzipped 
   */ 
  void join(List<File> sources, File outputFile, boolean gzipFiles); 
} 
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4.1.2.3.5 ResultsCollector 
The server interface offered by the ResultsCollector component is the following: 
 
public interface ResultsCollector { 
 
  /** 
   * Initializes the ResultsCollector component. 
   *  
   * @param numOfResultFilesToCollect number of partial results to be collected 
   * @param resultsFile path to the results file 
   * @param gzipFiles whether the files are compressed 
   */ 
  void init(int numOfResultFilesToCollect, File resultsFile, boolean gzipFiles); 
 
  /** 
   * Informs the collector a new partial result is available, providing its location. 
   * <p> 
   * If the number of results files to be collected has been reached, this triggers the 
   * joining of the partial results files into the final result, using the FileOperator. 
   *  
   * @param remoteFile path to the new partial result. 
   */ 
  void collect(File remoteFile); 
 
  /** 
   * Gets the number of partial result files already collected. 
   *  
   * @return the number of partial result files already collected. 
   */ 
  IntWrapper getResultFilesCount(); 
 
  /** 
   * Gets the number of partial result files to be collected. 
   *  
   * @return the number of partial result files to be collected. 
   */ 
  IntWrapper getResultFilesToCollect(); 
} 

 
The init() method is invoked from the EDRMaster and EDRMasterAutonomic 
components, the collect() method from the EDRSlave and EDRSlaveAutonomic 
components, and the getResultFilesCount() and 
getResultFilesToCollect() methods from the Graphical User Interface, in order to 
provide feedback about the progress of the processing. 

4.2 Manual 

4.2.1 Final prototype description 
The final prototype, as well as revised component architecture, includes several enhancements 
over the previous prototypes, specially the autonomic version: 

• Integration with final NFCF prototype. 
• Dynamic quality of service (QoS) contract: desired throughput and maximum 

parallelism degree can be changed during the execution. 
• “Idle” and “busy” QoS: when the application is idle the target is to reduce the 

deployment to its minimum (only one worker component). When the application is 
busy, the target is to reach the quality of service the user expects. 

• Monitoring of the Task Farm: showing the achieved and desired throughput and the 
current parallelism degree. 

• Full integration of the source code and ADL files with the GIDE: the programmer can 
navigate the source code using the composition diagrams. 
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4.2.2 Configuration and usage 
Both the source code and the binaries of the final prototype are included in the file 
“D.UC.05.B – EDR Processor final prototype.zip”. The latest version of this prototype is also 
publicly available at INRIA's GForge gridcompwp5gs project [12]. 
In addition to the common system requirements (listed in the introduction of this document 
(Section 1)), the following tools are needed in order to run the application: 

� Gnuplot [10] standalone, or  
� Gnuplot bundled in cygwin distribution [11] (windows only). 

 
After uncompressing the aforementioned zip file, and assuming that both java and ant are in 
the path, just type ant processor to invoke the EDR Processor. The application will 
request to enter the path to the distribution folder of ProActive 3.90. After that, the user 
interface will appear: 
 

 
 
This first “tab” contains the deployment details. Depending on your infrastructure, select one 
of the included deployment descriptors and press the “Deploy” button. 
The “Deployment log” text box will show the log trace output during the deployment: 
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After the deployment is done, the “Options” tab is enabled: 

 
The “options” tab contains the controls to select the desired input parameters: 

� Input file: path to the file containing the EDRs to be processed. 
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� Partition size: number of EDRs each fragment file will contain. 
� Transmit compressed data: whether to compress the fragments of the input file before 

transferring them. This may reduce the time needed to transfer the data through the 
network. 

� Output file: path to the file where the results of the processing will be stored. 
 
The controls related to the autonomic behaviour are, obviously, disabled when running the 
plain CFI (non-autonomic) version of the application. 
 
When all of the above fields have been complimented, the “Start” button can be pushed. The 
request will be submitted to the components, and the “Execution” tab will be enabled, 
showing the log trace of the execution and a progress bar.  
 

 
 
When the progress bar reaches 100%, the execution is done (all fragments from the EDR file 
have been processed and their results joined), and new requests can be submitted.  

4.2.2.1.1 Autonomic version 
In order to test the autonomic version of the application, the “Use autonomic features” check 
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors 
must be selected. 
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When in autonomic mode, the QoS controls are enabled, letting the user decide the target 
throughput (measured in thousands of EDR processed per second) and the maximum allowed 
parallelism degree (the maximum number of workers). After changing any of those values, 
the user must press the “Apply QoS” button to make effective that change. 

 
During the execution of the request, the user can have access to the monitoring of the 
EDRSlaveFarm, issuing the following command in a shell: gnuplot farm_monitor.gp (or 
gnuplot farm_monitor_windows.gp in windows). This will open a window displaying two 
different charts made with the monitoring information coming from the BeSke: 
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The green line represents the throughput requirement as entered in the QoS section of the GUI 
(and will change accordingly). The magenta line is the current throughput, as measured by the 
monitor. That measure will differ slightly from the one being offered by the GUI, as they are 
not computed the same way: the manager computes a running average (based on time 
windows, and more sensitive to changes in the parallelism degree) while the GUI displays the 
complete average (from start to finish). Finally, the red line represents the current number of 
workers (EDRSlaveAutonomic components) bound to the EDRSlaveFarm. 
In the above figure, we can see how the autonomic manager adds more workers after realizing 
the required throughput could not be achieved with the initial single worker. When the 
processing is done, the extra workers are removed. 

4.2.3 Examples 
The /test folder contains several sample input files (generated using the script provided on the 
same folder), ranging from one thousand EDRs to one million EDRs. If needed, more files 
can be generated, invoking the EDRGenerator tool (ant generator in the main folder). 
Generating random EDR files is a time consuming task so, in order to create a new file, it is 
advised to use one of the included ones to repeatedly append it to the new one. 
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5 Wing Design 

This use case, in contrast to the Telco one (Section 4), manages small amounts of information, 
but needs lots of computing power. The application is also an embarrassingly parallel one, but 
based on pre-existing legacy code. The ability to wrap and grid-enable existing legacy code is 
crucial for the adoption of the GCM by the industry. 
In the aerospace sector, the software that computes the aerodynamic wing performance for a 
given configuration is used to test different configurations of the wing features and to 
eventually find an acceptable design. Merak is a legacy application, written in FORTRAN 77 
by Dr. Mariano Vázquez, with binaries for Windows, Linux and Solaris. This application 
permits to analyze parameters variation in incompressible turbulent flow around a triple 
element airfoil, to evaluate the stalling angle of different wing geometries. Turbulence is 
simulated using different k-epsilon models2, including law-of-the-wall and two-layer low Re3. 
Finally, the application can extract the desired information and create a graph using gnuplot 
[10]. 

5.1 Detailed architectural design 

5.1.1 Architecture of the application 
Merak, manages small amounts of information, but needs lots of computing power. Our 
objective is to use GridComp solution to wrap and grid-enable this existing legacy code and 
also to prove the integration of data staging for the input files and output files into this 
sweeping process. 
A depiction of the operation of the Wing Design application is offered next: 

 
 

1. The user provides a set of wing geometry files and input parameters for the 
experiment. 

2. The legacy application binaries (Merak) are provisioned to the resources on the grid, 
as new components. 

                                                
2 http://en.wikipedia.org/wiki/Turbulent_Kinetic_Energy 
3 http://en.wikipedia.org/wiki/Reynolds_number 
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3. The complete set of parameter combinations is obtained by the Parameter Sweeper 
component. 

4. Each parameter combination is sent to a Merak component, which performs its 
simulation. 

5. Results are collected, composed and a graph is generated. 
 
Legacy executable files are only available for Windows, Linux and Solaris, so resources 
running these operating systems are needed. Also, result graph is generated using gnuplot 
[10], which must be installed in the computer running the application. 
In order to provide a better user experience, an interactive graph is built during the execution 
(per wing geometry involved). The user can change the point of view; zoom in and out, etc. 
These interactive graphs are generated using Visad [8], which is based on Java3D [9] that 
must be present in the computer running the application. 

5.1.2 GCM Components 

5.1.2.1 Components diagram 

5.1.2.1.1 Plain CFI version 
As in the previous use case, this version of the architectural design uses only features from the 
Component Framework Infrastructure (developed in Work Package 2): a multicast interface is 
used in order to distribute the computation effort among the nodes of the grid. 
 

 
 

A brief explanation of this architectural design, made using the Grid IDE [14], is the 
following: 

� The WingDesign receives the request to perform a simulation, given a set of wing 
configurations and input parameters. This request is redirected to the Master 
component. 
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� Using the ParameterSweeper, the complete list of parameter combinations to evaluate 
is obtained. 

� The above information is also passed to the ResultsComposer. This is done in order to 
be able to keep track of the progress of the computations. 

� Each one of the parameter combinations is delivered to a Merak component, using the 
multicast interface. 

� Merak is a composite component, consisting in a MerakController and a 
MerakWrapper: the latter wraps the legacy code (using the interfaces and techniques 
contributed by Tsinghua University [13]), while the former prepares and transfers both 
the parameter and result files. Combining these components, Merak performs the 
simulation using the given parameters. 

� Results are delivered to the ResultsComposer. When all results are received, the graph 
showing the comparison of the results is made. 

As in the EDR Processor, for this version of the architectural design the same programmatic 
mechanism is used to deploy as many Merak composite components as nodes available. 

5.1.2.1.2 Autonomic version 
The autonomic version of the components diagram, made using the Grid IDE [14],  is the 
following: 
 

 
 
This autonomic architectural design makes use of a Farm controller (the MerakFarm), 
replacing the multicast interface between the Master and the Merak components from the 
plain CFI version. The MerakFarm controls the parallelism degree of the application, 
deploying as many MerakAutonomic components as needed. This degree can vary during the 
execution of the application, in order to adapt to the performance requirements of the user. 
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As the task farm behavioural skeleton does not offer complete support for composite workers 
(monitoring and rebalancing of tasks have issues), we had to turn the MerakAutonomic 
component into a primitive one, removing the legacy code wrapper component, and using the 
ad hoc approach as in previous deliverables ([1], [2]). 

5.1.2.2 Components description 

5.1.2.2.1 WingDesign and WingDesignAutonomic 
These are the higher level components of their respective architectural designs. They are 
composite components, encapsulating all the others, and offering a server interface, name 
wingDesign, which is used by the graphical user interface. Through this interface the user can 
submit simulation requests, providing one or more wing geometry files and the needed input 
parameters. 

5.1.2.2.2 Master and MasterAutonomic 
The previous components redirect their wingDesign server interface to these ones. They 
control the execution, invoking the appropriate interfaces from the different components they 
interact with: 

� Initialize the ResultComposer component with the input parameters. 
� Initialize the Merak components, with the appropriate legacy application binaries for 

their platform. 
� Obtain the list of all the parameter combinations that must be processed, calling the 

ParameterSweeper component. 
� Processes the list of parameter combinations, invoking the Merak components 

(whether through the multicast interface or the farm controller). 

5.1.2.2.3 ParameterSweeper 
This component computes the complete list of parameter combinations to be processed. This 
is simply the Cartesian product of: 

• The range of incidence angles 
• The range of Reynolds numbers 
• The range of wing configurations 

This component must be co-allocated with the Master (or MasterAutonomic) one, as it needs 
local access to the wing geometry files. 

5.1.2.2.4 MerakFarm 
As in the previous use case, this component is only present in the autonomic version of the 
application. This composite component extends the gridcomp.manager.farm.adl.farm from 
the NFCF, offering a farm of MerakAutonomic components. Using the non functional 
interfaces of this component, the user can modify the parallelism degree of the application, 
both directly or setting a QoS contract. 

5.1.2.2.5 MerakAutonomic 
This is the worker component of the MerakFarm. It is a primitive component that manages the 
execution of the legacy code. It is not based on the legacy code wrapping techniques from 
Tsinghua University [13], as this will require the use of a composite component, and the task 
farm behavioural skeleton has issues with this kind of workers. 
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5.1.2.2.6 Merak 
In the plain CFI version, this component takes care of everything related to the execution of 
the legacy application, encapsulating the two primitive components described next: 
MerakController and MerakWrapper. 

5.1.2.2.7 MerakController 
The MerakController component makes sure the execution of the legacy code can be 
achieved: 

• Downloads the proper executable files from the master node on initialization (this is 
only done once). 

• Processes each received request for execution and prepares the input parameters 
• Invokes the legacy code control interface of the MerakWrapper component, thus 

executing the legacy application. 
• Transfers the result file after finishing the execution. 
• Deletes temporary file when done. 

5.1.2.2.8 MerakWrapper 
This component, deriving from the templates and interfaces provided by Tsinghua University 
[13], wraps the legacy code, and keeps track of its execution. 

5.1.2.2.9 ResultsComposer 
The ResultsComposer gathers the result files from the simulations, generating a graph where 
the different wing geometries are compared. It also offers information about the progress of 
the process and temporary results, allowing the graphical user interface to display that results 
live. 
 

5.1.2.3 Interfaces 

In this section, the interfaces from the different components are presented. 

5.1.2.3.1 WingDesign 
This is the interface offered by the WingDesign, WingDesignAutonomic, Master and 
MasterAutonomic components. Its only method is the starting point of the whole process: 
 
public interface WingDesign { 
  /** 
   * Performs a simulation, processing the given parameter specification. 
   *  
   * @param spec contains the wing geometries, incidence angles, reynolds and iteration 
   *        numbers to perform the simulation 
   * @return a graph comparing the different wing geometries. 
   */ 
  File process(SweepSpecification spec); 
} 

 
A SweepSpecification is a java class that contains a list of geometry files, the initial 
and final values for the incidence angle and the Reynolds number ranges, the number of 
samples to take from each range, and a number of iterations to perform the simulation. 
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5.1.2.3.2 ParameterSweeper 
This interface contains the method to generate the list of parameter combinations to be used 
when invoking the legacy application (merak): 
 
public interface ParameterSweeper { 
  /** 
   * Generates the combination of parameters to be submitted to merak. 
   * <p> 
   * This is the Cartesian product of the ranges contained in the sweep specification 
   * 
   * @param spec the specification of the ranges of values to be swept 
   * @return a list of Merak Parameters 
   */ 
  List<MerakParameters> sweep(SweepSpecification spec); 
} 

5.1.2.3.3 Merak 
The interface of the Merak, MerakAutonomic and MerakController components, offering 
access to the legacy application is the following: 
 
public interface Merak { 
 
  /** 
   * Prepares the component for the execution of the Merak legacy application. 
   *  
   * @param supplier the node to download the executable files from 
   * @param platformFiles map with the executable files per platform. 
   * @param resultsDir path on the supplier node where result files must be stored 
   */ 
  void prepare(Node supplier, Map platformFiles, File resultsDir); 
 
  /** 
   * Runs the Merak legacy application, using the given parameters. 
   *  
   * @param params parameters to pass to the legacy application 
   */ 
  void run(MerakParameters params); 
 
  /** 
   * Deletes all temporary files stored in the local file system during preparation or 
   * execution. 
   */ 
  void cleanUp(); 
} 

5.1.2.3.4 MerakMulticast 
This is the multi-cast client interface used by the plain CFI version of the Master component 
to invoke the Merak components: 
 
public interface MerakMulticast { 
 
  /** 
   * Prepares the component for the execution of the Merak legacy application. 
   *  
   * @param supplier the node to download the executable files from 
   * @param platformFiles map with the executable files per platform. 
   * @param resultsDir path on the supplier node where result files must be stored 
   */ 
  void prepare(Node supplier, Map platformFiles, File resultsDir); 
 
  /** 
   * Runs the Merak legacy application, using the given list of parameters, using Round 
   * Robin parameter dispatch mode. 
   *  
   * @param params the list of parameters to pass to the legacy application 
   */ 
  @MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode = ParamDispatchMode.ROUND_ROBIN)) 
  void run(List<MerakParameters> params); 



 

GridCOMP FP6-034442   page 50 of 58    D.UC.05.A 

 
  /** 
   * Deletes all temporary files stored in the local file system during preparation or 
   * execution. 
   */ 
  void cleanUp(); 
} 

 
The only method offering a multicast behaviour is run. This is dispatched in a round robin 
fashion among the Merak components. 

5.1.2.3.5 ResultsComposer 
The server interface offered by the ResultsComposer component is the following: 
 
public interface ResultsComposer { 
 
  /** 
   * Initializes the component. 
   *  
   * @param spec the input parameters to be processed 
   * @param resultsDir the path to the directory where temporary results will be stored 
   */ 
  void init(SweepSpecification spec, File resultsDir); 
 
  /** 
   * Adds a new result (a point in the graph for a certain wing geometry) to the composer. 
   * When all results are added, the graph comparing the different wing geometries is 
   * made. 
   *  
   * @param geoPoint a point in the graph for a certain wing geometry 
   */ 
  void addResult(GeometryPoint geoPoint); 
 
  /** 
   * Gets the percentage of results received since the component was initialized. 
   *  
   * @return the percentage of results received since the component was initialized 
   */ 
  Integer getResultsPercent(); 
 
  /** 
   * Gets a list with all the results added since the last call to this method. 
   *  
   * @return a list with all the results added since the last call to this method 
   */ 
  List<GeometryPoint> getPendingResults(); 
} 

 
The init method is invoked by the WingDesign component at the start of the process. The 
addResult method is invoked by the Merak components each time a new result is obtained. 
Last, getResultsPercent and getPendingResults are invoked from the GUI in 
order to implement a progress bar and the interactive live graphs, respectively. 
 

5.2 Manual 

5.2.1 Final prototype description 
The final prototype of the Wing Design use case features the same enhancements as the EDR 
Processor, described in 4.2.1, and also makes use of the legacy code wrapping techniques 
contributed by the Tsinghua University [13] (only the non-autonomic version). 
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5.2.2 Configuration and usage 
The file “D.UC.05.A – Wing Design final prototype.zip” contains both the source and the 
binaries of the final prototype. The latest version of this prototype is also publicly available at   
INRIA's GForge gridcompwp5gs project [12]. 
In addition to the common system requirements (listed in the introduction of this document 
(Section 1)), the following tools are needed in order to run the application: 

� Java3D [9] 
� Gnuplot standalone [10] or 
� Gnuplot bundled in cygwin distribution [11] (windows only). 

Run ant WingDesign to invoke the Wing Design. The application will request you to 
enter the path to the distribution folder of ProActive 3.90. After that, the user interface will 
appear: 

 

 

This first “tab” contains the deployment details. Depending on your infrastructure, select one 
of the included deployment descriptors and press the “Deploy” button. 

The “Deployment log” text box will show the log trace output during the deployment: 
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After the deployment is done, the “Options” tab is enabled. This tab includes controls to 
select the input parameters: 

� Wing geometries: all .geo files found in the geometries folder are listed; one or more 
can be selected (Ctrl + click). 

� Range of incidence angle: from, to, and number of samples 
� Range of Reynolds number: from, to, and number of samples 
� Number of iterations 
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The “start” button submits the request, when pressed. The “Execution” and “Results” tabs are 
enabled. The former shows log messages and a progress bar: 
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The “Results” tab displays the interactive graphs, a progress bar and the gnuplot comparison 
graph (only when finished): 
 

 
 
In order to control the interactive graphs: 

� Dragging the mouse will rotate the point of view 
� Pressing caps while dragging the mouse up or down will zoom in or out. 
� Pressing ctrl while dragging the mouse will move the point of view 
� The controls at the bottom of each window will change the appearance of the 

corresponding graph. 

5.2.2.1.1 Autonomic version 
In order to test the autonomic version of the application, the “Use autonomic features” check 
box must be checked in the “Deployment” tab, and one of the specific deployment descriptors 
must be selected (at the time of this writing only a local deployment descriptor is offered). 
While running a request, a set of controls will be enabled in the “Options” tab: 

• Throughput: the desired number of iterations per second. The autonomic manager will 
try to reach this throughput. 

• Maximum parallelism degree: the maximum number of workers the autonomic 
manager can use for the distribution of the computations. 

 
During the execution of the request, the user can have access to the monitoring of the 
MerakFarm, issuing the following command in a shell: gnuplot farm_monitor.gp (or 
gnuplot farm_monitor_windows.gp in windows). This will open a window displaying two 
different charts made with the monitoring information coming from the BeSke: 
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The meaning of the lines is the same than in the previous use case: the green line represents 
the throughput requirement; the magenta line is the current throughput; and the red line 
represents the current number of workers (MerakAutonomic components) bound to the 
MerakFarm. 
In the image above, we can see how the manager tries to reach and keep up with the requested 
throughput but, as the limit of the parallelism degree is 4 (in this case), it fails. 

5.2.3 Examples 
The early prototype includes a few wing geometry files to be used for testing (under the 
geometries folder). The more files that are included or the more samples that are selected for 
the incidence angle or Reynolds number, the higher the amount of invocations to the legacy 
application. Changing the amount of iterations will also increase or decrease the time needed 
to accomplish each invocation (the higher, the longer). Default values should take a few 
minutes to complete for a local deployment, when one wing geometry is selected.
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6 Conclusions 

This section summarizes the impact of GridCOMP and the Grid Component Model (GCM) 
on the different use cases. 
 
Biometric identification is known to be computational intensive and thus time consuming if 
applied to a large user population. With the BIS use case, a scalable distributed identification 
system has been built which is able to process identification requests in real-time, for 
instance, in a few seconds, while working on a very large user population. 
Traditionally, such systems have been specifically developed to satisfy pre-defined QoS 
requirements. Consequently, system modifications were required whenever the QoS contract 
changed. The BIS prototype eliminates this implication, since it scales independently in 
accordance with the current QoS contract thanks to the autonomic reconfiguration 
functionality provided through the component framework. 
Furthermore, traditional identification systems were usually built for a specific dedicated 
hardware infrastructure. The GridCOMP framework, however, with its strict separation of 
concerns and its advanced deployment infrastructure, allows building distributed applications 
independent of the target hardware infrastructure. As a result, the BIS prototype can be 
deployed on arbitrary and possibly heterogeneous hardware without changing a single line of 
application source code. 
Finally, the BIS use case demonstrates that, with the help of the GridCOMP framework, 
development of Grid applications is no longer complex and time consuming. On the contrary, 
development time could be significantly reduced due to advanced features such as 
behavioural skeletons and the GIDE provided as part of the GridCOMP framework. 
 

“Computing of DSO value” was an application which needed a long time to process and 
obtain the expected results. It is used to work out the mean time that the clients delay to pay 
an invoice to Atos.  

Those are the main improvements after use Gridcomp Framework: 

• The reduction of the execution time. 

• The reduction of the complexity throughout the development phase. 

• The development of a cheaper infrastructure and easily scalable application. 

The first improvement that should be mentioned is the reduction of the execution time. It is 
important to know that for carrying through the operation a heavy PL/SQL process is 
executed which has a high calculation level. Moreover, if we take into account that the results 
the application calculates are processed based on the information stored in a central and very 
large database, and that those results should be accessed by several departments inside the 
company, we are going to realize that the data processing is quite high and will only increase 
over time. The old DSO application actually takes about four hours to compute around 6.600 
clients. Some tests were performed on top of Grid5000 platform to measure the benefits using 
a grid solution. For this test, the master database was replicated to all nodes making each node 
independent to do their calculation. The calculation time using 25 nodes was almost 96% less 
than using only one node. 

The second objective achieved is to reduce the complexity throughout the development phase. 
Therefore, we stress the importance of the components of the GridCOMP framework during 
this phase: GridCOMP provides some features, like the GIDE, that reduce the complexity 
when implementing the components of a Grid application. It is also important to highlight the 
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significance of other advanced features such as behavioral skeletons, which saves the 
application the trouble of manage the nodes. Those features fulfill our objective.  

The third aim of this use case consists of developing a cheaper infrastructure and easily 
scalable application.  To maintain the old application, a new powerful server was needed. 
Using Grid technology, existing machines can be used reducing the infrastructure costs. What 
is more, using the deployment file, worker nodes can be added easily. 
 
The Extended Data Record Processing application was implemented for very specific, and 
expensive, hardware. The first objective, when porting the application to GridCOMP, was to 
write a portable, multiplatform, application. Being a 100% Java solution, GridCOMP based 
applications can be run on almost any platform, opening the path to an affordable and easy 
scalability. Also, thanks to the XML-based deployment, the new application can be scaled up 
without changing its source code. 
Using the Grid IDE, the new application benefited from a top-down design, taking advantage 
of the composition of components. Moreover, the NFCF provided the means to achieve 
autonomically the desired QoS using Behavioural Skeletons and JBoss rules based contracts. 
While the original application was commercial and closed source, the new one is free and 
open. 
 
The Wing Design use case consisted in bringing new life to an obsolete and hardly reusable 
legacy code application. This is a common situation in research environments, where there is 
multitude of programs developed using ancient programming languages, no longer 
maintained and poorly documented. Instead of rewriting them using a new language, which 
will need a big investment both in time and money, those programs can be wrapped inside 
components and reused by new (most probably distributed) applications, taking advantage of 
what it is already implemented and worked well for years. 
In this case, an aerodynamic simulation program, written in FORTRAN 77, was used to show 
the benefits of this philosophy. Using the methods and techniques for wrapping the legacy 
code into a component (developed by the Tsinghua University), the resulting component was 
integrated into a new, GridCOMP-based demonstrator application, taking advantage of the 
distributed execution and the autonomic management of its performance. This resulted in 
reduced response times, thanks to the distribution of the computations, enabling also the 
scalability of the application, adding more (low cost) resources without the need to do any 
change in the code. 
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