

Project no. FP6-034442

GridCOMP

Grid programming with COMPonents : an advanced component platform
for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.CFI.05 – CFI prototype and early documentation

Due date of deliverable: 31 May 2008

Actual submission date: 07 July 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU Public PU

Keyword List: component framework implementation, GCM, ProActive
Responsible Partner: Denis Caromel, INRIA

GridCOMP FP6-034442 page 2 of 9 D.CFI.05

MODIFICATION CONTROL
Version Date Status Modifications made by

0 DD-MM-YYYY Template Patricia HO-HUNE
1 25-06-2008 Draft Cédric Dalmasso
2 27-06-2008 Draft Bastien Sauvan
3 30-06-2008 Draft Cédric Dalmasso
4 03-07-2008 Draft Cédric Dalmasso
5 07-07-2008 Draft Cédric Dalmasso
 Final Denis Caromel

Deliverable manager

 Denis Caromel, INRIA

List of Contributors
 Denis Caromel, INRIA

 Cédric Dalmasso, INRIA

 Bastien Sauvan, INRIA

 Matthieu Morel, UCHILI

List of Evaluators
 Yongwei Wu, TU

 Igor Rosenberg, ATOS

Summary

This document describes the Component Framework Implementation (CFI) prototype. The
D.CFI.05 prototype which is an improved version of the early prototype released in the
D.CFI.02 deliverable. This prototype is the first implementation of the GCM component
model [1].

The new features provided by the CFI prototype are listed and briefly described in the first
part of this document. In addition, a separate file contains the early documentation fully
describing all the CFI and showing how to make use of this prototype. The documentation
contains:

• A user guide explaining how to create primitive and composite components.

• Documentation of each feature included in the CFI.

• Documentation of the GCM deployment framework which implement ETSI
standards.

GridCOMP FP6-034442 page 3 of 9 D.CFI.05

Table of Content

1 INTRODUCTION ... 4

2 CFI EARLY DOCUMENTATION ... 4

2.1GCM DEPLOYMENT... 5
2.2COLLECTIVE INTERFACES IMPROVEMENTS .. 5

2.2.1 Multicast interfaces .. 5

2.2.2 Gathercast interfaces ... 6
2.3OTHER CHANGES .. 7

3 PERSPECTIVES & CONCLUSION... 7

4 REFERENCES .. 9

GridCOMP FP6-034442 page 4 of 9 D.CFI.05

1 Introduction

This document describes the deliverable D.CFI.05, i.e. the prototype of the Component
Framework Implementation (CFI). The current implementation of the CFI provides the basic
features defined by the CoreGRID NoE project in the GCM [1]. This prototype is built upon
the ProActive Grid Middleware [2] which features a framework for transparent asynchronous
communication between Active Object [3].

CFI users do not need to know the Active Object programming model and the ProActive
middleware to start to use the CFI since the creation of components and access to components
rely on standard Fractal/GCM API. The current implementation of the CFI provides the basic
features defined in the GCM model. The D.CFI.02 deliverable [4] contains a description of
the features included in the previous CFI released. Furthermore, we explained how ProActive
is used to provide an implementation of the GCM in the D.CFI.03 [7] which described the
architectural design of the CFI. The source code, the binaries and the whole ProActive
documentation are packaged in the D.CFI.05-bundle.zip file.

In this document, we describe the changes made in the implementation since the D.CFI.02
released. In addition, this deliverable contains the CFI early documentation.

2 CFI early documentation

To ease the distribution of the document in different format (PDF and HTML) we use the
DocBook1 technology. As a consequence we can not include the documentation in this
document. The CFI early documentation is available in a separate file, D.CFI.05_CFI-early-
documentation.pdf. The CFI features implemented until now are documented. The
documentation contains:

• Documentation of the GCM deployment framework which implement ETSI
standards.

• Technical documentation describing how to use each feature included in the CFI.

• A tutorial providing a user guide explaining how to create primitive and composite
components along a simple example.

This documentation related to features developed in the frame of GridCOMP is also available
in the ProActive user documentation.

Among all the features described in the documentation, we provide in this section an
overview of the major changes included in the CFI during the second year of GridCOMP. The
documentation contains in details the complete description of these features. Apart from a

1 DocBook is an XML language for technical documentation, http://www.oasis-
open.org/docbook/

GridCOMP FP6-034442 page 5 of 9 D.CFI.05

consistent number of bugs fixed, a lot of new features have been implemented. As major
improvements, we can list: the new GCM deployment framework; and improvements in the
collective interfaces. The other new features are detailed in the last part of this section.

2.1 GCM deployment

Until now the CFI was using the ProActive deployment framework. This framework has
several drawback and do not provides a fully and easy interoperable way to deploy
application on a grid as required in the GCM definition. The main defects are the complexity
to write deployment descriptors and the incapacity to easily reuse already written deployment
descriptor files with another application or infrastructure. A new framework, named “GCM
deployment”, has been designed and implemented to meet those requirements.

To ensure an interoperable deployment, we have defined and implemented two ETSI
standards. These technical specifications divide the deployment in two parts:

• “GCM Interoperability Deployment” for grid administrators.
• “GCM Interoperability Application Description” for the application developers.

In the previous deployment used, i.e. the ProActive deployment, the grid part and the
application part were not separated. Thus, this new deployment is useful in order to have a
clear separation between grid administrators who know the grid and application developers
who know their application.
With the "GCM Interoperability Deployment", the administrator describes all the resources
provided by the grid and how they are acquired. For the "GCM Interoperability Application
Description", the developer describes the needed resources, the way to launch the application
and which deployment descriptor(s) must be used. This clear separation allows users to easily
reuse the same deployment descriptors describing given grids.

The change of deployment framework slightly impacts the rest of the GCM implementation.
The major changes were in the Fractal ADL [5] implementation. For backward compatibility
it supports both ProActive and GCM deployment framework. Also, old methods using the

org.objectweb.proactive.core.descriptor.data.VirtualNode class are no longer supported
since it has been removed for implementation reasons and in order to avoid confusion with
the new VirtualNode class. Those methods have been replaced and now use array of nodes.
Now, you can still refer to a given virtual node defined in deployment files by its name and
retrieve single node or array of nodes from it.

2.2 Collective interfaces improvements

2.2.1 Multicast interfaces

Within the context of the collaboration with the WP5 partners from University of Chile,
multicast interfaces have been improved.

When calling a method on a multicast interface, if some of the parameters of this method are
lists of values, we have seen in D.CFI.02 that there is various ways to distribute these values:
broadcast, one to one, round robin or a custom mode. Two more modes have been added:

• Random, which distributes each element of the list of values in a random manner.

GridCOMP FP6-034442 page 6 of 9 D.CFI.05

• Unicast, which sends one value of the list of parameters to only one of the connected
server interfaces. The index of the argument to send and the server interface are
specified by using a custom controller that extends

org.object.proactive.core.component.controller.MulticastController.

As a reminder, collective interfaces give the possibility to manage a group of interfaces as a
single entity. Therefore, collective interfaces use the group communication principle. First
step is the partitioning of parameters according to the distribution mode. A set of tasks is
generated, corresponding to the given partitioning scheme. The dispatch operation follows; it
maps generated tasks to connected server interfaces, using one of the available dispatch
modes, like for parameters dispatch: broadcast, round robin, random or custom. Now, a new
mode is available: dynamic. With this mode, buffered tasks are statically allocated to
connected server interfaces using the default allocation mode. Then, remaining tasks (un-
buffered) are dynamically allocated to most appropriate connected server interfaces which
increases the global performance of the execution.

Finally, the last improvement made is a reduction mechanism. Usually, when calling a
method on a multicast interface, the provided result, if there is a result, is a list of values. But,
with the reduction mechanism, developer can choose to reduce the received results, i.e. gather
and/or perform some operations on the list of values; for instance compute the average on a
list of int and eventually return a double as result. In order to use it, the specific annotation

org.objectweb.proactive.core.component.type.annotations.multicast.Reduce must be
set at the method level and must specify the mode to be used. Two modes are available:

• Select unique value, which considers that the list contains just one value and returns
this value.

• Custom, which allows the developer to define its own reduction algorithm.

2.2.2 Gathercast interfaces

By default, an invocation coming from a gathercast interface can be created and executed
when all connected client interfaces have performed an invocation on it. The timeout mode of

org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchr
o annotation already allows users to have a timeout in sight of avoid that gathercast interfaces
wait indefinitely for requests from all connected client interfaces. An additional functionality

has been implemented for the gathercast interfaces synchronization and the MethodSynchro
annotation has been extended in order to relax the synchronisation constraints on gathercast

interfaces. By specifying the new waitForAll mode of the MethodSynchro annotation to
"false", the developer can choose to have a gathercast interface which will create and execute
an invocation on the first request received from any of the connected client interfaces and
therefore to not wait requests from other connected client interfaces. Actually, this provides to
gathercast interfaces a symmetrical behaviour to the multicast unicast mode.

GridCOMP FP6-034442 page 7 of 9 D.CFI.05

2.3 Other changes

In order to add the possibility of having Non Functional prioritized requests, a new controller
has been implemented: org.objectweb.proactive.core.component.controller.PriorityController.
This feature has been added to solve issues occurring for instance during reconfiguration or
for autonomic features developed in the WP3. Using this feature, non functional requests may
have a different priority and can pass other requests in the queue. Thus, in a first step, the
request types have been extended and a priority order has been decided. Now, by using the
priority controller to manage the priority of each method exposed by a component, requests
can be:

• Functional requests, which always go at the end of the queue.
• Standard Non Functional requests (NF1), which also go at the end of the queue.
• Non Functional prioritized requests (NF2), which can pass the Functional requests but

not pass the other Non Functional requests.
• Non Functional most prioritized requests (NF3), which can overtake all the other

requests.

A first support for stream ports has been added. It is available by using the new Java interface
StreamInterface as a tag on the java interface definition of a component interface. Now,
during instantiation of a Fractal interface type, the implementation ensures for each interface

implementing the StreamInterface that all methods it defined have a void return value,
otherwise the type creation failed. At the moment, there is no specific communication
optimization, the provided stream interfaces just allow to express in the design the stream
behaviour of a port.

Another major improvement is the possibility to have non functional components, i.e.
components managing non functional aspects put in the membrane. This feature allows
developer to create controllers of a component as component themselves. It offers a way to
structure the membrane with non-functional components instead of standard Java object.
Using non functional components, developer takes advantage of the structure, the hierarchy
and the encapsulation provided by a component-oriented approach.

Henceforth, composite components can have an attribute controller. Previously, composite
components could not have an implementation class. Now, one exception is allowed: if a
composite component has an attribute controller therefore an implementation class can be

provided. This implementation class has to implement the AttributesController interface.

To simplify some part of the implementation the ComponentParameters controller has
been removed. The methods it featured are now in the Component controller.

3 Perspectives & Conclusion

As listed in the D.CFI.02 deliverable and in this deliverable itself almost all the features
defined in the GCM have been implemented. All basic GCM features, primitive and

GridCOMP FP6-034442 page 8 of 9 D.CFI.05

composite components, single and collective bindings, ADL and deployment are
implemented. During the upcoming final 6 months of the GridCOMP project, we will
continue to refine the component framework prototype.
The ongoing works are:

• Extension of the component packaging information in addition to ADL.
• Enhancement of the collective interfaces, in particular the synchronisation and

reduction capabilities for gathercast cardinality.
• Implementation of a component monitoring API which is needed for GCM autonomic

features and will provide more information to user in the GIDE [6] tool.
• Completion of the GCM deployment framework to improve the interoperability.

GridCOMP FP6-034442 page 9 of 9 D.CFI.05

4 References

[1] GCM, D.CFI.01 - Component model presentation and specification (XML schema or
DTD), GridCOMP deliverable

[2] ProActive - Parallel, Distributed, Multi-Core Solutions with Java, http://proactive.inria.fr/

[3] Baude F., Baduel L., Caromel D., Contes A., Huet F., Morel M. and Quilici R., in "GRID
COMPUTING: Software Environments and Tools", Jose C. Cunha and Omer F. Rana (Eds),
Springer Verlag, January 2006

[4] D.CFI.02 - CFI early prototype, GridCOMP deliverable

[5] FractalADL, The Architecture Description Language of the Fractal component model,
http://fractal.objectweb.org/fractaladl/index.html

[6] D.GIDE.01 - Grid IDE and architectural design (Report), GridCOMP deliverable

[7] D.CFI.03 - Architectural design of the component framework, GridCOMP deliverable

