GridCOMP

Grid programming with COMPonents: an advanced component platform for an effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.DIS.01 – GridCOMP Website

Due date of deliverable: September 2006
Actual submission date: 30 March 2007

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: GEIE ERCIM

<table>
<thead>
<tr>
<th>Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissemination Level</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

Keyword List: Website, Flyer, General presentation
Responsible Partner: Patricia Ho-Hune, GEIE ERCIM
Author: Karen Marache, GEIE ERCIM
MODIFICATION CONTROL

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Status</th>
<th>Modifications made by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29-02-2007</td>
<td>Draft</td>
<td>Karen Marache</td>
</tr>
<tr>
<td>2</td>
<td>06-03-2007</td>
<td>Draft</td>
<td>Patricia Ho-Hune</td>
</tr>
<tr>
<td>3</td>
<td>08-03-2007</td>
<td>Draft</td>
<td>Marco Danelutto</td>
</tr>
<tr>
<td>4</td>
<td>23-03-2007</td>
<td>Final</td>
<td>Karen Marache</td>
</tr>
</tbody>
</table>

Deliverable manager

- Patricia Ho-Hune, ERCIM

List of Contributors

- Peter Kunz, ERCIM

List of Evaluators

- Marco Danelutto, UNIPI
- Rajkumar Buyya, UOM

Goal of this document

The goal of this document is to briefly present the structure and aim of the GridCOMP website: http://gridcomp.ercim.org. The website has been launched in July 2006.

It also presents the GridCOMP General Presentation and Flyer. Both are available on the website, under the Dissemination Section.
Table of Content

1 GRIDCOMP WEB SITE ... 4
2 GRIDCOMP GENERAL PRESENTATION .. 13
3 GRIDCOMP FLYER ... 26
1 GridCOMP Web Site

Status of GridCOMP Website

The general structure has been finalised and the content is being implemented.

Palette Website as a key support for communication

All tools and information will be accessible from the GridCOMP Website. The project website will be the key support for GridCOMP communication. It will provide the channels for communication both within the project and with external stakeholders. To this end it will provide a secure collaborative working area.
The Homepage presents the most important information on the project for external readers. It describes the mission of GridCOMP project.
About GridCOMP: Objectives and Consortium

This page presents the main objectives and impact of the project.

This page also presents all Participants in the GridCOMP Project
This page presents important events and meetings in which GridCOMP is involved.
Conferences & seminars:

This page presents the most important events which GridCOMP will attend to or/and be organizing.
Deliverables:

This page makes all GridCOMP Deliverables accessible for download with a direct access to public documents and a secured access to restricted and confidential documents.
Contacts:

Lead contacts for the project
Dissemination

This page makes GridCOMP’s logos available, and presents the GridCOMP flyer.
Links:

Links to other useful resources related to the project such as partners, conferences and journals.
2 GridCOMP General Presentation

This is a general presentation, giving the profile, the overview and the name of the partners of the project. A brief description of the workpackages is done. The presentation will be updated while the project goes on.

GridCOMP – General Presentation
GridCOMP Project Profile

- **STREP - Specific Targeted Research Project**
 - Project Identifier: FP6-034442
 - European Commission: Advanced grid technologies, systems and services
 - Start Date: 1 June 2006
 - End Date: 30 November 2008
 - Project co-ordinator: ERCIM
 - Scientific coordinator: INRIA
 - Total cost: 2 974 230 €
 - European Commission funding: 1 750 000 €
 - Consortium: 11 partners, 3 outside Europe

Partnership: 11 members

![Partnership Logos]
Project Overview

- Objectives:
 GRID PROGRAMMING WITH COMPONENTS:
 an ADVANCED COMPONENT PLATFORM
 for an EFFECTIVE INVISIBLE GRID

- Summary:
 - The Grid Component Model (GCM, NoE CoreGrid) takes OW2
 Fractal comp. model as a starting point, with OW2 ProActive Grid
 middleware
 - Interoperability with other standards: EGEE gLite, UNICORE,
 NorduGrid, Globus, Web Services, etc.,
 - Coordination with the NESSI initiative: involvement of OW2, IBM,
 ATOS

Work Packages: Approach & Structure
WP2: Component Framework Implementation

GCM: Grid Component Model

GridCOMP takes:
- GCM as a first specification
- GCM being defined in the NoE CoreGRID (42 institutions)
- ProActive as a starting point, and Open Source reference implementation.
- Open Source OW2 ProActive implements a preliminary version of GCM

GCM Technical Structure

1. Component Specification as an XML schema or DTD
2. Run-Time API defined in several languages: C, Java
3. Packaging described as an XML schema
4. Information for Deployment (Virtual Nodes, ... Variables, File Transfer, ...)

GridCOMP FP6-034442 page 16 of 27 D.DIS.01
ProActive

ProActive is a Java GRID middleware library (with Open Source code under LGPL license) for parallel, distributed and multi-threaded computing.

Status of GCM in ProActive

- **Partial implementation:**
 - ADL schema, API, Multicast, Gathercast, ...
 - Component GUI (prototype)

- **Distributed components** for various applications:
 - Numerical, Legacy, ...

- **On-going experiments:**
 - up to 300+ CPUs
A Vision: GCM as EU’s GSM

Once upon a time:
- GSM: Global System for Mobile communication

Process:
- “critical decisions […] the GSM initiative became a success in Europe […]”
- Initially the strategy and technical specifications were agreed for Europe and […] incorporating all non-European requirements […] worldwide to participate”

Standardization of GSM was crucial for EU advances in Mobile Telephony (Science and Business)

A Vision: GCM as EU’s GSM

GRID faces the same challenge:
- Build Flexibility
- Openness
- Interoperability

Objectives:
Build a Word-Wide standard for Science and Business GRIDs: GCM
Objectives

<table>
<thead>
<tr>
<th>Objectives</th>
<th>How Achievement will be measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>A EU Component Framework</td>
<td>Adoption</td>
</tr>
<tr>
<td>Non Functional Features: Invisible Grid</td>
<td>Efficiency</td>
</tr>
<tr>
<td>GRID IDE</td>
<td>Usability</td>
</tr>
<tr>
<td>Industrial Use-Case Validations</td>
<td>Client Demand</td>
</tr>
</tbody>
</table>

Research Challenges

- **A generic GCM, still efficient**
- **Effective composition:**
 - Semantics, Deployment, Portability
- **Non-Functional Aspects:**
 - Security, Load-Balancing, Fault-tolerance, …
Key technology advancements

- Programming the Grid with reusable, composable, components
 - vs. ad hoc solutions

- Deployment on various architectures
 - Super Computer Center, Clusters, data-center, desktop Grids, ...

- Interoperability with related Grid software

- Integration into Service Oriented Architecture (SOA)

WP3 - Non Functional Component Features (1)

- Definition of a “framework” for autonomic management of distributed components
 - Design of the manager structure
 - Definition of proper implementation mechanisms
 - Characterisation of properties handled through autonomic managers

- Preliminary experiments on notable (parallel) component compositions
 - Autonomic management of simple performance contracts
 - Assessment of the autonomic framework features
WP3 - Non Functional Component Features (2)

- Layered design of non functional component features
 - Identify proper support mechanisms to handle dynamic adaptation of components
 - Define local strategies to achieve contractually specified QoS goals
 - Based on mechanisms, predefined for well-known paradigms
 - Exhibiting local functional correctness
 - Enforcing the reestablishment of broken QoS contract to validity range
 - Define orchestration strategies preserving local to global effect
 - Local strategies are functional to a global goal
 - Application adaptation extent is keep as local as possible

- Interaction with use case providers to assess/improve non functional framework
 - Framework is validated on use cases or parts of them

WP4 - Grid IDE for Programmers and Composers

- Provides an integrated programming and composing GUI.
- Offers facilities to bind both normal code and legacy code into primitive components.
- Enables assembly of Grid applications.
- Provides tools for the deployment of a given Grid component configuration or application.
WP4 - Grid IDE for Data-centre operators

- Provides a mechanism for installing, monitoring and mapping necessary component code to available resources.
- Offers a steering tool for installing, removing, and re-installing new versions of component code.
- Provides a tool for the monitoring of resources.

WP5 - Use cases (1)

- Telecom - Extended Data Record Processor
 - Collects, cleans, unifies and process data from several sources
 - Grid technology will provide reduced processing time, redundancy, fault-tolerance, lower cost and higher scalability

- Aerospace - Wing Design Application
 - Legacy application that computes the aerodynamic wing performance for a given configuration
 - This application will be wrapped into a component and distributed for parallel execution
WP5 - Use cases (2)

- Biometric Identification System
 - Identify people solely on their biometric information (1:N match)
 - Use fingerprint biometrics (AFIS)
 - Consider multiple fingers to work reliably on large user population
 - Use distributed matching to achieve real-time performance
 - Based on business process (workflow) engine for adaptability

- Management application
 - Client/server application, with heavy processes (computing or data access intensive) written in PL/SQL procedures
 - Speed-up by parallelizing a sequential process into several sub processes
 - Speed-up by splitting data into subsets

Expected Results & Impact

<table>
<thead>
<tr>
<th>Anticipated Results & Impacts</th>
<th>Milestone (date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running and operational prototype of the component framework</td>
<td>M6 – M24</td>
</tr>
<tr>
<td>Management of Non-Functional Aspects</td>
<td>M14 – M24</td>
</tr>
<tr>
<td>A GCM Grid environment (IDE)</td>
<td>M18 – M24</td>
</tr>
<tr>
<td>Use of the GCM in the 4 industrial use cases</td>
<td>M30</td>
</tr>
</tbody>
</table>
Standardization *(contribution to & use of*)

Approach:
- Ensure interoperability with existing Grid software
- EGEE gLite, Unicore, WS, Globus, LSF, ...
- Other business standards (PKI X509, OSGi, ...)

Standardisation Goals:
- A well defined, standardized, EU GCM, ... GGF
- Tested Grid Interop (Grid PlugTests, ETSI)
- Adoption by industry

Standards that will be used:
- gLite, Unicore, WS, X509

Technical progress planned for the next six months (1/2)

ProActive/GCM Implementation
- Collective interface improvements (multicast)
- Interface the ProActive **Scheduler** with component
- Reorganization of the ProActive descriptor deployment file : more component
- Improve separation between ProActive features and ProActive/GCM

Grid IDE early prototype
- ADL files viewer, checker, editor
Technical progress planned for the next six months (2/2)

- **Non Functional Component Features**
 - Definition of a “framework” for autonomic management of distributed components
 - Prevent conflicts with the monitoring/steering Grid IDE functionality
 - Preliminary experiments on notable (parallel) component compositions
 - Autonomic management of simple performance contracts
 - Assessment of the autonomic framework features
 - Interaction with use case providers to assess/improve non functional framework
3 GridCOMP Flyer

The GridCOMP Flyer is a short (2-pages) presentation of the project, which can be used all over the world during meetings, workshops and events, about Grids.
GridCOMP Effective Components for the Grids

Coordination with the Networked European Software/Service Initiative (NEDSS) is a strong priority, with the involvement of OSG, Atlas, Origin and IBM.

GridCOMP addresses both scientific computing and Grid-based business applications. The project can reach a worldwide audience thanks to the involvement of partners from Australia, China and South America.

Cooperation

Partnership

- European Research Consortium for Informatics and Mathematics, France
- INRIA, France
- IBM Research Laboratory, Switzerland
- University of Westminster, UK
- ATOS Origin, Spain
- Institute of Information Science and Technologies of the Italian National Research Council (ISTI-CNR), Italy
- Grid Systems, SA, Malagwa, Spain
- Department of Computer Science, University of Melbourne, Australia
- Department of Computer Science and Software Engineering, University of Adelaide, Australia

Facts

- **Duration:** From 1 June 2006 to 30 November 2008
- **Budget:** €2,974,230
- **Funding:** IST Programme
- **Instrument:** Specific Targeted Research Project
- **Project No.:** FP6-034442

Contact

- **Administrative coordinator:** Patricia Perreault, ERCIM SEB
 - Email: patricia.perreault@ercim.org

- **Scientific coordinator:** Enrico Corral, INRIA
 - Email: enrico.corral@inria.fr

Website: http://gridcomp.ercim.org/

GridCOMP is a "Specific Targeted Research Project" supported by the IST programme of the European Union, the Information Society and Media, project FP6-034442.